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CHAPTER 1 

INTRODUCTION TO OPTIMIZATION-BASED DESIGN 

1. What is Optimization? 

Engineering is a profession whereby principles of nature are applied to build useful objects. 
A mechanical engineer designs a new engine, or a car suspension or a robot. A civil engineer 
designs a bridge or a building. A chemical engineer designs a distillation tower or a chemical 
process. An electrical engineer designs a computer or an integrated circuit. 
 
For many reasons, not the least of which is the competitive marketplace, an engineer might 
not only be interested in a design which works at some sort of nominal level, but is the best 
design in some way. The process of determining the best design is called optimization. Thus 
we may wish to design the smallest heat exchanger that accomplishes the desired heat 
transfer, or we may wish to design the lowest-cost bridge for the site, or we may wish to 
maximize the load a robot can lift.  
 
Often engineering optimization is done implicitly. Using a combination of judgment, 
experience, modeling, opinions of others, etc. the engineer makes design decisions which, he 
or she hopes, lead to an optimal design. Some engineers are very good at this. However, if 
there are many variables to be adjusted with several conflicting objectives and/or constraints, 
this type of experience-based optimization can fall short of identifying the optimum design. 
The interactions are too complex and the variables too numerous to intuitively determine the 
optimum design. 
 
In this text we discuss a computer-based approach to design optimization. With this 
approach, we use the computer to search for the best design according to criteria that we 
specify. The computer’s enormous processing power allows us to evaluate many more design 
combinations than we could do manually. Further, we employ sophisticated algorithms that 
enable the computer to efficiently search for the optimum. Often we start the algorithms from 
the best design we have based on experience and intuition. We can then see if any 
improvement can be made. 
 
In order to employ this type of optimization, several qualifications must be met. First, we 
must have a quantitative model available to compute the responses of interest. If we wish to 
maximize heat transfer, we must be able to calculate heat transfer for different design 
configurations. If we wish to minimize cost, we must be able to calculate cost. Sometimes 
obtaining such quantitative models is not easy. Obtaining a valid, accurate model of the 
design problem is the most important step in optimization. It is not uncommon for 90% of the 
effort in optimizing a design to be spent on developing and validating the quantitative model. 
Once a good model is obtained, optimization results can often be realized quickly. 
 
Fortunately, in engineering we often do have good, predictive models (or at least partial 
models) for a design problem. For example, we have models to predict the heat transfer or 
pressure drop in an exchanger. We have models to predict stresses and deflections in a 
bridge. Although engineering models are usually physical in nature (based on physical 
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principles), we can also use empirical models (based on the results of experiments). It is also 
perfectly acceptable for models to be solved numerically (using, for example, the finite 
element method).  
 
Besides a model, we must have some variables which are free to be adjusted—whose values 
can be set, within reason, by the designer. We will refer to these variables as design 
variables. In the case of a heat exchanger, the design variables might be the number of tubes, 
number of shells, the tube diameters, tube lengths, etc. Sometimes we also refer to the 
number of design variables as the degrees of freedom of the computer model. 
 
The freedom we have to change the design variables leads to the concept of design space. If 
we have four design variables, then we have a four dimensional design space we can search 
to find the best design. Although humans typically have difficulty comprehending spaces 
which are more than three dimensional, computers have no problem searching higher order 
spaces. In some cases, problems with thousands of variables have been solved. 
 
Besides design variables, we must also have criteria we wish to optimize. These criteria take 
two forms: objectives and constraints. Objectives represent goals we wish to maximize or 
minimize. Constraints represent limits we must stay within, if inequality constraints, or, in 
the case of equality constraints, target values we must satisfy. Collectively we call the 
objectives and constraints design functions.   
 
Once we have developed a good computer-based analysis model, we must link the model to 
optimization software. Optimization methods are somewhat generic in nature in that many 
methods work for wide variety of problems. After the connection has been made such that 
the optimization software can “talk” to the engineering model, we specify the set of design 
variables and objectives and constraints. Optimization can then begin; the optimization 
software will call the model many times (sometimes thousands of times) as it searches for an 
optimum design. 
 
Usually we are not satisfied with just one optimum—rather we wish to explore the design 
space. We often do this by changing the set of design variables and design functions and re-
optimizing to see how the design changes. Instead of minimizing weight, for example, with a 
constraint on stress, we may wish to minimize stress with a constraint on weight. By 
exploring in this fashion, we can gain insight into the trade-offs and interactions that govern 
the design problem. 
 
In summary, computer-based optimization refers to using computer algorithms to search the 
design space of a computer model. The design variables are adjusted by an algorithm in order 
to achieve objectives and satisfy constraints. Many of these concepts will be explained in 
further detail in the following sections. 
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2. Engineering Models in Optimization 

2.1. Analysis Variables and Functions 

As mentioned, engineering models play a key role in engineering optimization. In this 
section we will discuss some further aspects of engineering models. We refer to engineering 
models as analysis models. 
 
In a very general sense, analysis models can be viewed as shown in Fig 1.1 below. A model 
requires some inputs in order to make calculations. These inputs are called analysis 
variables. Analysis variables include design variables (the variables we can change) plus 
other quantities such as material properties, boundary conditions, etc. which typically would 
not be design variables. When all values for all the analysis variables have been set, the 
analysis model can be evaluated.  The analysis model computes outputs called analysis 
functions. These functions represent what we need to determine the “goodness” of a design. 
For example, analysis functions might be stresses, deflections, cost, efficiency, heat transfer, 
pressure drop, etc. It is from the analysis functions that we will select the design functions, 
i.e., the objectives and constraints. 
 

 
Fig. 1.1. The operation of analysis models 

 
Thus from a very general viewpoint, analysis models require inputs—analysis variables—
and compute outputs—analysis functions. Essentially all analysis models can be viewed this 
way. 
 

2.2. An Example—the Two-bar Truss 

At this point an example will be helpful.  
 
Consider the design of a simple tubular symmetric truss shown in Fig. 1.2 below (problem 
originally from Fox1).  A design of the truss is specified by a unique set of values for the 
analysis variables: height (H), diameter, (d), thickness (t), separation distance (B), modulus 

                                                 
1 R.L. Fox, Optimization Methods in Engineering Design, Addison Wesley, 1971 
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of elasticity (E), and material density (). Suppose we are interested in designing a truss that 
has a minimum weight, will not yield, will not buckle, and does not deflect "excessively,” 
and so we decide our model should calculate weight, stress, buckling stress and deflection—
these are the analysis functions. 
 
 

Fig. 1.2 -  Layout for the Two-bar truss model. 

 
In this case we can develop a model of the truss using explicit mathematical equations. These 
equations are: 
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equations give above. When all of these are given specific values, we can evaluate the 
model, which refers to calculating the functions. 
 
 

Table 1.1 - Analysis variables and analysis functions for the Two-bar 
truss. 

Analysis Variables Analysis Functions 

B, H, t, d, P, E,  Weight,  Stress,   
Buckling Stress,   

Deflection 
 

 
An example design for the truss is given as, 
Analysis Variables Value 
Height, H (in) 30. 
Diameter, d (in) 3. 
Thickness, t (in) 0.15 
Separation distance, B (inches) 60. 
Modulus of elasticity ( 1000 lbs/in2) 30,000 
Density,  (lbs/in3) 0.3 
Load (1000 lbs) 66 
  
Analysis Functions Value 
Weight (lbs) 35.98 
Stress (ksi) 33.01 
Buckling stress (ksi) 185.5 
Deflection (in) 0.066 
 
We can obtain a new design for the truss by changing one or all of the analysis variable 
values. For example, if we change thickness from 0.15 in to 0.10 in., we find that weight has 
decreased, but stress and deflection have increased, as given below, 
 
Analysis Variables Value 
Height, H (in) 30. 
Diameter, d (in) 3. 
Thickness, t (in) 0.1 
Separation distance, B (inches) 60. 
Modulus of elasticity ( 1000 lbs/in2) 30,000 
Density,  (lbs/in3) 0.3 
Load (1000 lbs) 66 
  
Analysis Functions Value 
Weight (lbs) 23.99 
Stress (psi) 49.52 
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Buckling stress (psi) 185.3 
Deflection (in) 0.099 

3. Models and Optimization by Trial-and-Error 

As discussed in the previous section, the “job,” so to speak, of the analysis model is to 
compute the values of analysis functions. The designer specifies values for analysis 
variables, and the model computes the corresponding functions. 
 
Note that the analysis software does not make any kind of “judgment” regarding the 
goodness of the design. If an engineer is designing a bridge, for example, and has software to 
predict stresses and deflections, the analysis software merely reports those values—it does 
not suggest how to change the bridge design to reduce stresses in a particular location. 
Determining how to improve the design is the job of the designer. 
 
To improve the design, the designer will often use the model in an iterative fashion, as shown 
in Fig. 1.3 below. The designer specifies a set of inputs, evaluates the model, and examines 
the outputs. Suppose, in some respect, the outputs are not satisfactory. Using intuition and 
experience, the designer proposes a new set of inputs which he or she feels will result in a 
better set of outputs. The model is evaluated again. This process may be repeated many 
times. 
 

 
Fig. 1.3. Common “trial-and-error” iterative design process. 

 
We refer to this process as “optimization by design trial-and-error.” This is the way most 
analysis software is used. Often the design process ends when time and/or money run out. 
 
Note the mismatch of technology in Fig 1.3. On the right hand side, the model may be 
evaluated with sophisticated software and the latest high-speed computers. On the left hand 
side, design decisions are made by trial-and-error. The analysis is high tech; the decision 
making is low tech. 
 

4. Optimization with Computer Algorithms 

Computer-based optimization is an attempt to bring some high-tech help to the decision 
making side of Fig. 1.3. With this approach, the designer is taken out of the trial-and-error 
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loop. The computer is now used to both evaluate the model and search for a better design. 
This process is illustrated in Fig. 1.4.  
 
 

 
Fig. 1.4. Moving the designer out of the trial-and-error loop with computer-based 
optimization software. 

 
The designer now operates at a higher level. Instead of adjusting variables and interpreting 
function values, the designer is specifying goals for the design problem and interpreting 
optimization results. The design space can be much more completely explored. Usually a 
better design can be found in a shorter time. 

5. Specifying an Optimization Problem 

5.1. Variables, Objectives, Constraints 

Optimization problems are often specified using a particular form. That form is shown in Fig. 
1.5. First the design variables are listed. Then the objectives are given, and finally the 
constraints are given. The abbreviation “s.t.” stands for “subject to.” 
 
    Find   height and diameter  to: 
 
     Minimize Weight 
 
    s. t. 
     Stress ≤ 100 
     (Stress-Buckling Stress) ≤ 0 
     Deflection ≤ 0.25 

 
Fig. 1.5 Example specification of optimization problem for the Two-bar truss 

 
Note that to define the buckling constraint, we have combined two analysis functions 
together.  Thus we have mapped two analysis functions to become one design function. 
 
We can specify several optimization problems using the same analysis model.  For example, 
we can define a different optimization problem for the Two-bar truss to be: 
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Find   thickness and diameter  to: 
 

     Minimize Stress 
 
    s.t. 
     Weight ≤ 25.0 
     Deflection ≤ 0.25 
 

Fig. 1.6 A second specification of an optimization problem for the Two-bar truss 
 
 
The specifying of the optimization problem, i.e. the selection of the design variables and 
functions, is referred to as the mapping between the analysis space and the design space.  For 
the problem defined in Fig. 1.5 above, the mapping looks like: 
 

 
Fig. 1.7- Mapping Analysis Space to Design Space for the Two-bar Truss. 

  
We see from Fig. 1.7 that the design variables are a subset of the analysis variables. This is 
always the case. In the truss example, it would never make sense to make load a design 
variable—otherwise the optimization software would just drive the load to zero, in which 
case the need for a truss disappears! Also, density and modulus would not be design 
variables unless the material we could use for the truss could change. In that case, the values 
these two variables could assume would be linked (the modulus for material A could only be 
matched with the density for material A) and would also be discrete. The solution of discrete 
variable optimization problems is discussed in Chapters 4 and 5. At this point, we will 
assume all design variables are continuous. 
 
