Data Regression with MATLAB
Main.MatlabDataRegression History
Hide minor edits - Show changes to markup
There is additional information on regression in the Data Science online course.
(:html:)
<div id="disqus_thread"></div> <script type="text/javascript"> /* * * CONFIGURATION VARIABLES: EDIT BEFORE PASTING INTO YOUR WEBPAGE * * */ var disqus_shortname = 'apmonitor'; // required: replace example with your forum shortname /* * * DON'T EDIT BELOW THIS LINE * * */ (function() { var dsq = document.createElement('script'); dsq.type = 'text/javascript'; dsq.async = true; dsq.src = 'https://' + disqus_shortname + '.disqus.com/embed.js'; (document.getElementsByTagName('head')[0] || document.getElementsByTagName('body')[0]).appendChild(dsq); })(); </script> <noscript>Please enable JavaScript to view the <a href="https://disqus.com/?ref_noscript">comments powered by Disqus.</a></noscript> <a href="https://disqus.com" class="dsq-brlink">comments powered by <span class="logo-disqus">Disqus</span></a>
(:htmlend:)
(:html:) <iframe width="560" height="315" src="https://www.youtube.com/embed/fi_G5P1-Ndk" frameborder="0" allow="autoplay; encrypted-media" allowfullscreen></iframe> (:htmlend:)

(:html:) <iframe width="560" height="315" src="https://www.youtube.com/embed/fi_G5P1-Ndk" frameborder="0" allow="autoplay; encrypted-media" allowfullscreen></iframe> (:htmlend:)
(:toggle hide fmincon_minimize button show="MATLAB fmincon Solution":) (:div id=fmincon_minimize:)
(:divend:)
Both regression tutorials can also be completed with Excel and Python. Click on the appropriate link for additional information.
(:html:) <iframe width="560" height="315" src="https://www.youtube.com/embed/fi_G5P1-Ndk" frameborder="0" allow="autoplay; encrypted-media" allowfullscreen></iframe> (:htmlend:)
A frequent activity for scientists and engineers is to develop correlations from data. By importing the data into MATLAB, data analysis such as statistics, trending, or calculations can be made to synthesize the information into relevant and actionable information. This tutorial demonstrates how to create a linear or polynomial functions that best approximate the data trend, plot the results, and perform a basic statistical analysis. A script file of the MATLAB source code with sample data is below.
A frequent activity for scientists and engineers is to develop correlations from data. By importing the data into MATLAB, data analysis such as statistics, trending, or calculations can be made to synthesize the information into relevant and actionable information. This tutorial demonstrates how to create a linear, polynomial, or nonlinear function that best approximates the data trend and how to analyze the solution. Script files of the MATLAB source code with sample data are below.
Nonlinear Regression
Nonlinear Regression with APM MATLAB
Nonlinear Regression with MATLAB fmincon

(:source lang=matlab:) % clear session, close plots, clear screen clear all; close all; clc % data for regression xm = [18.3447,79.86538,85.09788,10.5211,44.4556, ...
69.567,8.960,86.197,66.857,16.875, ... 52.2697,93.917,24.35,5.118,25.126, ... 34.037,61.4445,42.704,39.531,29.988];
ym = [5.072,7.1588,7.263,4.255,6.282, ...
6.9118,4.044,7.2595,6.898,4.8744, ... 6.5179,7.3434,5.4316,3.38,5.464, ... 5.90,6.80,6.193,6.070,5.737];
% initial parameter guess p0 = [1,0.5,1]; % define prediction function yp = @(p) p(1) + p(2)./xm + p(3).*log(xm); % define objective function (scaled sum of squared errors) objective = @(p) sum(((yp(p)-ym)./ym).^2); disp(['Initial Objective: ' num2str(objective(p0))])
% optimize with fmincon %[X,FVAL,EXITFLAG,OUTPUT,LAMBDA,GRAD,HESSIAN] % = fmincon(FUN,X0,A,B,Aeq,Beq,LB,UB,NONLCON,OPTIONS) A = []; b = []; Aeq = []; beq = []; % bounds lb = []; % ones(3)*0.2; ub = []; % ones(3)*1.5; popt = fmincon(objective,p0,A,b,Aeq,beq,lb,ub);
% print results disp(['Final Objective: ' num2str(objective(popt))]) disp(['Optimal parameters: ' num2str(popt)])
% plot results plot(xm,ym,'ro') hold on plot(xm,yp(p0),'bx') plot(xm,yp(popt),'gs') legend('measured','initial predicted','optimal predicted') ylabel('y') xlabel('x') (:sourceend:)
<iframe width="560" height="315" src="https://www.youtube.com/embed/DOCzyB8zj-8" frameborder="0" allowfullscreen></iframe>
<iframe width="560" height="315" src="https://www.youtube.com/embed/HUkKnUWTNxc" frameborder="0" allowfullscreen></iframe>
<iframe width="560" height="315" src="https://www.youtube.com/embed/CejquWoc210" frameborder="0" allowfullscreen></iframe>
<iframe width="560" height="315" src="https://www.youtube.com/embed/DOCzyB8zj-8" frameborder="0" allowfullscreen></iframe>
Linear and Polynomial Regression
This regression tutorial can also be completed with Excel and Python. Click on the appropriate link for additional information.
<iframe width="560" height="315" src="https://www.youtube.com/embed/ro5ftxuD6is" frameborder="0" allowfullscreen></iframe>
<iframe width="560" height="315" src="https://www.youtube.com/embed/CejquWoc210" frameborder="0" allowfullscreen></iframe>
Python Data Regression
MATLAB Data Regression
(:title Data Regression with MATLAB:) (:keywords data regression, MATLAB, nonlinear, polynomial, linear regression, university course:) (:description Data Regression with MATLAB - Problem-Solving Techniques for Chemical Engineers at Brigham Young University:)
Python Data Regression
A frequent activity for scientists and engineers is to develop correlations from data. By importing the data into MATLAB, data analysis such as statistics, trending, or calculations can be made to synthesize the information into relevant and actionable information. This tutorial demonstrates how to create a linear or polynomial functions that best approximate the data trend, plot the results, and perform a basic statistical analysis. A script file of the MATLAB source code with sample data is below.
(:html:) <iframe width="560" height="315" src="https://www.youtube.com/embed/ro5ftxuD6is" frameborder="0" allowfullscreen></iframe> (:htmlend:)
This regression tutorial can also be completed with Excel and Python. Click on the appropriate link for additional information.
(:html:)
<div id="disqus_thread"></div> <script type="text/javascript"> /* * * CONFIGURATION VARIABLES: EDIT BEFORE PASTING INTO YOUR WEBPAGE * * */ var disqus_shortname = 'apmonitor'; // required: replace example with your forum shortname /* * * DON'T EDIT BELOW THIS LINE * * */ (function() { var dsq = document.createElement('script'); dsq.type = 'text/javascript'; dsq.async = true; dsq.src = 'https://' + disqus_shortname + '.disqus.com/embed.js'; (document.getElementsByTagName('head')[0] || document.getElementsByTagName('body')[0]).appendChild(dsq); })(); </script> <noscript>Please enable JavaScript to view the <a href="https://disqus.com/?ref_noscript">comments powered by Disqus.</a></noscript> <a href="https://disqus.com" class="dsq-brlink">comments powered by <span class="logo-disqus">Disqus</span></a>
(:htmlend:)