APM Tutorial with Friction Stir Welding

Friction Stir Welding Control Overview

 Friction Stir welding is a solid state metal joining process

 A rotating tool creates heat and plasticizes the metal.
This allows the metal to be "stirred" around.

Friction Stir Welding Applications

Tutorial Overview

- Simulation of FSW Process
 - PDE of Tool Heat Transfer
- Estimation with FSW Process Data
 - First order model with variable dynamics
- Temperature Control of FSW
 - Demonstrate in simulation
 - PID (Proportional Integral Derivative Control)
 - MPC (Model Predictive Control)

FSW Process Model - FOPDT

Model #1 of FSW Process

- First Order Plus Dead-Time (FOPDT) Model
- Model predictions on same Aluminum data
- Gain (K_p): 131.7 °C/hp
- Time Constant (tau_p): 16.5 sec
- Dead-time (theta_p): 1 sec

FSW Process Model - PDE Model

APM

-221

Model #2 of FSW Process

- PDE of Tool Heat Transfer
- Demonstrate model predictions on Aluminum
- Fit PDE model to process data

FSW Temperature Control

- Current Practice
 - PID Control
 - Start-up procedure
 - Constant rotational speed
 - Manual adjustments to guide temperature
 - Z Axis Force

Proposed Control Strategy

- Model based control
- Automatic control through start-up
 - Limit overshoot
 - Keep process within constraints
 - Rate of change limits for motor power (HP)
 - Rate of change limits for tip temperature

Comparing PID and MPC

Model Predictive Control

Ira A. Fulton College of Engineering and Technology

Operate Within Constraints

Rate of Change for PID and MPC

Download and Run Example Problems

- Simulation
- Estimation
- Control

http://apmonitor.com/wiki/uploads/Main/apm_demo.zip