In like manner, the design functions are a subset of the analysis functions. In this example, 
all of the analysis functions appear in the design functions. However, sometimes analysis 
functions are computed which are helpful in understanding the design problem but which do 

Design VariablesAnalysis Variables 

Design Space Analysis Space 

Deflection ≤ 0.25 inches  Deflection 

(Stress – Buckling Stress) ≤ 0 Buckling Stress 

Stress ≤ 100 ksi Stress 

Minimize  Weight 

Design Functions Analysis Functions 
 
Load 

Modulus 

Density 

 Width 

Thickness 

Diameter Diameter 

Height Height 
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not become objectives or constraints. Note that the analysis function “stress” appears in two 
design functions. Thus it is possible for one analysis function to appear in two design 
functions. 
 
In the examples given above, we only have one objective. This is the most common form of 
an optimization problem. It is possible to have multiple objectives. However, usually we are 
limited to a maximum of two or three objectives. This is because objectives usually are 
conflicting (one gets worse as another gets better) and if we specify too many, the algorithms 
can’t move. The solution of multiple objective problems is discussed in more detail in 
Chapter 5. 
 
We also note that all of the constraints in the example are “less-than” inequality constraints. 
The limits to the constraints are appropriately called the allowable values or right hand sides. 
For an optimum to be valid, all constraints must be satisfied. In this case, stress must be less 
than or equal to 100; stress minus buckling stress must be less than or equal to 0, and 
deflection must be less than or equal to 0.25. 
 
Most engineering constraints are inequality constraints. Besides less-than (≤) constraints, we 
can have greater-than (≥) constraints. Any less-than constraint can be converted to a greater-
than constraint or vice versa by multiplying both sides of the equation by -1. It is possible in 
a problem to have dozens, hundreds or even thousands of inequality constraints. When an 
inequality constraint is equal to its right hand side value, it is said to be active or binding. 
 
Besides inequality constraints, we can also have equality constraints. Equality constraints 
specify that the function value should equal the right hand side. Because equality constraints 
severely restrict the design space (each equality constraint absorbs one degree of freedom), 
they should be used carefully.  
 

5.2. Example: Specifying the Optimization Set-up of a Steam Condenser 

It takes some experience to be able to take the description of a design problem and abstract 
out of it the underlying optimization problem.  In this example, a design problem for a steam 
condenser is given. Can you identify the appropriate analysis/design variables? Can you 
identify the appropriate analysis/design functions? 
 
Description:  
Fig. 1.8 below shows a steam condenser.  The designer needs to design a condenser that will 
cost a minimum amount and condense a specified amount of steam, mmin.  Steam flow rate, 
ms, steam condition, x, water temperature, Tw, water pressure Pw, and materials are 
specified.  Variables under the designer’s control include the outside diameter of the shell, D; 
tube wall thickness, t; length of tubes, L; number of passes, N; number of tubes per pass, n; 
water flow rate, mw; baffle spacing, B, tube diameter, d. The model calculates the actual 
steam condensed, mcond, the corrosion potential, CP, condenser pressure drop, Pcond, cost, 
Ccond, and overall size, Vcond. The overall size must be less than Vmax and the designer would 
like to limit overall pressure drop to be less than Pmax 
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Discussion: 
This problem description is somewhat typical of many design problems, in that we have to 
infer some aspects of the problem. The wording, “Steam flow rate, ms, steam condition, x, 
water temperature, Tw, water pressure Pw, and materials are specified,” indicates these are 
either analysis variables that are not design variables (“unmapped analysis variables”) or 
constraint right hand sides. The key words, “Variables under the designer’s control…” 
indicate that what follows are design variables.  
 
Statements such as “The model calculates…” and “The designer would also like to limit” 
indicate analysis or design functions. The phrase, “The overall size must be less than…” 
clearly indicates a constraint.  

 
 

Fig. 1.8. Schematic of steam condenser. 
 

Thus from this description it appears we have the following, 
 
Analysis Variables: 
Outside diameter of the shell, D 
Tube wall thickness, t 
Length of tubes, L 
Number of passes, N 
Number of tubes per pass, n 
Water flow rate, mw 
Baffle spacing, B,  
Tube diameter, d 
Steam flow rate, ms  
Steam condition, x  
Water temperature, Tw  
Water pressure, Pw 
Material properties  
 

Design Variables: 
Outside diameter of the shell, D 
Tube wall thickness, t 
Length of tubes, L 
Number of passes, N 
Number of tubes per pass, n 
Water flow rate, mw 
Baffle spacing, B,  
Tube diameter, d. 

Analysis Functions: 
Cost, Ccond 
Overall size, Vcond 
Steam condensed, mcond 
Condenser pressure drop, Pcond 

corrosion potential, CP 

Design Functions: 
Minimize Cost 
s.t. 
Vcond ≤ Vmax 
mcond  ≥ mmin 
Pcond ≤ Pmax 
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6. Concepts of Design Space 

So far we have discussed the role of analysis software within optimization. We have 
mentioned that the first step in optimizing a problem is getting a good analysis model. We 
have also discussed the second step: setting up the design problem. Once we have defined the 
optimization problem, we are ready to start searching the design space. In this section we 
will discuss some concepts of design space. We will do this in terms of the familiar truss 
example. 
 
For our truss problem, we defined the design variables to be height and diameter. In Fig. 1.9 
we show a contour plot of the design space for these two variables. The plot is based on data 
created by meshing the space with a grid of values for height and diameter; other analysis 
variables were fixed at values shown in the legend on the left. The solid lines (without the 
triangular markers) represent contours of weight, the objective. We can see that many 
combinations of height and diameter result in the same weight. We can also see that weight 
decreases as we move from the upper right corner of the design space towards the lower left 
corner. 
 
Constraint boundaries are also shown on the plot, marked 1-3. These boundaries are also 
contour lines—the constraint boundary is the contour of the function which is equal to the 
allowable value. The small triangular markers show the feasible side of the constraint. The 
space where all constraints are feasible is called the feasible space. The feasible space for 
this example is shown in Fig. 1.9.  By definition, an optimum lies in the feasible space. 
 

 
Fig. 1.9. Contour plot showing the design space for the Two-bar Truss. 

 

Feasible 
Space 
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We can easily see from the contours and the constraint boundaries that the optimum to this 
problem lies at the intersection of the buckling constraint and deflection constraint.  We say 
that these are binding (or active) constraints. Several other aspects of this optimum should be 
noted.  
 
First, this is a constrained optimum, since it lies on the constraint boundaries of buckling and 
deflection. These constraints are binding or active. If we relaxed the allowable value for 
these constraints, the optimum would improve. If we relaxed either of these constraints 
enough, stress would become a binding constraint.  
 
It is possible to have an unconstrained optimum when we are optimizing, although not for 
this problem. Assuming we are minimizing, the contours for such an optimum would look 
like a valley. Contour plots showing unconstrained optimums are given in Fig. 1.10 
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 Fig. 1.10 Contour plots which show unconstrained optimums 
 

 
Fig. 1.11. Surface plot of the function: 
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Second, this optimum is a local optimum. A local optimum is a point which has the best 
objective value of any feasible point in its neighborhood. We can see that no other near-by 
feasible point has a better value than this optimum. 
 
Finally, this is also a global optimum. A global optimum is the best value over the entire 
design space. Obviously, a global optimum is also a local optimum. However, if we have 
several local optimums, the global optimum is the best of these. 
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It is not always easy to tell whether we have a global optimum. Most optimization algorithms 
only guarantee finding a local optimum. In the example of the truss we can tell the optimum 
is global because, with only two variables, we can graph the entire space, and we can see that 
this is the only optimum in this space. If we have more than two variables, however, it is 
difficult to graph the design space (and even if we could, it might be too expensive to do so) 
so we don’t always know for certain that a particular optimum is global. Often, to try to 
determine if a particular solution is a global optimum, we start the optimization algorithms 
from several different design points. If the algorithms always converge to the same spot, we 
have some confidence that point is a global optimum.  
 

7. How Algorithms Work 

The most powerful optimization algorithms for nonlinear continuous problems use 
derivatives to determine a search direction in n dimensional space that improves the 
objective and satisfies the constraints.  Usually these derivatives are obtained numerically. 
For the Two-bar truss, search paths for two different starting points are given in Fig. 1.11 
 
Assuming derivatives are obtained numerically, the number of times the algorithms must 
evaluate the model is roughly 10-15 times the number of optimization variables.  Thus a 
problem with 3 variables will require roughly 30-45 evaluations of the model; a problem 
with 10 variables will require 100-150 model evaluations. 
 

 
Fig. 1.12. Two paths algorithms might follow for two different starting points. 

Starting 
Point 1 

Starting 
Point 2
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8. Cautions Regarding Optimization 

Optimization algorithms can powerfully assist the designer in quantitative design synthesis.  
However, 
 
1. The designer should always carefully and thoroughly validate the engineering model.  

Optimization of an inaccurate model is modestly illuminating at best and misleading and 
a waste of time at worst.  Often optimization algorithms will exploit weaknesses in the 
model if they exist.  As an example, regarding thermal systems, you can get some very 
high performance designs if a model does not enforce the second law of 
thermodynamics!  

 
2. The algorithms help a designer optimize a particular design concept.  At no point will the 

algorithms suggest that a different concept would be more appropriate.  Achieving an 
overall optimum is dependent upon selection of the best concept as well as quantitative 
optimization. 

 
3. Most engineering designs represent a compromise among conflicting objectives.  Usually 

the designer will want to explore a number of alternative problem definitions to obtain 
insight and understanding into the design space.  Sometimes non-quantitative 
considerations will drive the design in important ways. 

 
4. We need to make sure the optimization problem represents the real problem we need to 

solve. Fox makes an important statement along these lines, 
 

“In engineering design we often feel that the objective functions are self evident.  But 
there are pitfalls.  Care must be taken to optimize with respect to the objective 
function which most nearly reflects the true goals of the design problem.  Some 
examples of common errors....should help focus this point.  In static structures, the 
fully utilized (fully stressed) design is not always the lightest weight; the lightest 
weight design is not always the cheapest; in mechanisms, the design with optimum 
transmission angle does not necessarily have the lowest force levels; minimization of 
acceleration level at the expense of jerk (third derivative) may result in inadequate 
dynamic response.” 

 
5.  We need to be careful to optimize the system and not just individual parts. As an 

example, the following poem by Oliver Wendell Holmes describes a “one horse” shay (a 
wagon) so well built that it lasted 100 years, after which it went completely to pieces all 
at once. 

But the Deacon swore (as Deacons do), 
With an “I dew vum,” or an “I tell yeou,” 
He would build one shay to beat the taown 
‘N’ the keountry ‘n’ all the kentry raoun’; 
It should be so built that it couldn’ break daown: 
--”Fur,” said the Deacon, “‘t’s mighty plain 
Thut the weakes’ place mus’ stan’ the strain; 
‘N’ the way t’ fix it, uz I maintain, 
Is only jest  
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T’ make that place uz strong uz the rest.” 
.... 
You see, of course, if you’re not a dunce, 
How it went to pieces all at once,-- 
All at once, and nothing first,-- 
Just as bubbles do when they burst. 
End of the wonderful one-hoss shay. 
Logic is logic.  That’s all I say. 

 
Almost always in optimization we must take a system view, rather than an individual 
component view. 
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CHAPTER 2 

MODELING CONCEPTS 

1 Introduction 

As was discussed in the previous chapter, in order to apply optimization methods we must 
have a model to optimize. As we also mentioned, obtaining a good model of the design 
problem is the most important step in optimization. In this chapter we discuss some modeling 
concepts that can help you develop models which can successfully be optimized. We also 
discuss the formulation of objectives and constraints for some special situations. We look at 
how graphics can help us understand the nature of the design space and the model. We end 
with an example optimization of a heat pump. 

2 Physical Models vs. Experimental Models 

Two types of models are often used with optimization methods: physical models and 
experimental models. Physical models are based on the underlying physical principles that 
govern the problem. Experimental models are based on models of experimental data. Some 
models contain both physical and experimental elements. We will discuss both types of 
models briefly. 

2.1 Physical Models 

Physical models can be either analytical or numerical in nature. For example, the Two-bar 
truss is an analytical, physical model. The equations are based on modeling the physical 
phenomena of stress, buckling stress and deflection. The equations are all closed form, 
analytical expressions. If we used numerical methods, such as the finite element method, to 
solve for the solution to the model, we would have a numerical, physical model. 

