

Optimal Trajectory Generation for Aerial Towed Cable System Using APMonitor

Liang Sun

Multiple AGent Intelligent Coordination & Control (MAGICC) Laboratory

Department of Electrical and Computer Engineering

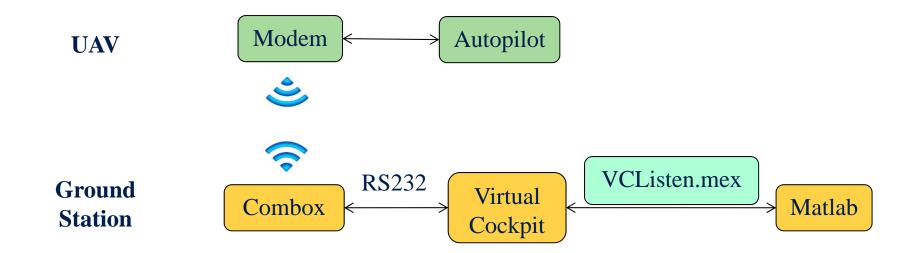
Department of Mechanical Engineering

Brigham Young University, Provo, UT, USA 84602

- Overview of UAVs
- Overview of Aerial Recovery
 - Basic concept and System dynamics
 - Flight test results
- Motivations of using APMonitor
- Preliminary results in APMonitor
 - Simulation (2D, 1-link cable)
 - > OTG (2D, 1-link cable)
 - > OTG (3D, 1-link cable)
 - OTG (3D, multi-link cable, no wind)
 - OTG (3D, multi-link cable, constant wind)
- > Future work

- Overview of UAVs
- Overview of Aerial Recovery
 - Basic concept and System dynamics
 - Flight test results
- Motivations of using APMonitor
- Preliminary results in APMonitor
 - Simulation (2D, 1-link cable)
 - > OTG (2D, 1-link cable)
 - > OTG (3D, 1-link cable)
 - OTG (3D, multi-link cable, no wind)
 - OTG (3D, multi-link cable, constant wind)
- > Future work

Overview of UAVs



Overview of UAVs

Communication and Control

Overview of UAVs

Cool videos!

Fixed wing

http://www.youtube.com/watch?feature=endscreen&v=Xlrqxhz1i Gc&NR=1

- Quadrotor
 - Aggressive Maneuvers http://www.youtube.com/watch?v=MvRTALJp8DM
 - > Builder

http://www.youtube.com/watch?v=xvN9Ri1GmuY&feature=player _embedded

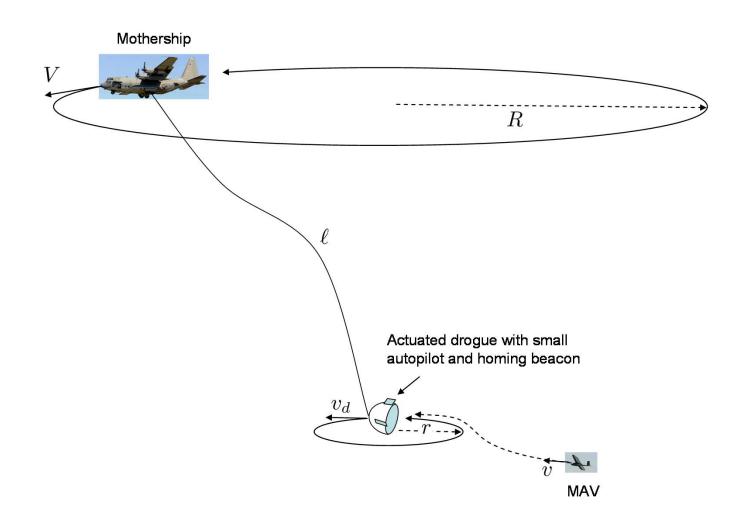
- Overview of UAVs
- Overview of Aerial Recovery
 - Basic concept and System dynamics
 - Flight test results
- Motivations of using APMonitor
- Preliminary results in APMonitor
 - Simulation (2D, 1-link cable)
 - > OTG (2D, 1-link cable)
 - > OTG (3D, 1-link cable)
 - OTG (3D, multi-link cable, no wind)
 - OTG (3D, multi-link cable, constant wind)
- Future work

Overview of Aerial Recovery

Question:

How can we retrieve Micro Air Vehicles (MAVs) in the air after they complete their missions?

