TCLab C - Parameter Estimation
Main.TCLabC History
Hide minor edits - Show changes to markup
linewidth=3,label=r'$T_1$ predicted')
lw=3,label=r'$T_1$ predicted')
linewidth=3,label=r'$T_2$ predicted')
lw=3,label=r'$T_2$ predicted')
linewidth=3,label=r'$Q_1$')
lw=3,label=r'$Q_1$')
linewidth=3,label=r'$Q_2$')
lw=3,label=r'$Q_2$')
Virtual TCLab on Google Colab
Note: Switch to make_mp4 = True to make an MP4 movie animation. This requires imageio and ffmpeg (install available through Python). It creates a folder named figures in your run directory. You can delete this folder after the run is complete.
- Make an MP4 animation?
make_mp4 = False if make_mp4:
import imageio # required to make animation import os try: os.mkdir('./figures') except: pass
plt.figure(figsize=(10,7))
plt.figure(figsize=(12,7))
if make_mp4: filename='./figures/plot_str(i+10000).png' plt.savefig(filename)
# generate mp4 from png figures in batches of 350 if make_mp4: images = [] iset = 0 for i in range(1,n): filename='./figures/plot_str(i+10000).png' images.append(imageio.imread(filename)) if ((i+1)%350)==0: imageio.mimsave('results_str(iset).mp4', images) iset += 1 images = [] if images!=[]: imageio.mimsave('results_str(iset).mp4', images)
<iframe width="560" height="315" src="https://www.youtube.com/embed/SwogAa1719M" frameborder="0" allow="autoplay; encrypted-media" allowfullscreen></iframe>
<iframe width="560" height="315" src="https://www.youtube.com/embed/SSu6PbguSyU" frameborder="0" allow="accelerometer; autoplay; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe>
<video controls autoplay loop>
<video width="550" controls autoplay loop>
Attach:tclab_mhe.mp4 (:html:) <video controls autoplay loop>
<source src="/do/uploads/Main/tclab_mhe.mp4" type="video/mp4"> Your browser does not support the video tag.
</video> (:htmlend:)
m.Equation(TH1.dt() == (1.0/(mass*Cp))*(U*A*(Ta-T1) \
m.Equation(TC1.dt() == (1.0/(mass*Cp))*(U*A*(Ta-T1) \
m.Equation(TH2.dt() == (1.0/(mass*Cp))*(U*A*(Ta-T2) \
m.Equation(TC2.dt() == (1.0/(mass*Cp))*(U*A*(Ta-T2) \
tau.STATUS = 1

(:title TCLab C - Parameter Estimation:) (:keywords Arduino, Parameter, Regression, temperature, control, process control, course:) (:description Regression of Parameters in Multivariate (MIMO) Energy Balance with Arduino Data from TCLab:)
The TCLab is a hands-on application of machine learning and advanced temperature control with two heaters and two temperature sensors. The labs reinforce principles of model development, estimation, and advanced control methods. This is the third exercise and it involves estimating parameters in a multi-variate energy balance model. The predictions are aligned to the measured values through an optimizer that adjusts the parameters to minimize a sum of squared error objective. This lab builds upon the TCLab B by using the model of two heaters and two temperature sensors.