2.2 Experimental Models 

Experimental models are based on experimental data. A functional relationship for the data is 
proposed and fit to the data. If the fit is good, the model is retained; if not, a new relationship 
is used. For example if we wish to find the friction factor for a pipe, we could refer to the 
Moody chart, or use expressions based on a curve fit of the data. 
 

3 Modeling Considerations 

3.1 Making the Model Robust 

During optimization, the algorithms will move through the design space seeking an optimum. 
Sometimes the algorithms will generate unanticipated designs during this process. To have a 
successful optimization, the model must be able to handle these designs, i.e. it must be 
robust. Before optimizing, you should consider if there are there any designs for which the 
model is undefined.  If such designs exist, you need to take steps to insure either that 1) the 
optimization problem is defined such that the model will never see these designs, or 2) the 
model is made “bulletproof” so it can survive these designs. 
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For example, for the Two-bar truss, the truss becomes undefined if the diameter or thickness 
go to zero.  Although unlikely to ever happen, we can insure this does not occur by defining 
non-zero lower bounds for these variables—the algorithms should never violate upper or 
lower bounds. (This is not true of constraints, however, which the algorithms sometimes will 
violate during the search.) 
 
The above case seems a little farfetched, in that truss with a zero thickness or diameter would 
not make any sense. However, sometimes models can crash for designs that do make sense. 
Example 3.1.1 presents such a case. 

3.1.1 Example: Log mean temperature difference 

In the design of a shell and tube heat exchanger, the average temperature difference across 
the exchanger is given by the log mean temperature difference: 
 

   )/((ln

)((

11)22

11)22

chch

chch
LMTD TTTT

TTTT
T




  (2.1) 

 
where )( 22 ch TT  is, for example, the difference in the temperature of the hot and cold fluids 

at one end of the exchanger, denoted by subscript 2.  This difference is sometimes called the 
“temperature of approach.”  A perfectly legitimate case is to have the temperature of 
approach at both ends of the exchanger be the same, i.e., 
 
  )()( 1122 chch TTTT   (2.2) 
 
in which case the denominator becomes ln[1] = 0, and the expression is undefined. 
It turns out in this case the appropriate expression for the temperature difference is the 
“arithmetic mean temperature difference”: 
 
    .2/)()( 1122 chchAMTD TTTTT   (2.3) 

 
How would you handle this as part of your computer model? You would implement this as 
an IF ELSE statement. If the absolute value of the difference of the two temperatures of 
approach were below some tolerance, the arithmetic temperature difference would be used 
instead of the log mean temperature difference. This would prevent the model from crashing. 
The example of a heat pump at the end of this chapter implements this strategy. 
 
Sometimes the values passed to the model, even though within the bounds, do not make 
sense. For example, if the wire diameter of a spring were more than ½ the coil diameter, as 
illustrated in the figure below, the spring could not be physically be realized. Since it is 
unlikely this would represent an optimum design, the model just needs to be able to compute 
some sort of values without crashing and thereby halting execution. The algorithms will 
move away from this design as the optimization proceeds. 
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 (a)     (b) 

Fig. 2.1 Cross section of a spring. (a) Wire diameter, d, is reasonable relative to coil 
diameter, D. (b) Wire diameter is not reasonable relative to coil diameter.  

 
One apparently obvious way to prevent something like this from happening is to include a 
constraint that restricts the relative sizes of the wire (d) and coil diameters (D), e.g. 
 
  Dd 3.02   (2.4) 
 
Often including such constraints will suffice. However it should be noted that some 
optimization algorithms will violate constraints during a search, so this may not always 
work. 
 
Finally, some models are just inherently fragile. For certain combinations of variables, the 
models do not converge or in some manner fail. If the model cannot easily be made more 
robust, then the following strategy can be used. 
 
If a design is passed in from the optimization software for which the model cannot compute 
some functions, that design is intercepted at some appropriate point inside the model, and a 
penalty function is passed back in place of the actual objective (with reasonable values given 
to constraints). The penalty function value is high enough (assuming we are minimizing) that 
the algorithms will naturally move away from the point that is causing trouble.  
 
If we are using an unconstrained algorithm on a constrained problem, the penalty function 
often is composed of the objective and a penalty proportional to the violation of the 
constraints: 

 
1

viol

i i
i

P f K g


   (2.5) 

 
where iK  is a large constant, ig is the value of the constraint violation, and the subscript i 

only goes over the violated constraints. 
 
The important point to note is that the model needs to be able to survive such designs, so the 
optimization can proceed.  

D 

d 
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3.2 Making Sure the Model is Adequate 

Engineering models always involve assumptions and simplifications. An engineering model 
should be as simple as possible, but no simpler. If the model is not adequate, i.e., does not 
contain all of the necessary physics, the optimization routines will often exploit the 
inadequacy in order to achieve a better optimum. Obviously such an optimum does not 
represent reality.  
 
For example, in the past, students have optimized the design of a bicycle frame. The 
objective was to minimize weight subject to constraints on stress and column buckling. The 
optimized design looked like it was made of pop cans: the frame consisted of large diameter, 
very thin wall tubes. The design satisfied all the given constraints.  
 
The problem, however, was that the model was not adequate, in that it did not consider local 
buckling (the type of buckling which occurs when a pop can is crushed). For the design to be 
realistic, it needed to include local buckling. 
 
Another example concerns thermal systems. If the Second Law of Thermodynamics is not 
included in the model, the algorithms might take advantage of this to find a better optimum 
(you can achieve some wonderful results if the Second Law doesn’t have to be obeyed!). For 
example, I have seen optimal solutions which were excellent because heat could flow 
“uphill,” i.e. against a temperature gradient. 

3.3 Testing the Model Thoroughly 

The previous two sections highlight the need for a model which will be optimized to be 
tested thoroughly. The model should first be tested at several points for which solutions (at 
least “ballpark solutions”) are known. The model should then be exercised and pushed more 
to its limits to see where possible problems might lie. 

3.4 Reducing Numerical Noise 

Many engineering models are noisy.  Noise refers to a lack of significant figures in the 
function values.  Noise often results when approximation techniques or numerical methods 
are used to obtain a solution.  For example, the accuracy of finite element methods depends 
on the “goodness” of the underlying mesh.  Models that involve finite difference methods, 
numerical integration, or solution of sets of nonlinear equations all contain noise to some 
degree.  It is important that you recognize that noise may exist.  Noise can cause a number of 
problems, but the most serious is that is may introduce large errors into numerical 
derivatives. I have seen cases where the noise in the model was so large that the derivatives 
were not even of the right sign. 
 
A discussion of the effect of noise and error on derivatives is given in Section 7. 
 
Sometimes you can reduce the effect of noise by tightening convergence tolerances of 
numerical methods. 
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4 Proper Scaling of the Model Variables and Functions 

Optimization algorithms can perform much better when functions and variables have been 
scaled to all be on the same order of magnitude.  OptdesX uses the minimum and maximum 
bounds on variables to scale them to be between -1 and +1, using the equations, 
 

    
i
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v

2

1
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21
ii

i
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
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Max Min
C


   (2.6) 

 
In general, you should pick bounds which are as tight as possible. If during an optimization a 
lower or upper bound is reached (and it was set somewhat arbitrarily), it can always be 
relaxed. 
 
Likewise, functions are also scaled to be on the order of 1 using the allowable and 
indifference values, 
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Since a derivative involves both functions and variables, it is affected by the scaling of both, 
according to the relationship, 
 

  
)(*.2

)(

ii

jj

unscaledj

i

scaledj

i

ceIndifferenAllowable

MinMax

x

f

x

f
































 (2.8) 

 
The OptdesX algorithms work with scaled values only.  Scaling is important!  Improperly 
scaled functions or variables may cause premature algorithm termination.   When the 
problem is properly scaled, the gradients should all be roughly the same order of magnitude. 
 
As shown in Fig. 2.2, we can view gradients using the Gradients window. 
 

 
Fig. 2.2 Gradients Window 
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The unscaled gradients for the Two-bar Truss are given in Fig. 2.3: 
 

 
Fig. 2.3. Unscaled gradients for the Two-bar Truss 
 
Note the unscaled gradients differ by about five orders of magnitude. In terms of 
optimization, this may cause some variables and/or functions to overly dominate the 
optimization search with the end result the optimum is not found. 
 
The scaled gradients are shown in Fig. 2.4, 

 
Fig. 2.4. Scaled gradients for the Two-bar Truss. 
 
We see that the gradients are now all the same order of magnitude. This will facilitate the 
optimization search. 
 
Scaling of functions, variables and derivatives does not change the solution to the 
optimization problem. Rather what we are doing is picking a different set of units (obviously 
we could calculate weight in grams or pounds and it shouldn’t make a difference to the 
solution). In reality we have non-dimensionalized the problem so that all functions, variables 
and derivatives have similar magnitudes. 
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5 Formulating Objectives 

5.1 Single Objective Problems 

Most optimization problems, by convention, have one objective. This is at least partially 
because the mathematics of optimization were developed for single objective problems. 
Multiple objectives are treated briefly in this chapter and more extensively in Chap. 5. 
 
Often in optimization the selection of the objective will be obvious: we wish to minimize 
pressure drop or maximize heat transfer, etc. However, sometimes we end up with a 
surrogate objective because we can’t quantify or easily compute the real objective. 
 
For example, it is common in structures to minimize weight, with the assumption the 
minimum weight structure will also be the minimum cost structure. This may not always be 
true, however. (In particular, if minimum weight is achieved by having every member be a 
different size, the optimum could be very expensive!) Thus the designer should always keep 
in mind the assumptions and limitations associated with the objective of the optimization 
problem. 
 
Often in design problems there are other objectives or constraints for the problem which we 
can’t include. For example, aesthetics or comfort are objectives which are often difficult to 
quantify. For some products, it might also be difficult to estimate cost as a function of the 
design variables. 
 
These other objectives or constraints must be factored in at some point in the design process. 
The presence of these other considerations means that the optimization problem only 
partially captures the scope of the design problem. Thus the results of an optimization should 
be considered as one piece of a larger puzzle. Usually a designer will explore the design 
space and develop a spectrum of designs which can be considered as final decisions are 
made. 

5.2 Special Objectives: Error Functions 

Consider the four bar linkage shown in the Fig. 2.5a below (from Optimization Methods for 
Engineering Design,  R.L. Fox, Addison Wesley, 1971). We would like the linkage to follow 
a particular path as given by the solid in line in Fig. 2.5b. The actual output of a particular 
design is given by the dashed line. In this case we would like to design a linkage such that 
the generated output and the desired out put match as closely as possible. 
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Fig 2.5 a) A four bar linkage. After Fox.  b) Desired output vs. generated output 

 
A question arises as to what the objective function should be. We need an objective which 
provides a measure of the error between the desired and actual output. The optimization 
algorithms would then try to reduce this error as much as possible. One such error function 
would be,   
 

  2
360

0

)(





 desiredactualError  (2.9) 

 
Squaring the difference in the above expression insures that the error accumulates whether 
positive or negative. Other error functions are also possible, such as an actual integration of 
the area between the two curves. If it is more important that the error be small for some parts 
of the range, we can add a weighting function, 
 

  2
360

0

))((





 desiredactualwError  (2.10) 

 
Where )(w has higher values for the more important parts of the range. (Often weighting 
functions are constructed so the weights sum to 1.) 
 
Error functions such as this are relatively common in engineering optimization. You should 
pay particular attention to scaling of an error function, as it is possible for a function such as 
this to vary over several orders of magnitude from the starting point to the optimum. 
Sometimes scaling which is appropriate at the start needs to be revised closer to the 
optimum. 
 

5.3 Special Objectives: Economic Objective Functions 

One type of optimization looks at the trade-off between capital costs made now, and savings 
resulting from the capital cost which occur later. For example, we could purchase a heat 
pump now (the capital cost) in order to save energy for a number of years. Typically the 
more expensive the heat pump is, the more energy we will save. We are interested in 
determining the optimal size of the heat pump that results in the best economic results. 
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To do this properly we must take into account the time value of money. The fact that money 
earns interest means that one dollar today is worth more than one dollar tomorrow. If the 
interest rate is 5%, compounded annually, $1.00 today is the same as $1.05 in one year. If 
expenses and/or savings are made at different times, we must convert them to the same time 
to make a proper comparison. This is the subject for engineering economics, so we will only 
briefly treat the subject here. 
 
