Apps.GasBlending History

Hide minor edits - Show changes to markup

April 04, 2011, at 11:47 AM by 158.35.225.225 -
Changed lines 32-33 from:
  • Solve Sunco Gas Blending Optimization
to:
Changed line 78 from:
to:
  • Solve Sunco Gas Blending Optimization
April 04, 2011, at 11:46 AM by 158.35.225.225 -
Changed lines 32-33 from:
to:
  • Solve Sunco Gas Blending Optimization
Added lines 77-79:
April 04, 2011, at 11:44 AM by 158.35.225.225 -
Added lines 1-4:

(:title Sunco Gasoline Blending Optimization:) (:keywords nonlinear, APMonitor, algebraic modeling language, optimization:) (:description Sunco oil has three different processes that can be used to manufacture various types of gasoline. Each process involves blending oils in the company's catalytic cracker.:)

March 06, 2010, at 02:42 AM by 206.180.155.75 -
Changed line 30 from:

(:html:)<font size=1><pre>

to:

(:html:)<font size=2><pre>

April 23, 2009, at 10:44 AM by 158.35.225.231 -
Changed line 30 from:

(:html:)<pre>

to:

(:html:)<font size=1><pre>

Changed line 67 from:

</pre>

to:

</pre></font>

December 01, 2008, at 07:26 PM by 127.0.0.1 -
December 01, 2008, at 05:18 PM by 206.180.155.149 -
December 01, 2008, at 05:12 PM by 206.180.155.149 -
December 01, 2008, at 05:11 PM by 206.180.155.149 -
December 01, 2008, at 02:07 PM by 158.35.225.227 -
Added lines 5-25:

Problem

Sunco oil has three different processes that can be used to manufacture various types of gasoline. Each process involves blending oils in the company's catalytic cracker.

Process 1

Running process 1 for an hour costs $5 and requires 2 barrels of crude oil 1 and 3 barrels of crude oil 2. The output from running process 1 for an hour is 2 barrels of gas 1 and 1 barrel of gas 2.

Process 2

Running process 2 for an hour costs $4 and requires 1 barrel of crude 1 and 3 barrels of crude 2. The output from process 2 for an hour is 3 barrels of gas 2.

Process 3

Running process 3 for an hour costs $1 and requires 2 barrels of crude 2 and 3 barrels of gas 2. The output from running process 3 for an hour is 2 barrels of gas 3.

Each week, 200 barrels of crude 1, at $2/ barrel, and 300 barrels of crude 2 at $3/barrel, may be purchased. All gas produced can be sold at the following per-barrel prices: gas 1, $9; gas 2, $10; gas 3, $24. Formulate an LP whose solution will maximize revenues less costs. Assume that only 100 hours of time on the catalytic cracker are available each week.

  • Let x[i] = no. of hours process i is run per week (where i =1,2,3)
  • Let o[i] = no. of barrels of oil i that is purchased per week (i =1,2)
  • Let g[i] = no. of barrels of gas i sold per week (i=1,2,3)

Deleted line 30:
Deleted line 66:
Deleted lines 68-88:

Problem

Sunco oil has three different processes that can be used to manufacture various types of gasoline. Each process involves blending oils in the company's catalytic cracker.

Process 1

Running process 1 for an hour costs $5 and requires 2 barrels of crude oil 1 and 3 barrels of crude oil 2. The output from running process 1 for an hour is 2 barrels of gas 1 and 1 barrel of gas 2.

Process 2

Running process 2 for an hour costs $4 and requires 1 barrel of crude 1 and 3 barrels of crude 2. The output from process 2 for an hour is 3 barrels of gas 2.

Process 3

Running process 3 for an hour costs $1 and requires 2 barrels of crude 2 and 3 barrels of gas 2. The output from running process 3 for an hour is 2 barrels of gas 3.

Each week, 200 barrels of crude 1, at $2/ barrel, and 300 barrels of crude 2 at $3/barrel, may be purchased. All gas produced can be sold at the following per-barrel prices: gas 1, $9; gas 2, $10; gas 3, $24. Formulate an LP whose solution will maximize revenues less costs. Assume that only 100 hours of time on the catalytic cracker are available each week.