Lab Problem Statement
Data and Solutions
- Batch Parameter Estimation with MATLAB and Python
(:html:) <iframe width="560" height="315" src="https://www.youtube.com/embed/SwogAa1719M" frameborder="0" allow="autoplay; encrypted-media" allowfullscreen></iframe> (:htmlend:)
(:toggle hide gekko_labCd button show="Lab C: Python TCLab Generate Step Data":) (:div id=gekko_labCd:) (:source lang=python:) import numpy as np import pandas as pd import tclab import time import matplotlib.pyplot as plt
- generate step test data on Arduino
filename = 'tclab_dyn_data2.csv'
- heater steps
Q1d = np.zeros(601) Q1d[10:200] = 80 Q1d[200:280] = 20 Q1d[280:400] = 70 Q1d[400:] = 50
Q2d = np.zeros(601) Q2d[120:320] = 100 Q2d[320:520] = 10 Q2d[520:] = 80
- Connect to Arduino
a = tclab.TCLab() fid = open(filename,'w') fid.write('Time,H1,H2,T1,T2\n') fid.close()
- run step test (10 min)
for i in range(601):
# set heater values a.Q1(Q1d[i]) a.Q2(Q2d[i]) print('Time: ' + str(i) + ' H1: ' + str(Q1d[i]) + ' H2: ' + str(Q2d[i]) + ' T1: ' + str(a.T1) + ' T2: ' + str(a.T2)) # wait 1 second time.sleep(1) fid = open(filename,'a') fid.write(str(i)+',str(Q1d[i]),str(Q2d[i]),' +str(a.T1)+',str(a.T2)\n')
- close connection to Arduino
a.close()
- read data file
data = pd.read_csv(filename)
- plot measurements
plt.figure() plt.subplot(2,1,1) plt.plot(data['Time'],data['H1'],'r-',label='Heater 1') plt.plot(data['Time'],data['H2'],'b--',label='Heater 2') plt.ylabel('Heater (%)') plt.legend(loc='best') plt.subplot(2,1,2) plt.plot(data['Time'],data['T1'],'r.',label='Temperature 1') plt.plot(data['Time'],data['T2'],'b.',label='Temperature 2') plt.ylabel('Temperature (degC)') plt.legend(loc='best') plt.xlabel('Time (sec)') plt.savefig('tclab_dyn_meas2.png')
plt.show() (:sourceend:) (:divend:)
Attach:tclab_mimo_hybrid_estimation_gekko.png Δ
(:toggle hide gekko_labCf button show="Lab C: Python GEKKO Parameter Estimation":) (:div id=gekko_labCf:) (:source lang=python:) import numpy as np import matplotlib.pyplot as plt import pandas as pd from gekko import GEKKO
- Import or generate data
filename = 'tclab_dyn_data2.csv' try:
data = pd.read_csv(filename)
except:
url = 'https://apmonitor.com/do/uploads/Main/tclab_dyn_data2.txt' data = pd.read_csv(url)
- Create GEKKO Model
m = GEKKO() m.time = data['Time'].values
- Parameters to Estimate
U = m.FV(value=10,lb=1,ub=20) alpha1 = m.FV(value=0.01,lb=0.003,ub=0.03) # W / % heater alpha2 = m.FV(value=0.005,lb=0.002,ub=0.02) # W / % heater
- STATUS=1 allows solver to adjust parameter
U.STATUS = 1 alpha1.STATUS = 1 alpha2.STATUS = 1
- Measured inputs
Q1 = m.MV(value=data['H1'].values) Q2 = m.MV(value=data['H2'].values)
- State variables
TC1 = m.CV(value=data['T1'].values) TC1.FSTATUS = 1 # minimize fstatus * (meas-pred)^2 TC2 = m.CV(value=data['T2'].values) TC2.FSTATUS = 1 # minimize fstatus * (meas-pred)^2