Retrieval strategies



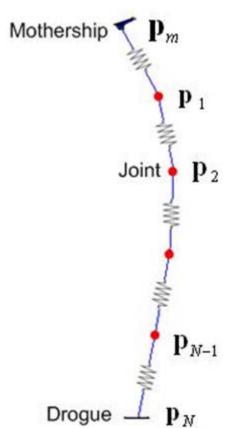
Basic concept

System dynamics

Cable-drogue dynamics using Newton 2nd law

$$m_N \ddot{\mathbf{p}}_N = \mathbf{T}_N + \Omega_N$$

 $\Omega_N = \mathbf{G}_N + \mathbf{D}_N + \mathbf{L}_N,$
 $i_{-1} \ddot{\mathbf{p}}_{i-1} = \mathbf{T}_{i-1} + \Omega_{i-1} - \mathbf{T}_{i-1}$

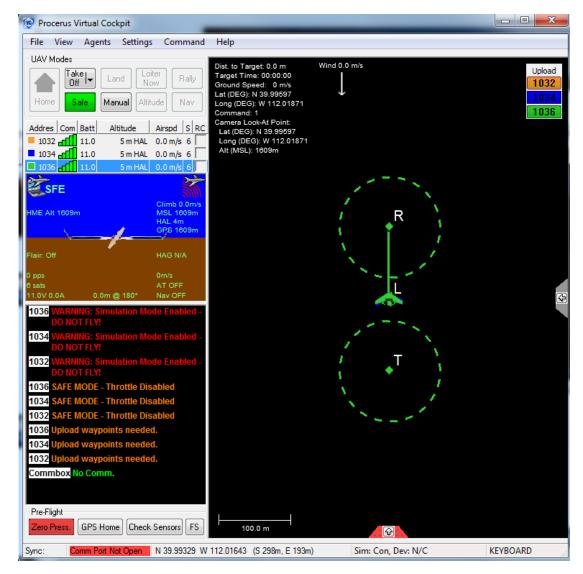

$$m_{j-1}\ddot{\mathbf{p}}_{j-1} = \mathbf{T}_{j-1} + \Omega_{j-1} - \mathbf{T}_{j}$$

$$\Omega_{j-1} = \mathbf{G}_{j-1} + \mathbf{D}_{j-1} + \mathbf{L}_{j-1}$$

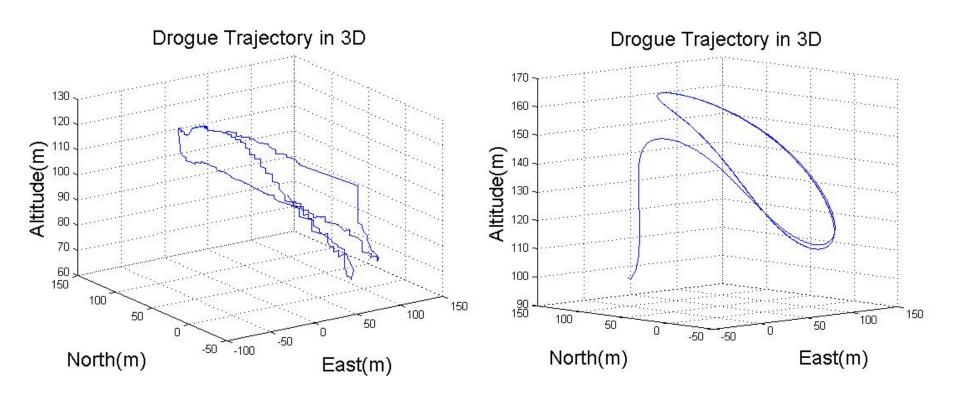
$$j = 2, 3, \dots, N,$$

$$\mathbf{T}_{j} = \frac{EA}{\ell_{0}} (\|\mathbf{p}_{j-1} - \mathbf{p}_{j}\| - \ell_{0}) \frac{\mathbf{p}_{j-1} - \mathbf{p}_{j}}{\|\mathbf{p}_{j-1} - \mathbf{p}_{j}\|},$$