  • Let x[i] = no. of hours process i is run per week (where i =1,2,3)
  • Let o[i] = no. of barrels of oil i that is purchased per week (i =1,2)
  • Let g[i] = no. of barrels of gas i sold per week (i=1,2,3)
December 01, 2008, at 02:06 PM by 158.35.225.227 -
Added lines 8-49:

(:html:)<pre>

Model sunco

  Variables
    x[1:3] = 30,  >=0
    o[1]   = 100, >=0, <=200
    o[2]   = 100, >=0, <=300
    g[1:3] = 100, >=0
    obj
    profit
  End Variables

  Equations
    ! minimize (-profit) = maximize (profit)
    obj = -profit

    ! profit per week = revenue - costs
    profit = 9*g[1]+10*g[2]+24*g[3]-5*x[1]-4*x[2]-x[3]-2*o[1]-3*o[2]

    ! consumption of crude 1
    2*x[1] + x[2] = o[1]

    ! consumption of crude 2
    3*x[1] + 3*x[2] + 2*x[3] = o[2]

    ! generation of gas 1
    2*x[1] = g[1]

    ! generation (and consumption) of gas 2
    x[1] + 3*x[2] - 3*x[3] = g[2]

    ! generation of gas 3
    2*x[3] = g[3]

    ! cat cracker available 100 hours per week
    x[1] + x[2] + x[3] <= 100
  End Equations

End Model

</pre> (:htmlend:)

December 01, 2008, at 02:04 PM by 158.35.225.227 -
Changed lines 26-28 from:

Let x[i] = no. of hours process i is run per week (where i =1,2,3) Let o[i] = no. of barrels of oil i that is purchased per week (i =1,2) Let g[i] = no. of barrels of gas i sold per week (i=1,2,3)

to:
  • Let x[i] = no. of hours process i is run per week (where i =1,2,3)
  • Let o[i] = no. of barrels of oil i that is purchased per week (i =1,2)
  • Let g[i] = no. of barrels of gas i sold per week (i=1,2,3)
December 01, 2008, at 02:00 PM by 158.35.225.227 -
Changed line 7 from:
to:
December 01, 2008, at 01:58 PM by 158.35.225.227 -
Added lines 2-11:

Model


Problem

December 01, 2008, at 01:55 PM by 158.35.225.227 -
Added lines 1-28:

Gasoline Blending

Sunco oil has three different processes that can be used to manufacture various types of gasoline. Each process involves blending oils in the company's catalytic cracker.

Process 1

Running process 1 for an hour costs $5 and requires 2 barrels of crude oil 1 and 3 barrels of crude oil 2. The output from running process 1 for an hour is 2 barrels of gas 1 and 1 barrel of gas 2.

Process 2

Running process 2 for an hour costs $4 and requires 1 barrel of crude 1 and 3 barrels of crude 2. The output from process 2 for an hour is 3 barrels of gas 2.

Process 3

Running process 3 for an hour costs $1 and requires 2 barrels of crude 2 and 3 barrels of gas 2. The output from running process 3 for an hour is 2 barrels of gas 3.

Each week, 200 barrels of crude 1, at $2/ barrel, and 300 barrels of crude 2 at $3/barrel, may be purchased. All gas produced can be sold at the following per-barrel prices: gas 1, $9; gas 2, $10; gas 3, $24. Formulate an LP whose solution will maximize revenues less costs. Assume that only 100 hours of time on the catalytic cracker are available each week.

Let x[i] = no. of hours process i is run per week (where i =1,2,3) Let o[i] = no. of barrels of oil i that is purchased per week (i =1,2) Let g[i] = no. of barrels of gas i sold per week (i=1,2,3)


Solution

Run process 2 for 100 hours/week = $1500/week

If gas 1 price rises above $11.5/barrel, the optimal solution is to run process 1.

If gas 3 price rises above $26/barrel, the optimal solution is to run processes 2 and 3 for equal periods of time (50 hours).