Ta = m.Param(value=19.0+273.15) # K mass = m.Param(value=4.0/1000.0) # kg Cp = m.Param(value=0.5*1000.0) # J/kg-K A = m.Param(value=10.0/100.0**2) # Area not between heaters in m^2 As = m.Param(value=2.0/100.0**2) # Area between heaters in m^2 eps = m.Param(value=0.9) # Emissivity sigma = m.Const(5.67e-8) # Stefan-Boltzmann
- Heater temperatures in Kelvin
T1 = m.Intermediate(TC1+273.15) T2 = m.Intermediate(TC2+273.15)
- Heat transfer between two heaters
Q_C12 = m.Intermediate(U*As*(T2-T1)) # Convective Q_R12 = m.Intermediate(eps*sigma*As*(T2**4-T1**4)) # Radiative
- Semi-fundamental correlations (energy balances)
m.Equation(TC1.dt() == (1.0/(mass*Cp))*(U*A*(Ta-T1) + eps * sigma * A * (Ta**4 - T1**4) + Q_C12 + Q_R12 + alpha1*Q1))
m.Equation(TC2.dt() == (1.0/(mass*Cp))*(U*A*(Ta-T2) + eps * sigma * A * (Ta**4 - T2**4) - Q_C12 - Q_R12 + alpha2*Q2))
- Options
m.options.IMODE = 5 # MHE m.options.EV_TYPE = 2 # Objective type m.options.NODES = 2 # Collocation nodes m.options.SOLVER = 3 # IPOPT
- Solve
m.solve(disp=True)
- Parameter values
print('U : ' + str(U.value[0])) print('alpha1: ' + str(alpha1.value[0])) print('alpha2: ' + str(alpha2.value[0]))
- Create plot
plt.figure() ax=plt.subplot(2,1,1) ax.grid() plt.plot(data['Time'],data['T1'],'ro',label=r'$T_1$ measured') plt.plot(m.time,TC1.value,color='purple',linestyle=, linewidth=3,label=r'$T_1$ predicted') plt.plot(data['Time'],data['T2'],'bx',label=r'$T_2$ measured') plt.plot(m.time,TC2.value,color='orange',linestyle=, linewidth=3,label=r'$T_2$ predicted') plt.ylabel('Temperature (degC)') plt.legend(loc=2) ax=plt.subplot(2,1,2) ax.grid() plt.plot(data['Time'],data['H1'],'r-', linewidth=3,label=r'$Q_1$') plt.plot(data['Time'],data['H2'],'b:', linewidth=3,label=r'$Q_2$') plt.ylabel('Heaters') plt.xlabel('Time (sec)') plt.legend(loc='best') plt.show() (:sourceend:) (:divend:)
(:toggle hide gekko_labCm button show="Lab C: Python GEKKO Moving Horizon Estimation":) (:div id=gekko_labCm:) (:source lang=python:) import numpy as np import time import matplotlib.pyplot as plt import random
- get gekko package with:
- pip install gekko
from gekko import GEKKO
- get tclab package with:
- pip install tclab
from tclab import TCLab
- Connect to Arduino
a = TCLab()
- Final time
tf = 10 # min
- number of data points (1 pt every 3 seconds)
n = tf * 20 + 1
- Configure heater levels
- Percent Heater (0-100%)
Q1s = np.zeros(n) Q2s = np.zeros(n)
- Heater random steps every 50 sec
- Alternate steps by Q1 and Q2
Q1s[3:] = 100.0 Q1s[50:] = 0.0 Q1s[100:] = 80.0
Q2s[25:] = 60.0 Q2s[75:] = 100.0 Q2s[125:] = 25.0
- rapid, random changes every 5 cycles between 50 and 100
for i in range(130,180):
if i%10==0: Q1s[i:i+10] = random.random() * 100.0 if (i+5)%10==0: Q2s[i:i+10] = random.random() * 100.0
- Record initial temperatures (degC)
T1m = a.T1 * np.ones(n) T2m = a.T2 * np.ones(n)
- Store MHE values for plots