One approach to examining the economics of projects is called net present value (NPV). For 
this approach, all economic transactions are converted to equivalent values in the present. In 
general, outflows (expenses) are considered negative; inflows (savings or income) are 
considered positive. There are two formulas which will be useful to us. 
 
The present value of one future payment or receipt, F, at period n with interest rate i is,  
 

  
n

n

i

F
P

)1( 
  (2.11) 

This equation allows us to convert any future value to the present. This might not be very 
convenient, however, if we have many future values to convert, particularly if we have a 
series of uniform payments. The present value of a series of uniform amounts, A, where the 
first payment is made at the end of the first period is given by, 
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


  (2.12) 

5.3.1 Example: Net Present Value of Heat Pump 

Suppose you can buy a heat pump for $50,000. The pump is estimated to save $12,000 per 
year for the five year life of the pump. An interest rate of 10% is assumed. Is the heat pump a 
good investment? 
 
A time line showing the money flow rates is given below (size of arrows not to scale).  
 

$50,000

$12,000

 
Fig. 2.6. Money flow rates for heat pump. 

 
The initial expense of the pump, $50,000, is already in the present, so this does not need to 
be changed. It will be considered negative, however, since it is money paid out. 
 
The present value of the savings is given by, 
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4510$489,45$000,50$ NPV  

 
Since the Net Present Value is negative, this is not a good investment. This result might be a 
little surprising, since without taking into account the time value of money, the total savings 
is 5*$12,000 = $60,000. However, at 10% interest, the value of the savings, when brought 
back to the present, does not equal the value of the $50,000 investment. This means we 
would be better off investing the $50,000 at 10% than using it to buy the heat pump. 
 
Note that (2.13) above assumes the first $12,000 of savings is realized at the end of the first 
period, as shown by the timeline for the example. 
 
When used in optimization, we would like to maximize net present value. In terms of the 
example, as we change the size of the heat pump (by changing, for example, the size of the 
heat exchangers and compressor), we change the initial cost and the annual savings. 
 
Question: How would the example change if the heat pump had some salvage value at the 
end of the five years? 
 

6 Formulating Constraints 

6.1 Inequality and Equality Constraints 

Almost all engineering problems are constrained. Constraints can be either inequality 
constraints ib  or ib ) or equality constraints ( ib ). The feasible region for inequality 

constraints represents the entire area on the feasible side of the allowable value; for equality 
constraints, the feasible region is only where the constraint is equal to the allowable value 
itself.  
 
Because equality constraints are so restrictive, they should be avoided in optimization 
models whenever possible (an exception would be linear constraints, which are easily 
handled). If the constraint is simple, this can often be done by solving for the value of a 
variable explicitly. This eliminates a design variable and the equality constraint from the 
problem. 
 

6.1.1 Example: Eliminating an Equality Constraint 

Suppose we have the following equality constraint in our model, 
 
 2 2

1 2 10x x   (2.14) 
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Where 1x and 2x  are design variables. How would we include this constraint in our 

optimization model? 
 
We have two choices. The choices are mathematically equivalent but one choice is much 
easier to optimize than the other. 
 
First choice: Keep 1x and 2x  as design variables. Calculate the function, 

 
 2 2

1 2g x x   (2.15) 

 
Send this analysis function to the optimizer, and define the function as an equality constraint 
which is set equal to 10. 
 
Second choice: Solve for 1x  explicitly in the analysis model, 

 

 2
1 210x x   (2.16) 

 
This eliminates 1x  as a design variable (since its value is calculated, it cannot be adjusted 

independently by the optimizer) and eliminates the equality constraint. The equality 
constraint is now implicitly embedded in the analysis model. 
 
Which choice is better for optimization? The second choice is a better way to go hands 
down: it eliminates a design variable and a highly restrictive equality constraint. The second 
choice results in a simpler optimization model. 
 
In one respect, however, the second choice is not as good: we can no longer explicitly put 
bounds on 1x  like we could with the first choice. Now the value of 1x  is set by (2.16); we can 

only control the range of values indirectly by the upper and lower bounds set for 2x . (Also, 

we note we are only taking the positive roots of 1x . We could modify this, however.)   

6.2 Constraints Where the Allowable Value is a Function 

It is very common to have constraints of the form: 
 
 Stress ≤ Buckling Stress (2.17) 
 
Most optimization routines, however, cannot handle a constraint that has a function for the 
right hand side.  This is easily remedied by rewriting the function to be, 
 
 Stress – Buckling Stress ≤ 0 (2.18) 
 
In OptdesX, this mapping can be done two ways: in your analysis routine you can create a 
function which computes stress minus buckling stress, or you can make the mapping directly 
in the OptdesX interface: 
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Fig. 2.7. Mapping two analysis functions to become one design function in OptdesX 

6.3 Constraint with Two Allowable Values 

Constraints sometimes also have upper and lower allowable values: 
 
 4 ≤ DiameterRatio ≤ 16 (2.19) 
 
We will break this into two constraints: 
 
 DiameterRatio ≤ 16 
 DiameterRatio ≥ 4 
 
In OptdesX this is accomplished by mapping the analysis function twice: 
  

 
Fig. 2.8. Mapping one analysis function to become two constraints. 

6.4 Taking the Maximum of a Group of Functions 

Sometimes we would like to reduce the size of a problem by combining several constraints 
together.  For example, in a finite element model, it is expensive to place a stress constraint 
on every element.  One possibility is to group a block of elements together and take the 
maximum stress over the group.  In OptdesX:  
 

  
Fig. 2.9. Taking the maximum of several functions to become one constraint. 

However, the Max function has a drawback in that it will not be differentiable when the max 
value changes from one analysis function to another. Usually, however, the optimization 
algorithms can skip over this discontinuity. 

6.5 Parametric Constraints 

Suppose we have a truss where the load acts within some envelope, as shown in Fig. 2.10 
below (from Optimization Methods for Engineering Design,  R.L. Fox, Addison Wesley, 
1971). 
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Fig. 2.10. A three-bar truss with a parametric load, after Fox. 
 
The load can act in any direction; the magnitude is a function of  
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Thus the stress constraint becomes: 
 
 Stress() < Sy 0 ≤   ≤ 2  

Fox refers to this as a parametric constraint.  How would we evaluate this type of constraint? 
 
As you may have guessed, we would use a loop inside our analysis routine. We would loop 
through values of theta and keep track of the highest value of stress. This is the value which 
would be sent to the optimizer. Psuedo-code for the loop would be something like (where we 
assume theta is in degrees and is incremented by two degrees each time through the loop), 
 
 maxstress = 0.0; 
 For (theta = 0; theta <= 360; theta += 2.0;) { 
    stress = (calculate stress); 
    If (stress >> maxstress ) maxstress = stress; 
 } 
 

7 Accurate Numerical Derivatives 

In Section 2 we looked at how scaling can affect the values of derivatives.  We noted it is 
advantageous for derivatives to be the same order of magnitude when optimizing. This is 
equivalent to selecting an optimum set of units for our variables. We also mentioned that 
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noise in the model can introduce error into derivatives. In this section we will look carefully 
at errors in numerical derivatives and learn how to reduce them.  This is crucial if we expect 
a successful optimization. 

7.1 Truncation Error 

Most of the time we obtain derivatives numerically. An exception is structural optimization, 
where some packages support the calculation of analytical derivatives directly from the finite 
element results.  The most common numerical method is forward difference.  The error 
associated with this method can be derived from a Taylor Expansion.  For a function of only 
one variable: 
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Solving for the derivative: 
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If we approximate the derivative as, 
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then we see we have a truncation error of  
2

2

1

2

d f
x

dx
  which is proportional to x.  Thus 

to reduce this error, we should make x small. 
 
We can also derive a central difference derivative: 
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Subtracting the second expression from the first, 
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Solving for the derivative, 
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If we approximate the derivative as, 
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then the truncation error is 
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  , which is proportional to 2x .  

 
Assuming x  < 1.0, the central difference method should have less error than the forward 
difference method. For example, if x = 0.01, the truncation error for the central difference 
derivative should be proportional to 2(0.01) 0.0001 . 
 
If the error of the central difference method is better, why isn’t it the default? Because there 
is no free lunch! The central difference method requires two functions calls per derivative 
instead of one for the forward difference method. If we have 10 design variables, this means 
we have to call the analysis routine 20 times (twice for each variable) to get the derivatives 
instead of ten times. This can be prohibitively expensive. 

7.2  Round-off Error 

Besides truncation error, we also have round-off error.  This is error associated with the 
number of significant figures in the function values.  Returning to our expression for a 
forward difference derivative, 
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where  represents the error in the true function value caused by a lack of significant 

figures. 
 
Recall that the true derivative is, 
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but we are estimating it as, 
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where this last term is the round-off error.  The total error is therefore, 
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2

2

2 1

2

d f
x

x dx


  


  (2.34) 

 
Thus we have two competing errors, truncation error and round-off error. To make truncation 
error small, x should be small; to reduce round-off error, x should be large. We will have 
to compromise. 

7.3 Example of Truncation Error 

We wish to compute the derivatives of the function 3 1 2( )f x x x   at the point 3x  . 
 
The true derivative at this point is 27.2886751. 
With a forward difference derivative and 0.01x  , 
 

   3 0.01 3 29.0058362 28.7320508
27.37385

0.01 0.01

f fdf

dx

  
    

 
The absolute value of error is 0.08512. 
 
Now suppose we use x = 0.01 with a central difference derivative: 
 

   3 0.01 3 0.01 29.0058362 28.4600606
27.28878

2*0.01 0.02

f fdf

dx

   
    

 
The absolute error has decreased to 0.000105 

7.4 Example of Truncation and Round-off Error 

Suppose, because of the type of model we have, we only have five significant figures for our 
data.  Thus instead of 29.0058362, we really only have 29.006-----, where even though other 
digits are reported, they are only numerical noise. (Note we have rounded here—we might 
also specify chopping.) 
 
With x = 0.01, 
 

 
   3 0.01 3 29.006 28.732

27.4000000
0.01 0.01

f fdf

dx

  
    

 
The absolute error has increased to 0.1113 
 
Lets try a whole range of x’s: 
 

x Error 
1.0 9.98 
0.1 0.911 

0.01 0.1113 
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0.001 0.2887 
0.0001 2.7113 

0.00001 27.728 
 
If we plot this data, 
 

Truncation and Derivative Error

0

10

20

30

-6 -5 -4 -3 -2 -1 0 1

Log Forward Difference Perturbation

A
b

so
lu

te
 D

er
iv

at
iv

e 
E

rr
o

r

 
Fig. 2.11. Plot of total error for example 

 
As we expected, we see that the data have a “U” shape. At small perturbations, round-off 
error dominates. At large perturbations, truncation error dominates. There is an optimal 
perturbation that gives us the minimum error in the numerical derivative. 
 
Usually we don’t know the true value of the derivative so we can’t easily determine the 
optimal perturbation. However, understanding the source and control of errors in these 
derivatives can be very helpful. If we suspect we have a noisy model, i.e. we don’t have very 
many significant figures in our functions, we use a central difference method with a large 
perturbation. The large perturbation helps reduce the effects of noise, and the central 
difference method helps control the truncation error associated with a large perturbation. In 
OptdesX, where derivatives are scaled, we recommend a perturbation of 0.01 for noisy 
models instead of 0.0001, the default, along with the central difference method. 

7.5 Partial Derivatives 

The concepts of the preceding sections on derivatives extend directly to partial derivatives. If 
we had, for example, two variables, 1 2andx x , a finite forward difference partial derivative, 

1

f

x




, would be given by, 

 

1 1 2 1 2

1 1

( , ) ( , )f x x x f x xf

x x

  


 
 (2.35) 

 



 Chapter 2: Modeling Concepts 

 18 

Note that only 1x  is perturbed to evaluate the derivative. This variable would be set back to 

its base value and 2x  perturbed to find 
2

f

x




. 

In a similar manner, a central difference partial derivative for 
1

f

x




would be given by, 

 

1 1 2 1 1 2

1 1

( , ) ( , )

2

f x x x f x x xf

x x

   


 
 (2.36) 

 

8 Interpreting Graphics 

This section may seem a disconnected subject—interpreting graphs of the design space. 
However graphs of the design space can tell us a lot about our model. If we can afford the 
computation, it can be very helpful to look at graphs of design space. 
 
