Main

Plotting with matplotlib in Python

Effective plots are important to synthesize the information into relevant and persuasive information. The following tutorial details some of the common data plotting functions within Python.

Tutorial Source Code

import numpy as np
x = np.linspace(0,6,100)
y = np.sin(x)
z = np.cos(x)

import matplotlib.pyplot as plt
plt.plot(x,y,'r--',linewidth=3)
plt.plot(x,z,'k:',linewidth=2)
plt.legend(['y','z'])
plt.xlabel('x')
plt.ylabel('values')
plt.xlim([0, 3])
plt.ylim([-1.5, 1.5])
plt.savefig('myFigure.png')
plt.savefig('myFigure.eps')
plt.show()

If using the iPython notebook, exclude the command plt.show() and include %matplotlib inline before loading matplotlib.pyplot as shown below.

import numpy as np
x = np.linspace(0,6,100)
y = np.sin(x)
z = np.cos(x)

%matplotlib inline
import matplotlib.pyplot as plt
plt.plot(x,y,'r--',linewidth=3)
plt.plot(x,z,'k:',linewidth=2)
plt.legend(['y','z'])
plt.xlabel('x')
plt.ylabel('values')
plt.xlim([0, 3])
plt.ylim([-1.5, 1.5])
plt.savefig('myFigure.png')
plt.savefig('myFigure.eps')

Additional Tutorials

This tutorial can also be completed with scripting programming languages like Excel and MATLAB. Click on the appropriate link for additional information and source code.


comments powered by Disqus