Tmhe1 = T1m[0] * np.ones(n) Tmhe2 = T2m[0] * np.ones(n) Umhe = 10.0 * np.ones(n) amhe1 = 0.01 * np.ones(n) amhe2 = 0.0075 * np.ones(n)
- Initialize Model as Estimator
- Use remote=False for local solve (Windows, Linux, ARM)
- remote=True for remote solve (All platforms)
m = GEKKO(name='tclab-mhe',remote=False)
- 60 second time horizon, 20 steps
m.time = np.linspace(0,60,21)
- Parameters to Estimate
U = m.FV(value=10,name='u') U.STATUS = 0 # don't estimate initially U.FSTATUS = 0 # no measurements U.DMAX = 1 U.LOWER = 5 U.UPPER = 15
alpha1 = m.FV(value=0.01,name='a1') # W / % heater alpha1.STATUS = 0 # don't estimate initially alpha1.FSTATUS = 0 # no measurements alpha1.DMAX = 0.001 alpha1.LOWER = 0.003 alpha1.UPPER = 0.03
alpha2 = m.FV(value=0.0075,name='a2') # W / % heater alpha2.STATUS = 0 # don't estimate initially alpha2.FSTATUS = 0 # no measurements alpha2.DMAX = 0.001 alpha2.LOWER = 0.002 alpha2.UPPER = 0.02
- Measured inputs
Q1 = m.MV(value=0,name='q1') Q1.STATUS = 0 # don't estimate Q1.FSTATUS = 1 # receive measurement
Q2 = m.MV(value=0,name='q2') Q2.STATUS = 0 # don't estimate Q2.FSTATUS = 1 # receive measurement
- Measurements for model alignment
TC1 = m.CV(value=T1m[0],name='tc1') TC1.STATUS = 1 # minimize error between simulation and measurement TC1.FSTATUS = 1 # receive measurement TC1.MEAS_GAP = 0.1 # measurement deadband gap TC1.LOWER = 0 TC1.UPPER = 200
TC2 = m.CV(value=T2m[0],name='tc2') TC2.STATUS = 1 # minimize error between simulation and measurement TC2.FSTATUS = 1 # receive measurement TC2.MEAS_GAP = 0.1 # measurement deadband gap TC2.LOWER = 0 TC2.UPPER = 200
Ta = m.Param(value=23.0+273.15) # K mass = m.Param(value=4.0/1000.0) # kg Cp = m.Param(value=0.5*1000.0) # J/kg-K A = m.Param(value=10.0/100.0**2) # Area not between heaters in m^2 As = m.Param(value=2.0/100.0**2) # Area between heaters in m^2 eps = m.Param(value=0.9) # Emissivity sigma = m.Const(5.67e-8) # Stefan-Boltzmann
- Heater temperatures
T1 = m.Intermediate(TC1+273.15) T2 = m.Intermediate(TC2+273.15)
- Heat transfer between two heaters
Q_C12 = m.Intermediate(U*As*(T2-T1)) # Convective Q_R12 = m.Intermediate(eps*sigma*As*(T2**4-T1**4)) # Radiative
- Semi-fundamental correlations (energy balances)
m.Equation(TH1.dt() == (1.0/(mass*Cp))*(U*A*(Ta-T1) + eps * sigma * A * (Ta**4 - T1**4) + Q_C12 + Q_R12 + alpha1*Q1))
m.Equation(TH2.dt() == (1.0/(mass*Cp))*(U*A*(Ta-T2) + eps * sigma * A * (Ta**4 - T2**4) - Q_C12 - Q_R12 + alpha2*Q2))
- Global Options
m.options.IMODE = 5 # MHE m.options.EV_TYPE = 2 # Objective type m.options.NODES = 3 # Collocation nodes m.options.SOLVER = 3 # IPOPT m.options.COLDSTART = 1 # COLDSTART on first cycle
- Create plot
plt.figure(figsize=(10,7)) plt.ion() plt.show()
- Main Loop
start_time = time.time() prev_time = start_time tm = np.zeros(n)
try:
