Worksheet: Dynamic Model Step Tests

Learning Objectives

- Formulate energy balance equations for two interacting heaters.
- Analyze and compare model results to experimental behavior.
- Reflect on system dynamics and modeling assumptions.

Estimated Time Allocation

Section	Task	Time
1	Model Understanding & Equations	10 min
2	Simulation & Measurement	45 min
3	Analysis & Reporting	5 min
Total		60 min

1. Model Understanding & Equations (10 min)

a. Initial Setup:

Note down the given parameters (all in SI units) and what each represents:

- Initial temperature (T₀): 296.15 K (23 °C)
- Ambient temperature (T∞): same (296.15 K)
- Heater 1 output (Q₁): up to 1 W; factor α_1 = 0.01 W per % heater
- Heater 2 output (Q₂): up to 0.75 W; factor α_2 = 0.0075 W per % heater
- Heat capacity (C_p): 500 J/kg·K
- Mass (m): 0.004 kg
- Surface area outside heaters (A): 1.0×10^{-3} m²
- Surface area between heaters (A_s): 2.0×10^{-4} m²
- Heat transfer coefficient (U): 10 W/m²·K

- Emissivity (ϵ): 0.9
- Stefan-Boltzmann constant (σ): 5.67×10⁻⁸ W/m²·K⁴
- b. Heat Transfer Terms:

Convective:
$$Q_C12 = U * A_s * (T_2 - T_1)$$

Radiative: $Q_R12 = \varepsilon * \sigma * A_s * (T_2^4 - T_1^4)$

c. Energy Balance Equations:

For
$$T_1$$
: $m c_p dT_1/dt = U A (T - T_1) + \epsilon \sigma A (T - T_1^4) + Q_C + Q_R + Q_R + Q_1$

For
$$T_2$$
: m $c_p dT_2/dt = U A (T - T_2) + \epsilon \sigma A (T - T_2^4) - Q_C - Q_R + \alpha_2 Q_2$

2. Simulation & Analysis (45 min)

a. Simulate TCLab with separate step tests for Heater 1 (0-100%) and Heater 2 (0-100%): https://tclab.apopt.com

b. Observe Behavior:

- Did temperatures reach steady state?
- What is the Gain, Time Constant, and Dead Time for each response (4 total)?

	Gain (K/%)	Time Constant (sec)	Dead Time (sec)
Q1 effect on T1			
Q1 effect on T2			
Q2 effect on T1			
Q2 effect on T2			

- c. Compare simulation with TCLab data: https://apmonitor.com/tclab/index.html
- Run same test with TCLab device.
- What is the Gain, Time Constant, and Dead Time for each response (4 total)?

	Gain (K/%)	Time Constant (sec)	Dead Time (sec)
Q1 effect on T1			
Q1 effect on T2			
Q2 effect on T1			
Q2 effect on T2			

d. Dynamics Discussion:

- Does system resemble first-order, second-order, or more complex behavior?

3. Reflection & Reporting (5 min)Write a concise summary (2–3 sentences) addressing:Did the model capture main dynamics?

- Possible sources of discrepancies.

- Potential improvements (e.g., adjusting α values, including conduction or time delays).

Quick Checklist

[] Energy balance equations correctly written
[] Gain, Time Constant, and Dead Time calculated for 4 Simulated Responses
[] Gain, Time Constant, and Dead Time calculated for 4 Measured Responses
[] Screenshots of T ₁ and T ₂ generated and interpreted
Brief reflection on modeling accuracy and improvements

Additional Resources

See $\frac{https://apmonitor.com/pdc/index.php/Main/ArduinoModeling2}{resources}.$ for additional resources.