Worksheet: PID Control

Learning Objectives

- Implement a PID control strategy on an interacting two-heater system (TCLab).
- Design and tune PID controllers for interacting processes.
- Analyze closed-loop performance.

Estimated Time Allocation (≈60 minutes)

Section	<u>Task</u>	<u>Time</u>
1	Background & Setup	10 min
2	Controller Design & Implementation	25 min
3	Closed-loop Testing	20 min
4	Reflection & Reporting	5 min

1. Background & Setup (10 min)

- a. Review the interacting system with two heaters (T1 and T2). Note how heater 1 and heater 2 interact through convective and radiative heat transfer.
- b. Recall the concept of PID control (Proportional, Integral, Derivative) and how each term influences response.
- c. Define the control objectives
- Maintain temperature at setpoint and minimize heater (actuator) changes
- Quantify controller performance

2. Simulated Controller Design & Implementation (20 min)

a. Open the interactive simulation at:

https://apmonitor.com/pdc/index.php/Main/ArduinoControl2

- b. Tune PID controllers for T1 and T2.
 - Adjust K_C , τ_I , τ_d , and K_{ff} .
 - Record performance (MAE for Setpoint Tracking):_____

3. Closed-loop Testing (25 min)

- a. Test PID Control with TCLab Hardware.
- b. Record responses of T1 and T2 with PID control.
- c. Evaluate performance:
- Record performance (MAE for Setpoint Tracking):_____

4. Reflection & Reporting (5 min)

Write a short (2–3 sentences) reflection:

- What are the specific response characteristics that are desirable for this PID controller?
- Suggest one improvement to the controller design.

Quick Checklist

- [] PID parameters recorded
 [] Closed-Loop Step response plots included
 [] MAE recorded for simulated and TCLab PID control
- [] Reflection written