for i in range(1,n): # Sleep time sleep_max = 3.0 sleep = sleep_max - (time.time() - prev_time) if sleep>=0.01: time.sleep(sleep-0.01) else: time.sleep(0.01) # Record time and change in time t = time.time() dt = t - prev_time prev_time = t tm[i] = t - start_time # Read temperatures in Celsius T1m[i] = a.T1 T2m[i] = a.T2 # Insert measurements TC1.MEAS = T1m[i] TC2.MEAS = T2m[i] Q1.MEAS = Q1s[i-1] Q2.MEAS = Q2s[i-1] # Start estimating U after 10 cycles (20 sec) if i==10: U.STATUS = 1 tau.STATUS = 1 alpha1.STATUS = 1 alpha2.STATUS = 1 # Predict Parameters and Temperatures with MHE m.solve() if m.options.APPSTATUS == 1: # Retrieve new values Tmhe1[i] = TC1.MODEL Tmhe2[i] = TC2.MODEL Umhe[i] = U.NEWVAL amhe1[i] = alpha1.NEWVAL amhe2[i] = alpha2.NEWVAL else: # Solution failed, copy prior solution Tmhe1[i] = Tmhe1[i-1] Tmhe2[i] = Tmhe1[i-1] Umhe[i] = Umhe[i-1] amhe1[i] = amhe1[i-1] amhe2[i] = amhe2[i-1] # Write new heater values (0-100) a.Q1(Q1s[i]) a.Q2(Q2s[i]) # Plot plt.clf() ax=plt.subplot(3,1,1) ax.grid() plt.plot(tm[0:i],T1m[0:i],'ro',label=r'$T_1$ measured') plt.plot(tm[0:i],Tmhe1[0:i],'k-',label=r'$T_1$ MHE') plt.plot(tm[0:i],T2m[0:i],'bx',label=r'$T_2$ measured') plt.plot(tm[0:i],Tmhe2[0:i],'k--',label=r'$T_2$ MHE') plt.ylabel('Temperature (degC)') plt.legend(loc=2) ax=plt.subplot(3,1,2) ax.grid() plt.plot(tm[0:i],Umhe[0:i],'k-',label='Heat Transfer Coeff') plt.plot(tm[0:i],amhe1[0:i]*1000,'r--',label=r'$\alpha_1$x1000') plt.plot(tm[0:i],amhe2[0:i]*1000,'b--',label=r'$\alpha_2$x1000') plt.ylabel('Parameters') plt.legend(loc='best') ax=plt.subplot(3,1,3) ax.grid() plt.plot(tm[0:i],Q1s[0:i],'r-',label=r'$Q_1$') plt.plot(tm[0:i],Q2s[0:i],'b:',label=r'$Q_2$') plt.ylabel('Heaters') plt.xlabel('Time (sec)') plt.legend(loc='best') plt.draw() plt.pause(0.05) # Turn off heaters a.Q1(0) a.Q2(0) # Save figure plt.savefig('tclab_mhe.png')
- Allow user to end loop with Ctrl-C
except KeyboardInterrupt:
# Disconnect from Arduino a.Q1(0) a.Q2(0) print('Shutting down') a.close() plt.savefig('tclab_mhe.png')
- Make sure serial connection still closes when there's an error
except:
# Disconnect from Arduino a.Q1(0) a.Q2(0) print('Error: Shutting down') a.close() plt.savefig('tclab_mhe.png') raise
(:sourceend:) (:divend:)
See also:
Advanced Control Lab Overview
GEKKO Documentation
TCLab Documentation
TCLab Files on GitHub
Basic (PID) Control Lab
(:html:) <style> .button {
border-radius: 4px; background-color: #0000ff; border: none; color: #FFFFFF; text-align: center; font-size: 28px; padding: 20px; width: 300px; transition: all 0.5s; cursor: pointer; margin: 5px;
}
.button span {
cursor: pointer; display: inline-block; position: relative; transition: 0.5s;
}
.button span:after {
content: '\00bb'; position: absolute; opacity: 0; top: 0; right: -20px; transition: 0.5s;
}
.button:hover span {
padding-right: 25px;
}
.button:hover span:after {
opacity: 1; right: 0;
} </style> (:htmlend:)