Friction Stir Welding Control: Feasibility Study

Dustin Marshall
Jose Mojica
Ken Ross
John Hedengren
Brigham Young University

Friction Stir Welding Control Overview

 Friction Stir welding is a solid state metal joining process

 A rotating tool creates heat and plasticizes the metal.
 This allows the metal to be "stirred" around.

Friction Stir Welding Applications

Feasibility Study Objectives

- Develop Simplified Model of FSW Process
 - PDE of Tool Heat Transfer
- Investigate feasibility of FSW model-based control
 - 2-3 weeks of effort
 - Explore feasibility through simulation
 - Compare model to run data
 - Demonstrate in simulation
 - PID (Proportional Integral Derivative Control)
 - MPC (Model Predictive Control)
 - Detail projected effort / costs to implement MPC
 - Develop implementation plan

FSW Process Model - FOPDT

- Model #1 of FSW Process Step Up in Power
 - First Order Plus Dead-Time (FOPDT) Model
 - Model predictions on same Aluminum data
 - Gain (K_p): 131.7 °C/hp
 - ♦ Time Constant (tau_p): 16.5 sec
 - Dead-time (theta_p): 1 sec

FSW Process Model - FOPDT

- Model #1 of FSW Process Step Down in Power
 - First Order Plus Dead-Time (FOPDT) Model
 - Model predictions on same Aluminum data
 - Gain (K_p): 120 °C/hp
 - Time Constant (tau_p): 20-30 sec
 - Dead-time (theta_p): 1 sec

FSW Process Model - PDE Model

APM

-221

-166

Model #2 of FSW Process

- PDE of Tool Heat Transfer
- Demonstrate model predictions on Aluminum
- Fit PDE model to process data

-55

Time (sec)

-110

FSW Temperature Control

- Current Practice
 - PID Control
 - Start-up procedure
 - Constant rotational speed
 - Manual adjustments to guide temperature
 - Z Axis Force

Proposed Control Strategy

- Model based control
- Automatic control through start-up
 - Limit overshoot
 - Keep process within constraints
 - Rate of change limits for motor power (HP)
 - Rate of change limits for tip temperature

Comparing PID and MPC

Model Predictive Control

Operate Within Constraints

Rate of Change for PID and MPC

Recommendations

- Model Predictive Control has advantages for:
 - Start-up
 - Large load changes
 - Constrained control MV or CV tuning
- Start control studies now with FOPDT model
 - Interface with PLC through OPC connection to RS Linx
 - Existing equipment sufficient
- Address complex modeling / control issues
 - Seek funding for a graduate student
 - Investigate multi-variable control