Rocket Launch: Classic Optimal Control

Main.RocketOptimization History

Hide minor edits - Show changes to output

February 15, 2021, at 06:02 PM by 65.181.57.130 -
Changed lines 29-30 from:
!!!! Solution
to:
!!!! APM MATLAB and APM Python Solution
Changed lines 37-124 from:
to:
!!!! Python GEKKO Solution

The GEKKO package is available through the package manager '''pip''' in Python.

 python -m pip install gekko

GEKKO Python is designed for large-scale optimization and accesses solvers of constrained, unconstrained, continuous, and discrete problems.

%width=550px%Attach:rocket_launch.png

(:source lang=python:)
import numpy as np
import matplotlib.pyplot as plt
from gekko import GEKKO

# create GEKKO model
m = GEKKO()

# scale 0-1 time with tf
m.time = np.linspace(0,1,101)

# options
m.options.NODES = 6
m.options.SOLVER = 3
m.options.IMODE = 6
m.options.MAX_ITER = 500
m.options.MV_TYPE = 0
m.options.DIAGLEVEL = 0

# final time
tf = m.FV(value=1.0,lb=0.1,ub=100)
tf.STATUS = 1

# force
u = m.MV(value=0,lb=-1.1,ub=1.1)
u.STATUS = 1
u.DCOST = 1e-5

# variables
s = m.Var(value=0)
v = m.Var(value=0,lb=0,ub=1.7)
mass = m.Var(value=1,lb=0.2)

# differential equations scaled by tf
m.Equation(s.dt()==tf*v)
m.Equation(mass*v.dt()==tf*(u-0.2*v**2))
m.Equation(mass.dt()==tf*(-0.01*u**2))

# specify endpoint conditions
m.fix(s, pos=len(m.time)-1,val=10.0)
m.fix(v, pos=len(m.time)-1,val=0.0)

# minimize final time
m.Obj(tf)

# Optimize launch
m.solve()

print('Optimal Solution (final time): ' + str(tf.value[0]))

# scaled time
ts = m.time * tf.value[0]

# plot results
plt.figure(1)
plt.subplot(4,1,1)
plt.plot(ts,s.value,'r-',linewidth=2)
plt.ylabel('Position')
plt.legend(['s (Position)'])

plt.subplot(4,1,2)
plt.plot(ts,v.value,'b-',linewidth=2)
plt.ylabel('Velocity')
plt.legend(['v (Velocity)'])

plt.subplot(4,1,3)
plt.plot(ts,mass.value,'k-',linewidth=2)
plt.ylabel('Mass')
plt.legend(['m (Mass)'])

plt.subplot(4,1,4)
plt.plot(ts,u.value,'g-',linewidth=2)
plt.ylabel('Force')
plt.legend(['u (Force)'])

plt.xlabel('Time')
plt.show()
(:sourceend:)
August 26, 2016, at 05:14 PM by 10.5.113.104 -
Added lines 6-29:

!!!! Problem Statement

 minimize tf

 subject to
  ds/dt = v
  dv/dt = (u-0.2*v^2)/m
  dm/dt = -0.01 * u^2

 path constraints
  0.0 <= v(t) <= 1.7
  -1.1 <= u(t) <= 1.1
 
 initial boundary conditions
  s(0) = 0
  v(0) = 0
  m(0) = 1

 final boundary conditions
  s(tf) = 10.0
  v(tf) = 0.0

!!!! Solution
Changed line 7 from:
to:
Attach:download.png [[Attach:dynamic_rocket_launch.zip|Download Rocket Launch Planning Solution in MATLAB and Python]]
Changed line 1 from:
(:title Rocket Launch: Classic Optimal Control Problem:)
to:
(:title Rocket Launch: Classic Optimal Control:)
Changed lines 5-6 from:

to:
A rocket burn trajectory is desired to minimize a travel time between a starting point and a final point, 10 units of distance away. The thrust can be between an upper limit of 1.1 and a lower limit of -1.1. The initial and final velocity must be zero and the maximum velocity can never exceed 1.7. It is also desirable to minimize the use of fuel to perform the maneuver. There is a drag resistance the is proportional to the square of the velocity and mass is lost as the fuel is burned during thrust operations.


Added lines 12-13:

Changed line 1 from:
(:title Rocket Optimization:)
to:
(:title Rocket Launch: Classic Optimal Control Problem:)
Added lines 5-9:


(:html:)
<iframe width="560" height="315" src="https://www.youtube.com/embed/9qsiCGpvwKA" frameborder="0" allowfullscreen></iframe>
(:htmlend:)
August 22, 2016, at 11:17 PM by 10.10.150.143 -
Added lines 1-4:
(:title Rocket Optimization:)
(:keywords Python, MATLAB, nonlinear control, Rocket, Goddard, model predictive control, dynamic programming:)
(:description Minimize final time for rocket launch by manipulating the force exerted by the thruster. This is a classic dynamic optimization problem benchmark used in many research papers to test the application of new algorithms.:)