Van de Vusse Reactor
The Van de Vusse reaction kinetics are employed in many benchmarking problems. This model is a simple stirred tank reactor model with reactions A->B->C and 2A->D.
Solve Van de Vusse Reactor Dynamics! Continuously Stirred Tank Reactor with energy ! balance and Van de Vusse reactions A->B->C and 2A->D ! ! Optimization of Van de Vusse Reaction Kinetics Using Semibatch Reactor Operation ! G. A. Ridlehoover , R. C. Seagrave ! Ind. Eng. Chem. Fundamen., 1973, 12 (4), pp 444–447 ! DOI: 10.1021/i160048a008 ! Publication Date: November 1973 ! Model Parameters F = 14.19 ! Feed rate (l/hr) Qk = -1579.5 ! Jacket cooling rate (kJ/hr) Ca0 = 5.1 ! Inlet feed concentration (mol/m^3) T0 = 104.9 ! Inlet feed temperature (degC) k10 = 1.287e10 ! A->B Pre-exponential factor (1/hr) k20 = 1.287e10 ! B->C Pre-exponential factor (1/hr) k30 = 9.043e9 ! 2A->D Pre-exponential factor (1/hr) E1 = 9758.3 ! A->B Activation Energy (K) E2 = 9758.3 ! B->C Activation Energy (K) E3 = 8560 ! 2A->D Activation Energy (K) dHr1 = 4.2 ! A->B Heat of Reaction (kJ/mol A) dHr2 = -11 ! B->C Heat of Reaction (kJ/mol B) dHr3 = -41.85 ! 2A->D Heat of Reaction (kJ/mol A) rho = 0.9342 ! density (kg/l) Cp = 3.01 ! Heat capacity of reactants (kJ/kg-K) kw = 4032 ! Heat transfer coefficient (kJ/h-K-m^2) AR = .215 ! Area of jacket cooling (m^2) VR = 10.0 ! Reactor volume (l) mK = 5 ! Mass of cooling (kg) CpK = 2 ! Heat capacity of cooling (kJ/kg-K) End Parameters Variables ! Differential States Ca = 2.2291 ! Concentration of A in CSTR (mol/l) Cb = 1.0417 ! Concentration of B in CSTR (mol/l) Cc = 0.91397 ! Concentration of C in CSTR (mol/l) Cd = 0.91520 ! Concentration of D in CSTR (mol/l) T = 79.591 ! Temperature in CSTR (degC) Tk = 77.69 ! Cooling jacket temperature (degC) End Variables Intermediates k1 = k10*exp(-E1/(T+273.15)) k2 = k20*exp(-E2/(T+273.15)) k3 = k30*exp(-E3/(T+273.15)) r1 = k1*VR*Ca r2 = k2*VR*Cb r3 = k3*VR*Ca^2 End Intermediates Equations ! note: the $ denotes time differential ! (e.g. $x is dx/dt) ! species balances VR * $Ca = -r1 - 2*r3 + F*(Ca0-Ca) VR * $Cb = r1 - r2 - F*Cb VR * $Cc = r2 - F*Cc VR * $Cd = r3 - F*Cd ! energy balance on reactor rho*Cp*VR*$T = F*rho*Cp*(T0 - T) & - r1*dHr1 & - r2*dHr2 & - r3*dHr3 & + kw*AR*(Tk - T) ! energy balance on cooling mK * CpK * $Tk = Qk + kw*AR*(T - Tk) End Equations End Model File *.info F, T0 F, F F, Ca0 F, T0 F, Qk S, Tk S, Ca S, Cb S, Cc S, Cd C, T End File File overrides.dbs nlc.web = 2 nlc.ctrl_units = 3 nlc.hist_units = 2 nlc.cv_type = 1 nlc.ev_type = 1 nlc.reqctrlmode = 1 nlc.csv_read = 1 nlc.hist_hor = 100 nlc.web_plot_freq = 10 nlc.nodes = 2 nlc.imode = 7 End File File *.csv time 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 End File