OptdesX supports two basic types of plots: sensitivity plots (where functions are plotted with 
respect to one variable) and contour plots (where functions are plotted with respect to two 
variables). To create a sensitivity plot, one variable is changed at equal intervals, according 
to the number of points specified, and the analysis routine is called at each point. If ten points 
are used, the analysis routine is called ten times. The function values are stored in a file—this 
file is then graphed. 
 
To create a contour plot, two variables are changed at equal intervals (creating a mesh in the 
space) and the values stored in a file. If ten points are used for each variable, the analysis 
routine is called 100 times. 
 
Some points to remember:  

•Use graphs to help you verify your model.  Do the plots make sense? 
 
•Graphs can provide additional evidence that you have a global optimum. If the contours 
and constraint boundaries are smooth and relatively linear, then there are probably not a lot 
of local optima.  Remember, though, you are usually only looking at a slice of design 
space. 
 
•When you generate a contour plot, remember that all variables except the two being 
changed are held constant at their current values.  Thus if you wish to see what the design 
space looks like around the optimum, you must be at an optimum. 
 
•Graphs can often show why the algorithms may be having trouble, i.e. they can show that 
the design space is highly nonlinear, that the feasible region is disjoint, that functions are 
not smooth, etc. 
 
•Graphs are interpolated from an underlying mesh.  Make sure the mesh is adequate.  The 
mesh must be fine enough to capture the features of the space (see example in manual pg 
10-9 to 10-10).  Also, you need to make sure that the ranges for the variables, set in the 
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Explore window, are such that the designs are meaningful.  In some cases, if the ranges are 
not appropriate, you may generate designs that are undefined, and values such as “Infinity” 
or “NaN” will be written into the Explore file.  OptdesX cannot graph such a file and will 
give you an error message. 
 
•Optimal explore graphs show how the optimum changes as we change two analysis 
variables. (We cannot change two design variables—these are adjusted by the software to 
achieve an optimum.) These types of plots, where an optimization is performed at each 
mesh point, can be expensive.  You must be very careful to set ranges so that an optimum 
can be found at each mesh point. 

 
In the figures below we show some examples of contour plots which can help us gain insight 
into an analysis model. 
 
The first plot, shown in Fig. 2.12 below, illustrates several features of interest. We note that 
that we have two optimums in the middle of the graph. We also have a step in the middle of 
the graph where the contours are steep—this would likely mean the algorithms would “fall”: 
down the step and find the second optimum. Also, in the upper left corner the contours are 
very close together. The “diamond” shapes along the right side are probably not real—these 
can occur when the underlying mesh is not fine enough. 
 
 

 
 

Fig. 2.12. Example Contour Plot 1 
 

Our next example is shown in Fig. 2.13. In this example, which represents the design space 
for a spring, we have a lot of constraint boundaries. As we examine constraint boundaries, 
we see that the feasible region appears to be a triangular area, as shown. In the lower right 
hand corner, however, we have an area of suspicious looking constraint boundaries 
(constraint 2), which, if valid, would mean no feasible region exists. When we consider the 

Function is steep 
in this region 

These are 
probably 
artifacts caused 
by not having a 
fine enough 
mesh 

Algorithms 
would likely 
find this 
optimum 

Is the model valid 
in these regions? 



 Chapter 2: Modeling Concepts 

 20 

values of variables in this area, however, we understand that this boundary is bogus. In this 
part of the plot, the wire diameter is greater than the coil diameter. Since this is impossible 
with a real spring, we know this boundary is bogus and can be ignored. 

 
Fig. 2.13. Example Contour Plot 2 

 
Our third and final example is given in Fig. 2.14. This is a sensitivity plot. Plots 2,3,4,5 look 
pretty reasonable. Plot 1, however, exhibits some noise. We would need to take this into 
account when numerical derivatives are computed. (Recall that we would want to use a 
central difference scheme with a larger perturbation.) 

 
Fig. 2.14. Example Sensitivity Plot 

This constraint 
is bogus 

Feasible region 
is here 

This plot 
shows the 
function is 
noisy.  
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9 Modeling and Optimization Example: Optimization of a Heat 
Pump 

9.1 Problem Description 

To save energy, the installation of a heat pump is proposed as shown in Fig. 2.15.  The heat 
pump recovers heat from exhaust air and transfers it to incoming outdoor air. The building is 
electrically heated, so that if the heat pump does not bring the temperature of the incoming 
air up to 35°C, electric-resistance heat is used to supplement the heat pump.1  
 
Determine the size of compressor, condenser, and evaporator that provides a minimum total 
cost (capital costs and operating costs). The temperatures of approach in the evaporator and 
condenser should not be less than four degrees C. 
 
 

 
Fig. 2.15. Schematic of Heat Pump (After Stoecker) 

 
 
Data 
U Values of condenser and evaporator coils, 25 W / (m² · K) based on air-side area. 
Cost of coils, $100 per square meter of air-side area 
Compressor cost, including motor, $220 per motor kilowatt 
Power cost, 6 cents per kilowatt-hour 
Interest rate, 10 percent 
Economic life, 10 years 
Number of hours of operation per year, 4000 
Average outdoor temperature during the 4000 h, 0°C 
Air flow rate through both coils, 5 kg/s 
Temperatures of approach in the exchangers should be at least 4 °C. 

                                                 
1 This problem is a modified version taken from W. F. Stoecker, Design of Thermal Systems, 3rd Edition, 
McGraw Hill. 
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The performance characteristics of the compressor can be expressed as a coefficient of 
performance (COP), where 
  

COP =      refrigeration rate, kW                       
electric power to compressor motor, kW 

 
(Refrigeration rate is the heat absorbed at the evaporator.) The COP is a function of the 
evaporating and condensing temperatures, te°C, and tc°C, and can be represented by 
 
 COP = 7.24 + 0.352te   –   0.096 tc   –   0.0055 te tc (2.37) 
 

9.2 Initial Problem Discussion 

This problem involves determining the optimal trade-off between first costs and operating 
costs. If we are willing to put in a more expensive heat pump (larger heat exchangers and 
compressor) we can recover more heat and energy costs drop. Conversely, we can reduce 
initial costs by installing a smaller heat pump (or no heat pump at all) but energy costs are 
then higher. This is a relatively common situation with engineering systems. 
 
We have obviously made a number of simplifications to this problem. For example, we are 
not considering any benefit which might accrue from running the heat pump as an air 
conditioner during the summer. We are also using a relatively simple model for the 
condenser, evaporator and compressor. The optimization is also conducted on the basis of a 
constant outdoor air temperature of 0°C.  
 
Although not considered here, during actual operation the COP of the system would vary 
with the outdoor air temperature. A more complex analysis would analyze the savings 
assuming different outdoor air temperatures for certain times of the year, month or day. 
 
From consideration of the problem we define the following: 

,

,

,

(5 / )

, (1.0 / )

c

e

r

c

e

p

Q heat transfer condenser

Q heat transfer evaporator

Q heat transfer resistance heater

A area of condenser

A area of evaporator

W work input to compressor

m air mass flow rate kg s

C specific heat air kJ kg












 

,

,
e

c

t working fluid temperature evaporator

t working fluid temperature condenser



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, (0 )

,

, (24 )

o
aci

aco

o
aei

t inlet air temperature condenser C

t outlet air temperature condenser

t inlet air temperature evaporator C







 

,aeot outlet air temperature evaporator  

,

,

appe

appc

t temperature of approach evaporator

t temperature of approach condenser




 

COP coefficient of performance  

hpC  cost of heat pump 

ehpC  cost of electricity for heat pump 

erhC  cost of electricity for resistance heater 

totalC  total cost 

 
Some of these will be design variables and some will be design functions. In order to better 
understand these relationships, it will be helpful to write the equations for the model. 

9.3 Definition of Optimization Problem 

The definition of the optimization problem is not always obvious. In this case it is clear what 
the objective should be: to minimize overall costs (cost of heat pump and cost of energy over 
ten years). We also note we will have constraints on the temperature of approach in the 
evaporator and condenser. However, it is not clear what the design variables should be. For 
example, we need to determine , , ,aco aeo e ct t t t , ,e cQ Q , ,e cA A and W. 

 
Not all of these can be design variables, however, because once some of these are set, others 
can be calculated from the modeling equations. Some modeling equations essentially act as 
equality constraints and can be used to eliminate variables (as discussed in Section 6.1.1) 
 
For now we will define the optimization problem as follows, 
 
 Find , , ,aco aeo e ct t t t , ,e cQ Q , ,e cA A and W 

 
 To Minimize totalC  

 

 s.t. 
4

4

appe

appc

t

t




 

 
In the next sections, where we define the model and equation sequence, we will be able to 
refine this definition further. 

9.4 Model  Development 

The following equations will apply to the heat pump model, 
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Equation Explanation 

c eQ Q W   This equation comes from an energy balance across the 
heat pump. During steady state operation, the heat 
transferred at the condenser is equal to the heat absorbed 
at the evaporator and the energy input to the compressor. 

c c cQ UA T   This gives the heat transferred at the condenser in terms 
of the heat transfer coefficient, area and temperature 
difference.  

cT  This is the temperature difference across the condenser 
and is calculated as the log mean temperature difference: 

 
 
( ) ( )

ln ( ) /( )
c aci c aco

c
c aci c aco

t t t t
T

t t t t

  
 

 
 

( )c p aco aciQ mC t t   

 

The heat transferred at the condenser must equal the 
sensible heat gain of the air across the condenser. 

e e eQ UA T   The heat transferred at the evaporator. 
 

eT  The temperature difference across the evaporator: 
 
 
( ) ( )

ln ( ) /( )
aei e aeo e

e
aei e aeo e

t t t t
T

t t t t

  
 

 
 

( )e p aei aeoQ mC t t   

 

The heat transferred at the evaporator must equal the 
sensible heat loss of the air across the evaporator. 

(35 )r p acoQ mC t   Heat transfer to air by resistance heater.  

),( ce
e ttf

W

Q
COP   

 

Definition of coefficient of performance (note for this 
problem it specifies the COP in terms of “refrigeration 
rate,” which implies eQ instead of cQ  The actual equation 

for the COP is given in (2.37) 

total hp ehp erhC C C C    

 

We must bring the energy costs for the heat pump and 
the resistance heater into the present by calculating their 
present value. Other costs are already in the present. We 
will use (2.12) to do this: 

n

n

ii

i
AP

)1(

1)1(




  

( )appe aeo et t t   Temperature of approach for the evaporator. This is the 
difference between the air exit temperature and the 
working fluid temperature. 

( )appc aco ct t t   Temperature of approach for the condenser. 

 
It pays to be careful as you develop model equations. An error here can cause lots of grief 
downstream. One recommendation is to check the units of all equations to make sure the 
units are correct. 
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9.5 Equation Sequence 

In this step we will determine the order in which equations will be calculated. This will help 
us determine the set of design variables. It turns out, as we lay out the model equations, we 
find we only need three design variables. Once these three are set, all the others can be 
calculated. 
 
We will guess that we have design variables: , ,ace e ct t t  (this guess is not obvious—it 

sometimes takes some iterations of this step to decide what the most convenient set of 
variables will be).  
 
Get values of design variables from 
optimizer: , ,ace e ct t t  

 
 

The optimization code will set the values 
of these variables. 

Compute ),( ce ttfCOP   

 
 

From (2.37) 

( )

(5 / )(1.00 / )(24 )

e p aei aeo

aeo

Q mC t t

kg s kJ kg C t

 

  


 

 
 

Calculate heat transferred to air from 
evaporator 

COPQW e /  

 
 

Knowing  eQ and COP the Work can be 

calculated 

WQQ ec   

 
 

Heat at condenser 

c
aco aci

p

Q
t t

mC
 


 

 

Outlet air temperature of condenser 

/c c cA Q U T   

 
 

Area of condenser 

/e e eA Q U T   

 
 

Area of evaporator 

*100 *100 *220hp e cC A A W    Cost of heat pump 
 
 

(1 ) 1
*0.06*4000*

(1 )

n

ehp n

i
C W

i i

 



 

 

Present worth of energy cost to run heat 
pump 
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(1 ) 1
(35 )*0.06*4000*

(1 )

n

erh p aco n

i
C mC t

i i

 
 


  

 

Present worth of energy cost to run 
resistance heater 

total hp ehp erhC C C C    

 
 

Find total cost 

( )appe aeo et t t   

( )appc aco ct t t   

 

Find temperatures of approach 

 

9.6 Model Coding 

We are now ready to code the model. Although the code below is for OptdesX, similar 
coding would need to be done to connect with any optimizer. Note that even though we only 
have a few design functions, we send a lot of function values back to the optimizer (the calls 
to afdsca) so we can see them in the interface and verify the model is working properly. 
 
