Distillate Composition Control

The objective of this exercise is to maintain an overhead mole fraction for the light component in a binary distillation column that separates cyclohexane and n-heptane. The nominal steady state for the column is a reflux ratio at 3.0 with an allowable range from 1.0 to 10.0. This reflux ratio produces a cyclohexane product with a purity of 0.935 (mole fraction), but the target composition is 0.970 with an allowable range of 0.960 to 0.980. The objective is to design a PID controller to meet this target value and stay within the specified product range.

Manipulated Variable: Reflux Ratio: RR (Ratio of distillate flowrate returning to the column divided by the flowrate of the product leaving)

Controlled Variable: Distillate composition `(x_d)` mole fraction

Measured Disturbances: (1) Feed flow rate, (2) Feed composition (mole fraction)

Determine Steady State Conditions

Report the design set point and controller bias `u_{bias}` value for the controller.

Estimate Model

Perform a doublet test and use the dynamic response data to estimate a first order plus dead time (FOPDT) model.

Obtain PID Parameters

Use the FOPDT model values in the IMC tuning correlation to compute the tuning constants `K_c`, `\tau_I`, and `\tau_D`. Specify the sign, magnitude, and units of each.

Implement PID Controller

Using the design set point, bias, and controller gain, implement the PID controller. Generate a plot showing the performance of the controller in tracking the set point.

Set Point Changes

Fine tune the controller gain by trial and error and search for the best parameters that balance speed with oscillatory behavior when tracking this set point from 0.935 to 0.970. Remember that as the designer, define what constitutes best performance. As well as generating a plot with final tuning, explain what criteria you is used to define best.

Disturbance Rejection

Introduce a disturbance in the feed after 50 minutes by changing the mole fraction from 0.50 to 0.42. Tune the controller to stay within the desired product range given this disturbance.

Distillation Simulation Code

import numpy as np
import matplotlib.pyplot as plt
from scipy.integrate import odeint

# define model
def distill(x,t,rr,Feed,x_Feed):
    # Inputs (3):
    # Reflux ratio is the Manipulated variable
    # Reflux Ratio (L/D)
    #rr = p(1)

    # Disturbance variables (DV)
    # Feed Flowrate (mol/min)
    #Feed = p(2)

    # Mole Fraction of Feed
    #x_Feed = p(3)

    # States (32):
    # x(0) - Reflux Drum Liquid Mole Fraction of Component A
    # x(1) - Tray 1 - Liquid Mole Fraction of Component A
    # .
    # .
    # .
    # x(16) - Tray 16 - Liquid Mole Fraction of Component A (Feed)
    # .
    # .
    # .
    # x(30) - Tray 30 - Liquid Mole Fraction of Component A
    # x(31) - Reboiler Liquid Mole Fraction of Component A

    # Parameters
    # Distillate Flowrate (mol/min)
    # Flowrate of the Liquid in the Rectification Section (mol/min)
    # Vapor Flowrate in the Column (mol/min)
    # Flowrate of the Liquid in the Stripping Section (mol/min)
    # Relative Volatility = (yA/xA)/(yB/xB) = KA/KB = alpha(A,B)
    # Total Molar Holdup in the Condenser
    # Total Molar Holdup on each Tray
    # Total Molar Holdup in the Reboiler
    # Vapor Mole Fractions of Component A
    # From the equilibrium assumption and mole balances
    # 1) vol = (yA/xA) / (yB/xB)
    # 2) xA + xB = 1
    # 3) yA + yB = 1
    y = np.empty(len(x))
    for i in range(32):
        y[i] = x[i] * vol/(1.0+(vol-1.0)*x[i])

    # Compute xdot
    xdot = np.empty(len(x))
    xdot[0] = 1/acond*V*(y[1]-x[0])
    for i in range(1,16):
        xdot[i] = 1.0/atray*(L*(x[i-1]-x[i])-V*(y[i]-y[i+1]))
    xdot[16] = 1/atray*(Feed*x_Feed+L*x[15]-FL*x[16]-V*(y[16]-y[17]))
    for i in range(17,31):
        xdot[i] = 1.0/atray*(FL*(x[i-1]-x[i])-V*(y[i]-y[i+1]))
    xdot[31] = 1/areb*(FL*x[30]-(Feed-D)*x[31]-V*y[31])
    return xdot

# Steady State Initial Conditions for the 32 states
x_ss =np.array([0.935,0.900,0.862,0.821,0.779,0.738,\
0.698,0.661,0.628,0.599,0.574,0.553,0.535,0.521,    \
0.510,0.501,0.494,0.485,0.474,0.459,0.441,0.419,    \
0.392,0.360,0.324,0.284,0.243,0.201,0.161,0.125,    \
x0 = x_ss

# Steady State Initial Condition
rr_ss = 3.0

# Time Interval (min)
t = np.linspace(0,10,100)

# Store results for plotting
xd = np.ones(len(t)) * x_ss[0]
rr = np.ones(len(t)) * rr_ss
ff = np.ones(len(t))
xf = np.ones(len(t)) * 0.5
sp = np.ones(len(t)) * 0.97

# Step in reflux ratio
rr[10:] = 3.5

# Feed Concentration (mol frac)
xf[50:] = 0.42

# Feed flow rate
ff[80:] = 1.0

# Simulate
for i in range(len(t)-1):
    ts = [t[i],t[i+1]]
    y = odeint(distill,x0,ts,args=(rr[i],ff[i],xf[i]))
    xd[i+1] = y[-1][0]
    x0 = y[-1]

# Construct results and save data file
# Column 1 = time
# Column 2 = reflux ratio
# Column 3 = distillate composition
data = np.vstack((t,rr,xd)) # vertical stack
data = data.T             # transpose data

# Plot the results
plt.legend(['Reflux ratio'],loc='best')

plt.plot(t,xf,'k:',linewidth=3,label='Feed composition')
plt.plot(t,ff,'g-.',linewidth=3,label='Feed flow (mol/min)')

plt.legend(['Distillate composition','Set point'],loc='best')
plt.xlabel('Time (min)')