$$j = 1, 2, \dots, N,$$

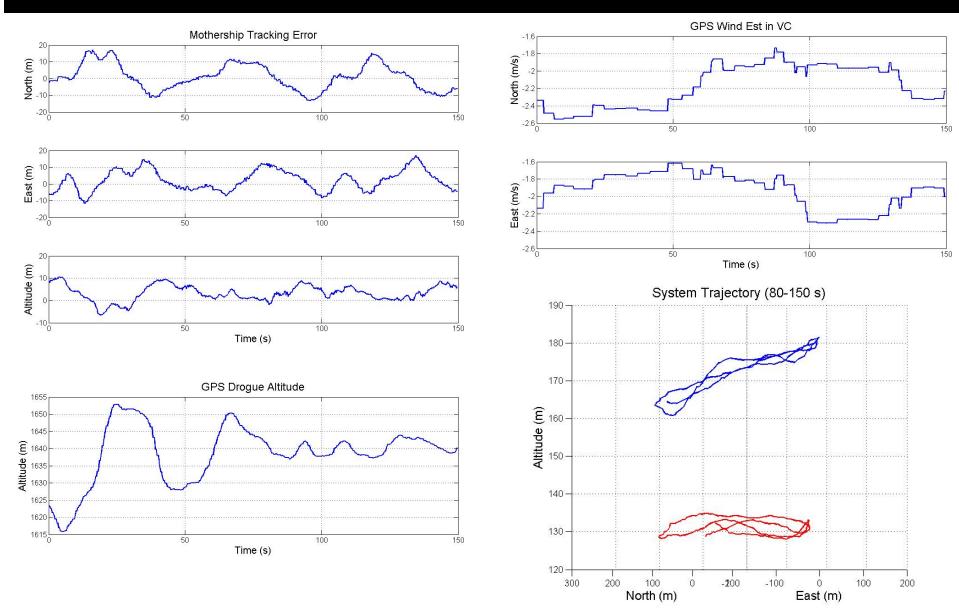

- Overview of UAVs
- Overview of Aerial Recovery
 - Basic concept and System dynamics
 - Flight test results
- Motivations of using APMonitor
- Preliminary results in APMonitor
 - Simulation (2D, 1-link cable)
 - > OTG (2D, 1-link cable)
 - > OTG (3D, 1-link cable)
 - OTG (3D, multi-link cable, no wind)
 - OTG (3D, multi-link cable, constant wind)
- Future work

Flight test setup



Flight test results

Drogue orbit with flat mothership orbit in wind



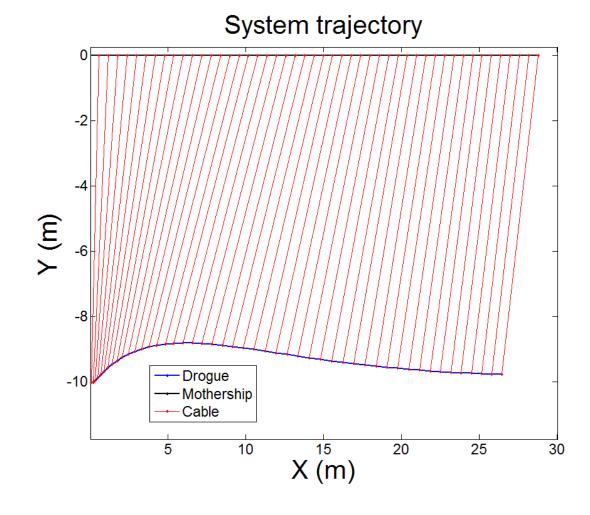
Flight Test

Simulation

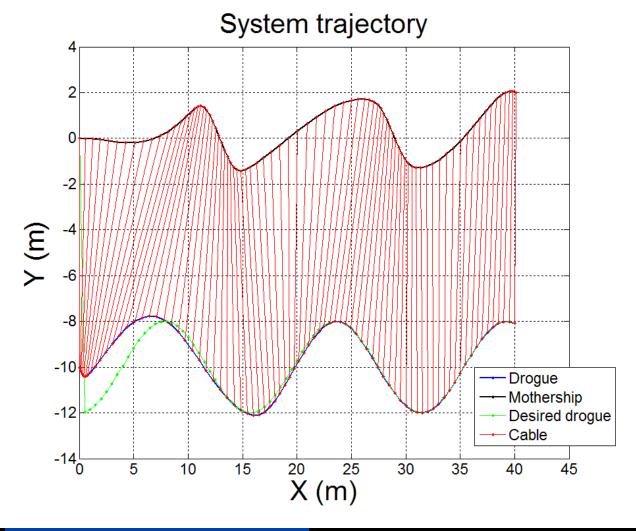
- Overview of UAVs
- Overview of Aerial Recovery
 - Basic concept and System dynamics
 - Flight test results
- Motivations of using APMonitor
- Preliminary results in APMonitor
 - Simulation (2D, 1-link cable)
 - > OTG (2D, 1-link cable)
 - > OTG (3D, 1-link cable)
 - > OTG (3D, multi-link cable, no wind)
 - OTG (3D, multi-link cable, constant wind)
- Future work

Motivations of using APMonitor

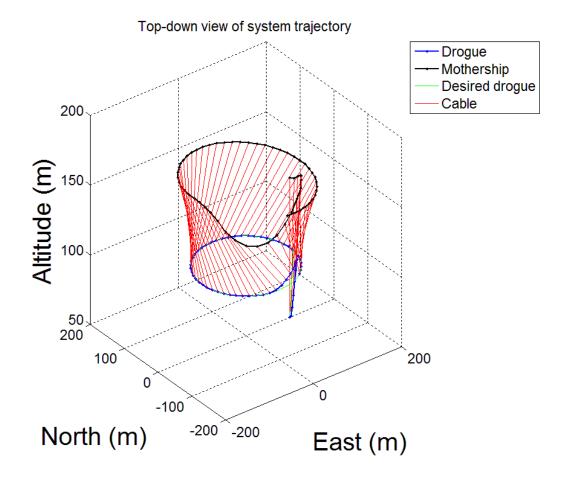
- Replan the desired mothership trajectory each circle using the updated wind estimation
 - Replan every minite
- Constraints: mothership has its operational limits: airspeed, roll angle, pitch angle $10 \text{ m/s} \le V_a \le 20 \, m/s$ $-35 \le \phi \le 35^\circ$ $-15^\circ \le \gamma_a \le 35^\circ$
- Large amount of states in dynamic equations
 - > 5-link cable = 30 states