#include "supportC.h" 
#include <math.h> 
 
/*================================================================ 
    Function anapreC 
       Preprocessing Function 
------------------------------------------------------------------*/ 
void anapreC( char *modelName ) 
{ 
   /* set model name (16 chars max) */ 
   strcpy( modelName, "Heat Pump" ); 
} 
 
/*================================================================== 
    Function anafunC 
       Analysis Function 
------------------------------------------------------------------*/ 
void anafunC( void ) 
{ 
   /* don't forget to declare your variables and functions to be 
      double precision */ 
   double taei, taci, taco, taeo, te, tc, Ae, Ac, U, W, Qc, Qe; 
   double mdot, cp, delte, deltc, Costelec, Costpump, Costtot; 
   double Costresist, COP, appte, apptc, appte2, apptc2; 
 
   /* get AV values from OptdesX (Variable names 16 chars max) */ 
   avdscaC( &taeo, "evap air temp out" ); 
   avdscaC( &te, "temp evaporator" ); 
   avdscaC( &tc, "temp condenser" ); 
 
   U = 0.025; 
   mdot = 5.; 
   cp = 1.00; 
   taci = 0.; 
   taei = 24.; 
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   COP = 7.24 + 0.352*te - 0.096*tc - 0.0055*te*tc; 
 
   Qe = mdot*cp*(taei - taeo); 
   W = Qe/COP; 
   Qc = Qe + W; 
   taco = Qc/(mdot*cp) + taci; 
 
   if (fabs ((taei - te) - (taeo - te)) > 0.0001) { 
   delte = ((taei - te)-(taeo - te))/log((taei - te)/(taeo - te)); 
      } 
   else { 
      delte = ((taei - te)+(taeo - te))/2.; 
      } 
   if (fabs ((tc - taco) - (tc - taci)) > 0.0001) { 
      deltc = ((tc - taco)-(tc - taci))/log((tc - taco)/(tc - taci)); 
      } 
   else { 
      deltc = ((tc - taco)+(tc - taci))/2.; 
      } 
 
   Ac = Qc/(U*deltc); 
   Ae = Qe/(U*delte); 
 
   Costelec = W*6.144*0.06*4000.; 
   Costpump = Ae*100. + Ac*100. + W*220.; 
   Costresist = 0.; 
 
   if (taco < 35.) { 
      Costresist = mdot*cp*(35 - taco)*6.144*0.06*4000.; 
   } 
   Costtot = Costresist + Costelec + Costpump; 
 
   appte = taeo - te; 
   apptc = tc - taco; 
   appte2 = taei - te; 
   apptc2 = tc - taci; 
 
   afdscaC( COP, "COP" ); 
   afdscaC( Qe, "Q evaporator" ); 
   afdscaC( Qc, "Q condenser" ); 
   afdscaC( W, "Work" ); 
   afdscaC( delte, "delte" ); 
   afdscaC( deltc, "deltc" ); 
   afdscaC( Ac, "Area condenser" ); 
   afdscaC( Ae, "Area evaporator" ); 
   afdscaC( Costelec, "Cost electricity" ); 
   afdscaC( Costpump, "Cost heat pump" ); 
   afdscaC( Costresist, "Cost resist heat" ); 
   afdscaC( Costtot, "Cost total" ); 
   afdscaC( apptc, "temp app cond" ); 
   afdscaC( appte, "temp app evap" ); 
   afdscaC( appte2, "temp app evap2" ); 
   afdscaC( apptc2, "temp app cond2" ); 
} 
/*================================================================== 
    Function anaposC 
       Postprocessing Function 
------------------------------------------------------------------*/ 
void anaposC( void ) 
{ 
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} 

9.7 Linking and Verifying the Model 

After we have coded and debugged the model, we link it to the optimizer and begin 
verification. (In some situations we might be able to verify the model before we link to the 
optimizer. In such a case we would be able to execute the model separately.) Verification 
involves checking the model at various points to make sure it is working properly. The 
values of the design variables are changed manually, and the compute functions button is 
pushed (causing OptdesX to call the model) to look at the corresponding function values. In 
this case, I spent over two hours debugging the model. Initially I noticed that no matter what 
the starting design was, the cost would evaluate to be higher for small perturbations of the 
design variable, aeot , regardless of whether I perturbed it smaller or larger. The problem was 

finally traced down to the fact I was using “abs” for absolute value instead of “fabs” to get 
the absolute value of a real expression. This was causing erratic results in the model (“abs” is 
used to get the absolute value of integer expressions). I also discovered I had accidentally 
switched appet with appct . I did some “brute force” debugging to find these errors: I put in 

several printf statements and printed out lots of values until I could track them down. 
 

9.8 Optimizing the Model 

After debugging and checking the model at various points, we are finally ready to optimize. 
The first step is to make sure the scaled gradients (derivatives) look good. 
 
The unscaled gradients are, 

 
Fig. 2.16 Unscaled derivatives. 
 
We see that the derivatives vary by almost five orders of magnitude, from 0.33 to 3030. This 
can have the effect of slowing the search for an optimum or even causing premature 
termination. As discussed previously, OptdesX scales the gradients according to the Min, 
Max, Allowable and Indifference values which are provided by the user. We check the scaled 
gradients, 
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Fig. 2.17 Scaled derivatives. 
 
The scaling is much more uniform. 
 
The starting design is shown in Figs. 2.18 and 2.19 below: 
 

 
Fig. 2.18 Starting values of design variables. 
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Fig. 2.19. Starting values for functions. 
 
We are ready to optimize. We run the default algorithm GRG. The variables change to: 
 

 
Fig. 2.20 Optimum values for variables. 
 
We see that a design variable, evaporator air outlet temperature, has hit its lower bound of 
zero. We relax this bound somewhat to see if we can do better: 

This 
bound 
relaxed 



  Chapter 2: Modeling Concepts 

  31 

 
Fig. 2.21 Optimum values for variables with relaxed bound. 
 
The functions at the optimum are given in Fig. 2.22. 
 

 
Fig. 2.22 Function values at optimum. 
 
We see that the total cost has decreased from $167,800 to $153,000. Although not shown in 
Fig. 2.22, the cost of the resistance heating has dropped to nearly zero. Does this make 
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sense? We see that the COP at the optimum is 2.2, meaning for every unit of energy input to 
the compressor, 2.2 units of heat are delivered at the condenser. So we would expect the heat 
pump to be a cost effective means of delivering heat. We might continue to explore this 
solution to make sure we understand it. 
 
A contour of the space around the optimum is given in Fig 2.23. We see that for this problem 
the solution is a relatively shallow unconstrained optimum. 
 

 
Fig 2.23 Contour plot for the heat pump. 

Unconstrained 
Optimum 
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CHAPTER 3 

UNCONSTRAINED OPTIMIZATION 

1. Preliminaries 

1.1. Introduction 

In this chapter we will examine some theory for the optimization of unconstrained functions. 
We will assume all functions are continuous and differentiable. Although most engineering 
problems are constrained, much of constrained optimization theory is built upon the concepts 
and theory presented in this chapter.   

1.2. Notation 

We will use lower case italics, e.g., x, to represent a scalar quantity. Vectors will be 
represented by lower case bold, e.g., x, and matrices by upper case bold, e.g., H.  
 
The set of n design variables will be represented by the n-dimensional vector x. For example, 
previously we considered the design variables for the Two-bar truss to be represented by 
scalars such as diameter, d, thickness, t, height, h; now we consider diameter to be the first 
element, 1x , of the vector x, thickness to be the second element, 2x , and so forth. Thus for 

any problem the set of design variables is given by x.  
 
Elements of a vector are denoted by subscripts. Values of a vector at specific points are 
denoted by superscripts. Typically 0x will be the starting vector of values for the design 
variables. We will then move to 1x , 2x , until we reach the optimum, which will be x*. A 
summary of notation used in this chapter is given in Table 1. 
 

Table 1 Notation 
A  Matrix A x , kx , *x  Vector of design variables, 

vector at iteration k, vector at 
the optimum 

I  Identity matrix 
1 2, ... nx x x  Elements of vector x 

a  Column vector , ks s  Search direction, search 
direction at iteration k 

1, 2,...i i a  Columns of A , , *k    Step length, step length at 
iteration k, step length at 
minimum along search 
direction 

1,2,...i i e  Coordinate vectors 
(columns of I) 

( ), ( ),k kf f fx x Objective function, objective 

evaluated at kx  

,T TA a  transpose 2 2( ),

( ),

k k

k k

f f x

H x H
 

Hessian matrix at kx  

( ), ( ),k kf f f  x x  Gradient of ( )f x , 

gradient evaluated at kx  

A  Determinant of A 
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1k k k  x x x  Difference in x vectors nRx  All vectors which are in n-
dimensional Euclidean space 

1k k kf f  γ  Difference in gradients 

at 1,k kx x  

kN  Direction matrix at kx  

 

1.3. Statement of Problem 

The problem we are trying to solve in this chapter can be stated as, 
 
 Find x,     nRx  
 To Minimize ( )f x  
 

1.4. Gradient Vector 

1.4.1. Definition 

The gradient of ( )f x is denoted ( )f x . The gradient is defined as a column vector of the 
first partial derivatives of f(x): 
 

   

1

2( )

n

f

x

f

xf

f

x

 
  
 

    
 
  
  

x



  

 

1.4.2. Example: Gradient of a Function      

Evaluate the gradient of the function 2 2
1 2 1 1 2 2( ) 6 2 2 3f x x x x x x     x  

 

  1 2

1 2

2 4 3

1 3 2

x x
f

x x

   
     

 If evaluated at 0 2

2

 
  
 

x , 0 4

1
f

 
    

 

 
A very important property of the gradient vector is that it is orthogonal to the function 
contours and points in the direction of greatest increase of a function.  The negative gradient 
points in the direction of greatest decrease. Any vector v which is orthogonal to ( )f x will 

satisfy ( ) 0f Tv x . 
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1.5. Vectors That Point "Downhill" or "Uphill" 

If we have some search direction s, then T fs is proportional to the projection of s onto the 
gradient vector.  We can see this better in Fig. 3.1: 
 

 
Fig. 3.1. Vectors that point uphill or downhill. 

 
As long as T 0 f s , then s points, at least for some small distance, in a direction that 

increases the function (points uphill).  In like manner, if T 0 f s , then s points downhill. 
As an example, suppose at the current point in space the gradient vector is 

( ) [6,1, 2]Tf  kx . We propose to move from this point in a search direction [ 1,1,0]T  s . 

Does this direction go downhill? We evaluate  T

6

= -1, -1,0 1 7

-2

f

 
    
  

s  

 
So this direction would take us downhill, at least for a short step. 

1.6. Hessian Matrix 

1.6.1. Definition 

The Hessian Matrix, H(x) or 2 ( )f x  is defined to be the square matrix of second partial 
derivatives: 
 

  

2 2 2

2
1 1 1

2 2 2

2 2
2 1 2 2

2 2 2

2
1 2

( ) ( )

n n

n

n n n

f f f

x x x x x

f f f

f x x x x x

f f f

x x x x x

   
      
   
 

        
 
 
   
      

H x x





   



 (3.2) 

VALLEY

f

up

up
down

down

tangent
line
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We can also obtain the Hessian by applying the gradient operator on the gradient transpose, 
 

2 2 2

2
1 1 11

2 2 2

2 2
2 2 1 2 2

1 2

2 2 2

2
1 2

( ) ( ) ( ( ) ) , ,...,

n n

T
n

n

n n n n

f f f

x x x x xx

f f f
f f f

xf f x x x x x
x x x

f f f
x x x x x x

    
          
     

                            
       
          

H x x x





    



 

 
The Hessian is a symmetric matrix.  The Hessian matrix gives us information about the 
curvature of a function, and tells us how the gradient is changing. 
 
