Side Bar
Course on
GitHub
- Overview
- Syllabus
- Schedule
- 4-Day Course
- Course Project
- Resources
- Install Python
- Install Packages
- AI Ethics
Exams
Data Engineering
- Overview
- 1️⃣ Gather Data
- 2️⃣ Statistics
- 3️⃣ Visualize
- 4️⃣ Cleanse
- 5️⃣ Features
- 6️⃣ Balance
- 7️⃣ Scale
- 8️⃣ Split
- 9️⃣ Deploy
- 🔟 Apps
Classification
Supervised Learning
- AdaBoost
- Decision Tree
- k-Nearest Neighbors
- Logistic Regression
- Naïve Bayes
- Neural Network Classifier
- Random Forest
- Stochastic Gradient Descent
- Support Vector Classifier
- XGBoost Classifier
Unsupervised Learning
Regression
- Overview
- Linear Regression
- k-Nearest Neighbors
- Support Vector Regressor
- Gaussian Processes
- Neural Network Regressor
- XGBoost Regressor
Time-Series
Computer Vision
Applications
3D Print 📈📊
Automotive 📈📊
Battery Life⏱️📈
OT Cybersecurity ⏱️📊
Polymers 📈
Road Detection 👁️📊
Safety 👁️
Soils 👁️📊
Sonar 📊
Texture 👁️📊
Wind Power ⏱️📈
📈=Regression
📊=Classification
⏱️=Time Series
👁️=Computer Vision
🎧=Audio
- Overview
- TCLab Help
- 1. Overview
- 2. Import Data
- 3. Statistics
- 4. Visualize
- 5. Prepare Data
- 6. Regression
- 7. Features
- 8. Classification
- 9. Interpolation
- 10. Solve Equations
- 11. Differential Equations
- 12. Time Series
- Final TCLab Project
Related Courses