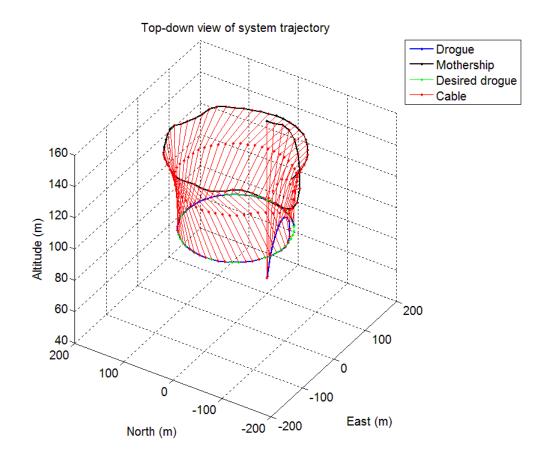


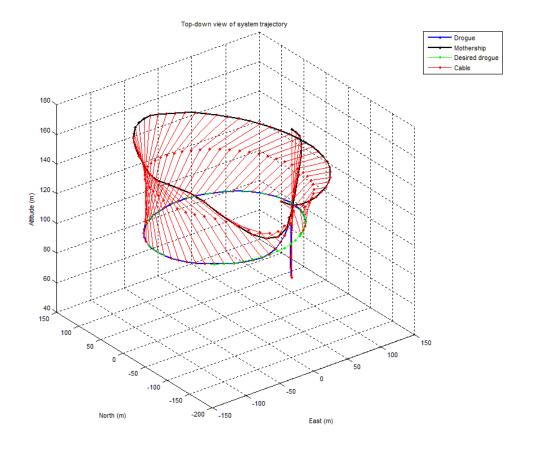
- Overview of UAVs
- Overview of Aerial Recovery
 - Basic concept and System dynamics
 - Flight test results
- Motivations of using APMonitor
- Preliminary results in APMonitor
 - Simulation (2D, 1-link cable)
 - > OTG (2D, 1-link cable)
 - > OTG (3D, 1-link cable)
 - OTG (3D, multi-link cable, no wind)
 - > OTG (3D, multi-link cable, constant wind)
- > Future work


- Simulation mode with no constraints
- Solution time:0.624 sec.

Trajectory Generation (2-D 1-link model)


- "nlc" mode, solver: IPOPT
- > CVs:
 - > Vm, Tension
- Solution time:18.17 sec.


- "nlc" mode, solver: IPOPT
- > CVs:
 - > Vm, Tension
- Solution time:14.3328 sec.


- "nlc" mode, solver: IPOPT
- > CVs:
 - > Vm
- Solution time:141.6326 sec.

- "nlc" mode, solver: IPOPT
- > CVs:
 - > CVs
- Wind (3,0,0) m/s
- Solution time:163.6704 sec.

- Overview of UAVs
- Overview of Aerial Recovery
 - Basic concept and System dynamics
 - Flight test results
- Motivations of using APMonitor
- Preliminary results in APMonitor
 - Simulation (2D, 1-link cable)
 - > OTG (2D, 1-link cable)
 - > OTG (3D, 1-link cable)
 - OTG (3D, multi-link cable, no wind)
 - OTG (3D, multi-link cable, constant wind)
- Future work

Future work

Decrease the solution time

- different solver
- different configuration of the problem

Add more constraints

Tension, roll angle, pitch angle, and etc.

Motion planning of orbit-insertion-removal

> Fly into an orbit to perform the retrieval and leave out of the orbit

Orbit regulation problem

Find an optimal orbit for the mothership to minimize the drogue altitude deviation

Thank You!

- Overview of UAVs
- Overview of Aerial Recovery
 - Basic concept and System dynamics
 - Flight test results
- Motivations of using ARMonitor?
 Preliminary results in AP Monitor?
 - Simulation (2D, 1-link cable)
 - > OTG (2D, 1-link cable)
 - > OTG (3D, 1-link cable)
 - OTG (3D, multi-link cable, no wind)
 - > OTG (3D, multi-link cable, constant wind)
- > Future work