For simplicity, we will sometimes write kH  instead of ( )kH x . 

1.6.2. Example: Hessian Matrix   

Find the Hessian matrix for the function, 2 2
1 2 1 1 2 2( ) 6 2 2 3f x x x x x x x       

 

 1 2

1 2

2 4 3

1 3 2

x x
f

x x

   
     

, 
2

2
1

4
f

x





 

2

1 2

3
f

x x




 
 

   
2

2 1

3
f

x x




 
 

2

2
2

2
f

x





 

 and the Hessian is: 

   
4 3

3 2

 
  
 

H x  

1.7. Positive and Negative Definiteness 

1.7.1. Definitions 

If for any vector, x, the following is true for a symmetric matrix B, 
 

 
T

T

0 then

0 then

B is positive definite

B is negative definite





x Bx

x Bx
 (3.3) 

1.7.2. Checking Positive Definiteness 

The above definition is not very useful in terms of checking if a matrix is positive definite, 
because it would require that we examine every possible vector x to see if the condition 
given in (3.3) is true.  So, how can we tell if a matrix is positive definite? There are three 
ways we will mention, 
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1. A symmetric matrix B is positive definite if all eigenvalues of B are positive. 

 
2. A symmetric matrix is positive definite if and only if the determinant of each of its 

principal minor matrices is positive. 
 

3. A n n  matrix B  is symmetric and positive definite if and only if it can be written as 
T = B LL where L is a lower triangular matrix with positive diagonal elements. The 

L  matrix can be developed through Choleski decomposition. 
 
The matrix we will be most interested in checking is the Hessian matrix,  H x  

 
What does it mean for the Hessian to be positive or negative definite? If positive definite, it 
means curvature of the function is everywhere positive. This will be an important condition 
for checking if we have a minimum. If negative definite, curvature is everywhere negative. 
This will be a condition for verifying we have a maximum. 

1.7.3. Example: Checking if a Matrix is Positive Definite Using Principal Minor 
Matrices 

Is the matrix given below positive definite? We need to check the determinants of the 
principal minor matrices, found by taking the determinant of a 1x1 matrix along the diagonal, 
the determinant of a 2x2 matrix along the diagonal, and finally the determinant of the entire 
matrix. If any one of these determinants is not positive, the matrix is not positive definite. 
 

  

 

2 3 2

3 5 1

2 1 5

2 3 2
2 3

2 2 0 1 0 3 5 1 5 0
3 5

2 1 5

 
  
   

 
                  

 

 
The determinants of the first two principal minors are positive. However, because the 
determinant of the matrix as a whole is negative, this matrix is not positive definite.  
 
We also note that the eigenvalues are -0.15, 4.06, 8.09. That these are not all positive also 
indicates the matrix is not positive definite. 

1.7.4. Checking Negative Definiteness 

How can we check to see if a matrix is negative definite? There are two ways we will 
mention, 
 

1. A symmetric matrix B is negative definite if all eigenvalues of B are negative. 
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2. A symmetric matrix is negative definite if we reverse the sign of each element and the 
resulting matrix is positive definite. 

 
Note: A symmetric matrix is not negative definite if the determinant of each of its 
principal minor matrices is negative. Rather, in the negative definite case, the signs of the 
determinants alternate minus and plus, so the easiest way to check for negative 
definiteness using principal minor matrices is to reverse all signs and see if the resulting 
matrix is positive definite. 

 
It is also possible for a matrix to be positive semi-definite, or negative semi-definite. This 
occurs when one or more of the determinants or eigenvalues are equal to zero, and the others 
are all positive (or negative, as the case may be). These are special cases we won’t worry 
about here. 
 
If a matrix is neither positive definite nor negative definite (nor semi-definite) then it is 
indefinite. If using principal minor matrices, note that we need to check both cases before we 
reach a conclusion that a matrix is indefinite. 

1.7.5. Example: Checking if a Matrix is Negative Definite Using Principal 
Minor Matrices 

Is the matrix given above negative definite? We reverse the signs and see if the resulting 
matrix is positive definite: 

 

 

2 3 2

3 5 1

2 1 5

2 2 0

  
   
  

   

 

Because the first determinant is negative there is no reason to go further. We also note that 
the eigenvalues of the “reversed sign” matrix are not all positive. 

 
Because this matrix is neither positive nor negative definite, it is indefinite. 

1.8. Taylor Expansion 

1.8.1. Definition 

The Taylor expansion is an approximation to a function at a point kx  and can be written in 
vector notation as: 

             T T 21
( )

2
k k k k k kf f f f        x x x x x x x x x x  (3.4) 

If we note that kx x  can be written as kx , and using notation  k kf fx , we can write 

(3.4) more compactly as, 
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    T T1 21

2
k k k k k k kf f f f         x x x   (3.5) 

 
The Taylor expansion allows us to approximate any continuous function as a polynomial in 
terms of its derivatives at the point kx . We can make a linear approximation by taking the 
first two terms of the expansion. We can make a quadratic approximation by taking the first 
three terms of the expansion. 
 

1.8.2. Example: Quadratic Approximation of a Transcendental Function 

Suppose    1/ 2

1 2( )  2 3ln  f x x x  

 

 at  T
[5,4]k x   1/ 2

1
2

3
,Tf x

x
 

   
 

     0.447,0.750
Tkf   

 

 
2

( 3/ 2)
12

1

1

2

f
x

x


 


 
2

1 2

0
f

x x




 
 

2

2 1

=0
f

x x


 

 
2

2 2
2 2

3f

x x

 



 

 

 
( 3/ 2)

1

2
2

1
0

5 0.045 0.02
at

3 4 0.0 0.1880

x

x

                 
  

H x  

 

  1 1
1 2

2 2

5 50.045 0.01
8.631 [0.447 ,0.750] [ 5, 4] 

4 40.0 0.1882

x x
f x x

x x

     
             

x  

 
If we wish, we can stop here with the equation in vector form. To see the equation in scalar 
form we can carry out the vector multiplications and combine similar terms: 
 
  1 28.631 0.447 2.235 0.750 3.000f x x     x  

     1
1 2

2

51
0.045 0.225 , 0.188 0.752

42

x
x x

x

 
         

 

  1 23.396 0.447 0.750f x x   x  

 2 2
1 1 2 2

1
0.045 0.450 1.125 0.188 1.504 3.008

2
x x x x       

  2 2
1 2 1 21.300 0.672 1.502 0.023 0.094f x x x x    x  

 
Evaluating and comparing this approximation to the original: 
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  Tx  Quadratic Actual Error 

[5,4] 8.63 8.63 0.00 

[5,5] 9.28 9.3 0.02 

[6,4] 9.05 9.06 0.01 

[7,6] 10.55 10.67 0.12 

[2,1] 3.98 2.83 -1.15 

[9,2] 8.19 8.08 -0.11 

 
We notice that the further the point gets from the expansion point, the greater the error that is 
introduced. We also see that at the point of expansion the approximation is exact. 
 

2. Properties and Characteristics of Quadratic Functions 

A lot of optimization theory is based on optimizing quadratic functions. It is therefore helpful 
to investigate some of the properties of these functions.  

2.1. Representation 

We can represent a quadratic function three ways—as a scalar equation, a general vector 
equation, and as a Taylor expansion. Although these representations look different, they give 
exactly the same results. For example, consider the equation,  
 
 2 2

1 2 1 1 2 2( ) 6 2 2 3f x x x x x x x       (3.6) 

 
This is a scalar representation of a quadratic.  
 
As a another representation, we can write a quadratic in general vector form, 
 

 
1

( )
2

T Tf a  x b x x Cx  (3.7) 

 
By inspection, the example given in (3.6), in the form of (3.7), is: 
 

 
4 31

( ) 6 [ 2, 1]
3 22

Tf
 

     
 

x x x x  (3.8) 

 
where, 

 1

2

x

x

 
  
 

x  

 
We also observe that C in (3.7) ends up being H. 
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A third form is a Taylor representation, 
 

      T T1

2
k k k k kf f f      x x x H x  (3.9) 

 

We note for (3.6), 1 2

1 2

2 4 3

1 3 2

x x
f

x x

   
     

 and 
4 3

3 2

 
  
 

H  

We will assume a point of expansion, 
2

2
k  
  
 

x ,
4

1
kf

 
    

. (It may not be apparent, but if 

we are approximating a quadratic, it doesn’t matter what point of expansion we assume. The 
Taylor expansion will be exact.) 
 
The example in (3.6), as a Taylor representation, becomes, 
 

 
4 31

( ) 12 [ 4, 1]
3 22

Tf
 

        
 

x x x x  (3.10) 

where, 

 1

2

2

2

x

x

 
    

x  

 
These three representations are equivalent. If we pick the point  1.0, 2.0T x , all three 

representations give 18f  at this point, as you can verify by substitution.  

2.2. Characteristics of Quadratic Functions 

It is useful to note the following characteristics of quadratic equations: 
 

 The equations for the gradient vector of a quadratic function are linear. This makes it 
easy to solve for where the gradient is equal to zero. 

 The Hessian for a quadratic function is a matrix of constants (so we will write as H or 
2 f instead of H(x) or 2 ( )f x ). Thus the curvature of a quadratic is everywhere the 

same. 
 Excluding the cases where we have a semi-definite Hessian, quadratic functions have 

only one stationary point, i.e. only one point where the gradient is zero. 
 Given the gradient and Hessian at some point kx , the gradient at some other point, 

1kx , is given by, 
 

   1 1k k k kf f     H x x  (3.11) 

 
This expression is developed in Section 9.1 of the Appendix by differentiating a Taylor 
expansion in vector form. 
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 Given the gradient some point kx , Hessian, H, and a search direction, s, the optimal 
step length, * , in the direction s is given by, 

 

  
 

*

Tk

T

f



 

s

s Hs
 (3.12) 

 
This expression is derived in Section 9.2 of the Appendix. 
 
 The best methods of optimization are methods of conjugate directions. A method of 

conjugate directions will solve for the optimum of a quadratic function of n variables 
in n steps, providing minimizing steps are taken in each search direction. We will 
learn more about these methods in sections which follow. 

2.3. Examples 

We start with the example, 
 
   2 2

1 2 1 1 2 24 2 4f x x x x x x    x  (3.13) 

 
Since this is a quadratic, we know it only has one stationary point. We note that the Hessian,  
 

 
2 4

4 2

 
   

H  

 
is indefinite (eigenvalues are -0.16 and 6.1). This means we should have a saddle point. The 
contour plots in Fig 3.2 and Fig. 3.3 confirm this. 
 

 
Fig. 3.2 Contour plot of Eq (3.13). 
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Fig. 3.3. 3D contour plot of (3.13). 

 
We will do a second example. Suppose we have the function, 
 
   2 2

1 2 1 1 2 22 4 2f x x x x x x    x  (3.14) 

 

 1 2

1 2

1 8

2 4

x x
f

x x

  
     

 and 
8 1

1 4

 
   

H  

 
By inspection, we see that the determinants of the principal minor matrices are all positive. 
Thus this function should have a min and look like a bowl. The contour plots follow. 
 

 
Fig. 3.4.  Contour plot for (3.14) 
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Fig. 3.5 3D contour plot for (3.14) 
 

3. Necessary and Sufficient Conditions for an Unconstrained 
Optimum 

With some preliminaries out of the way, we are now ready to begin discussing the theory of 
unconstrained optimization of differentiable functions. We start with the mathematical 
conditions which must hold at an unconstrained, local optimum. 

3.1. Definitions 

3.1.1. Necessary Conditions for an Unconstrained Optimum 

The necessary conditions for an unconstrained optimum at *x  are, 
 

 ( *) 0 and  be differentiable at *f f x x x  (3.15) 

 
These conditions are necessary but not sufficient, inasmuch as ( ) 0f x can apply at a max, 
min or a saddle point. However, if at a point ( ) 0f x , then that point cannot be an 
optimum. 

3.1.2. Sufficient Conditions for a Minimum 

The sufficient conditions include the necessary conditions but add other conditions such that 
when satisfied we know we have an optimum. For a minimum,  
 

 ( *) 0,  differentiable at *f f x x x , plus  2 *f x  is positive definite. (3.16) 

3.1.3. Sufficient Conditions for a Maximum 

For a maximum,  
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 ( *) 0,  differentiable at *f f x x x , plus  2 *f x  is negative definite. (3.17) 

3.2. Examples: Applying the Necessary, Sufficient Conditions 

Apply the necessary and sufficient conditions to find the optimum for the quadratic function, 
 
    2 2

1 1 2 22 4f x x x x  x  

 
Since this is a quadratic function, the partial derivatives will be linear equations. We can 
solve these equations directly for a point that satisfies the necessary conditions. The gradient 
vector is, 
 

  1 1 2

1 2

2

2 2 0
( )

2 8 0

f

x x x
f

x xf

x

 
                 
  

x  

 
When we solve these two equations, we have a solution, 1 0x  , 2 0x  --this a point where 

the gradient is equal to zero. This represents a minimum, a maximum, or a saddle point. At 
this point, the Hessian is, 
 

  
2 2

2 8

 
   

H  

 
Since this Hessian is positive definite (eigenvalues are 1.4, 8.6), this must be a minimum. 
 
As a second example, apply the necessary and sufficient conditions to find the optimum for 
the quadratic function, 
 
    2 2

1 2 1 1 2 24 2 4f x x x x x x    x  

 
As in example 1, we will solve the gradient equations directly for a point that satisfies the 
necessary conditions. The gradient vector is, 
 

  1 1 2

1 2

2

2 4 4 0

4 2 2 0

f

x x x

x xf

x

 
                  
  

 

 
When we solve these two equations, we have a solution, 1 1.333x  , 2 1.667x  . The Hessian 

is, 
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2 4

4 2

 
   

H  

 
The eigenvalues are -2, 6. The Hessian is indefinite. This means this is neither a max nor a 
min—it is a saddle point. 
 
Comments: As mentioned, the equations for the gradient for a quadratic function are linear, 
so they are easy to solve. Obviously we don’t usually have a quadratic objective, so the 
equations are usually not linear. Often we will use the necessary conditions to check a point 
to see if we are at an optimum. Some algorithms, however, solve for an optimum by solving 
directly where the gradient is equal to zero. Sequential Quadratic Programming (SQP) is this 
type of algorithm. 
 
Other algorithms search for the optimum by taking downhill steps and continuing until they 
can go no further. The GRG (Generalized Reduced Gradient) algorithm is an example of this 
type of algorithm. In the next section we will study one of the simplest unconstrained 
algorithms that steps downhill: steepest descent. 

 

4. Steepest Descent with a Quadratic Line Search 

4.1. Description 

One of the simplest unconstrained optimization methods is steepest descent.  Given an initial 
starting point, the algorithm moves downhill until it can go no further. 
 
The search can be broken down into stages.  For any algorithm, at each stage (or iteration) we 
must determine two things: 
 

1. What should the search direction be? 
2. How far should we go in that direction? 

 
Answer to question 1:  For the method of steepest descent, the search direction is  f x  

 
Answer to question 2: A line search is performed.  "Line" in this case means we search along a 
direction vector.  The line search strategy presented here, bracketing the function with quadratic 
fit, is one of many that have been proposed, and is one of the most common.  
 
General Approach for each step:  
Given some starting point, kx , we wish to determine, 
 
 1k k   x x s  (3.18) 
 
where s is the search direction vector, usually normalized, and  is the step length, a scalar. 
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We will step in direction s with increasing values of until the function starts to get worse. Then 
we will curve fit the data with a parabola, and step to the minimum of the parabola. 

4.2. Example: Steepest Descent with Line Search 

 Min   2 2 0
1 1 2 22 4 19f x x x x f   x  

 starting at 0 0 03 8 8

1 14 14
f

     
              

x s  

 normalized 0 10.50 3 0.50

0.86 1 0.86


     
             

s x  

 
We will find *, which is the optimal step length, by trial and error. 
 Guess * = .4 for step number 1: 
 

Line 
Search 

Step 
 1 0 0 x x s   f x  

1 0.4 1 3.0 0.50 2.80
.4

1.0 0.86 0.66

      
            

x  13.3 

 
 
We see that the function has decreased; we decide to double the step length and continue 
doubling until the function begins to increase: 
 

Line 
Search 

Step 
 1 0 0 x x s   f x  

2 0.8 1 3.0 0.50 2.60
.8

1.0 0.86 0.31

      
            

x  8.75 

3 1.6 1 3.0 0.50 2.20
1.6

1.0 0.86 0.38

      
             

x  3.74 

4 3.2 1 3.0 0.50 1.40
3.2

1.0 0.86 1.75

      
             

x  9.31 

 
The objective function has started to increase; therefore we have gone too far. 
 
We will cut the change in the last step by half: 
 

5 2.4 1 3.0 0.50 1.80
2.4

1.0 0.86 1.06

      
             

x  3.91 
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A graph of our progress is shown in Fig. 3.6:  
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Fig. 3.6 Progress in the line search shown on a contour plot. 

 
If we plot the objective value as a function of step length as shown in Fig 3.7: 

 
Fig. 3.7 The objective value vs. step length for the line search. 

 

  2 2

1 1 2 2
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We see that the data plot up to be a parabola.  We would like to estimate the minimum of this 
curve.  We will curve fit points 2, 5, 3. These points are equally spaced and bracket the 
minimum. 
 
     ||2   ||3   ||5 
Renumbering these points as 1, 2, 3 the minimum of the parabola is given by 
 

   

   
     
  

 

1 3
2

1 2 3

*
2 2

0.8 8.75 3.91
* 1.60

2 8.75 2 3.74 3.91

* 1.97

f f

f f f

  
 

  





    
   


 

   


 19 

 
            where ( ) 3.2f x  
 
When we step back, after the function has become worse, we have four points to choose from 
(points 2, 3, 5, 4). How do we know which three to pick to make sure we don’t lose the bracket 
on the minimum? The rule is this: take the point with the lowest function value (point 3) and the 
two points to either side (points 2 and 5). 
 
In summary, the line search consists of stepping along the search direction until the minimum of 
the function in this direction is bracketed, fitting three points which bracket the minimum with a 
parabola, and calculating the minimum of the parabola.  If necessary the parabolic fit can be 
carried out several times until the change in the minimum is very small (although the  are then 
no longer equally spaced, so the following formula must be used): 
 

 
         
        

2 2 2 2 2 2
1 2 3 2 3 1 3 1 2

1 2 3 2 3 1 3 1 2

*
2

f f f

f f f

        


        

    


      
 20


Each sequence of obtaining the gradient and moving along the negative gradient direction until a 
minimum is found (i.e. executing a line search) is called an iteration. The algorithm consists of 
executing iterations until the norm of the gradient drops below a specified tolerance, indicating 
the necessary conditions have been met. 
 

As shown in Fig. 3.7, at * , 0
df

d
 . The process of determining * will be referred to as 

taking a minimizing step, or, executing an exact line search. 

4.3. Pros and Cons of Steepest Descent 

Steepest descent has several advantages. It usually makes good progress when far from the 
optimum (in the above example the objective decreased from 19 to 3 in the first iteration), and it 
is very simple to implement. It always goes downhill. It is also guaranteed to converge to a local 
optimum if enough steps are taken. 
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However, if the function to be minimized is eccentric, convergence of steepest descent can be 
very slow, as indicated by the following theorem from Luenberger.1 
 
THEOREM. Convergence of Steepest Descent.  For a quadratic function, if we take enough 
steps, the method of steepest descent converges to the unique minimum point *x  of f.  If we 
define the error in the objective function at the current value of x as, 
 

     T1
( ) * *

2
E   x x x H x x   (3.21) 

 
there holds at every step k,  
 

 

   
2

1

where

Largest eigenvalue of

Smallest eigenvalue of

k kA a
E E

A a

A

a

     




x x

H

H

 (3.22) 

 
Thus if A=50 and a=1, we have that the error at the k+1 step is only guaranteed to be less than 
the error at the k step by, 

 
2

1 49

51
k kE E    

 
 

 
and thus the error may be reduced very slowly. 
 
“Roughly speaking, the above theorem says that the convergence rate of steepest descent is 
slowed as the contours of f become more eccentric.  If a A , corresponding to circular contours, 
convergence occurs in a single step.  Note, however, that even if 1n   of the n eigenvalues are 
equal and the remaining one is a great distance from these, convergence will be slow, and hence 
a single abnormal eigenvalue can destroy the effectiveness of steepest descent.” 
 
The above theorem is based on a quadratic function. If we have a quadratic, and we do rotation 
and translation of the axes, we can eliminate all of the linear and cross product terms. We then 
have only the pure second order terms left. The eigenvalues of the resulting Hessian are equal to 
twice the coefficients of the pure second order terms. Thus the function, 
 
 2 2

1 2f x x   

 
would have equal eigenvalues of (2, 2) and would represent the circular contours as mentioned 
above, shown in Fig. 3.8. Steepest descent would converge in one step. Conversely the function,  
 

                                                 
1 Luenberger and Ye, Linear and Nonlinear Programming, Third Edition, 2008 
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 2 2
1 250f x x   

 
has eigenvalues of (100, 2). The contours would be highly eccentric and convergence of steepest 
descent would be very slow. A contour plot of this function is given in Fig 3.9, 
 

 
Fig. 3.8. Contours of the function, 2 2

1 2f x x  .  

 

 
Fig. 3.9. Contours of the function, 2 2

1 250f x x  . Notice how the contours have 

been “stretched” out. 
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5. The Directional Derivative 

It is sometimes useful to calculate 
df

d
 along some search direction s.  From the chain rule 

for differentiation, 
 

 = i

i

dxdf f

d x d 
   
     

   

 
Noting that 1k k   x x s , or, for a single element of vector x, 1k k k

i i ix x s   , we have 

i
i

dx
s

d
 , so 

 Ti
i

i i

dxdf f f
s f

d x d x 
                 

  s  (3.23) 

 

As an example, we will find the directional derivative,
df

d
, for the problem given in Section 

4.2 above, at  =0. From (3.23):  T 0.5
8 14 16.04

0.86

df
f

d
 

       
s  

This gives us the change in the function for a small step in the search direction, i.e., 
 

 
df

f
d




    (3.24) 

If 0.01  , the predicted change is 0.1604. The actual change in the function is 0.1599.  
 
Equation (3.23) is the same equation for checking if a direction goes downhill, given in 
Section 1.4. Before we just looked at the sign; if negative we knew we were going downhill. 
Now we see that the value has meaning as well: it represents the expected change in the 

function for a small step. If, for example, the value of  
0

df

d  

 is less than some epsilon, we 

could terminate the line search, because the predicted change in the objective function is 
below a minimum threshold. 
 

Another important value of 
df

d
occurs at * . If we locate the minimum exactly, then 

 

  T1

*

0k kdf
f

d  




  s  (3.25) 

 
As we have seen in examples, when we take a minimizing step we stop where the search 
direction is tangent to the contours of the function. Thus the gradient at this new point is 
orthogonal to the previous search direction. 
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6. Newton’s Method 

6.1. Derivation 

Another classical method we will briefly study is called Newton's method.  It simply makes a 
quadratic approximation to a function at the current point and solves for where the necessary 
conditions (to the approximation) are satisfied.  Starting with a Taylor series: 
 

     T T1 1

2
k k k k k k kf f f       x x H x  (3.26) 

 
Since the gradient and Hessian are evaluated at k, they are just a vector and matrix of constants. 
Taking the gradient (Section 9.1),  
 
 1k k k kf f    H x  
 
and setting 1 0kf   ,  we have, 
 

 k k kf  H x  
Solving for x : 

   1k k kf


   x H   (3.27) 

 
Note that we have solved for a vector, i.e. x , which has both a step length and direction. 

6.2. Example: Newton's Method 

We wish to optimize the function,   2 2
1 1 2 22 4f x x x x  x  from the point 0 3

1

 
  
 

x . 

At this point 0 8

14
f

 
   

 
 and the Hessian is, 

2 2

2 8

 
   

H .  The Hessian inverse is given 

by: 
0.6667 0.16667

0.16667 0.16667

 
 
 

.  Thus 
0.6667 0.16667 8 3

0.16667 0.16667 14 1

     
             

x  

 

So,  1 0 3 3 0

1 1 0

     
               

x x x  
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Fig. 3.10. The operation of Newton’s method. 

6.3. Pros and Cons of Newton's Method 

We can see in the above example Newton’s method solved the problem in one step. This is 
true in general: Newton’s method will drive to the stationary point of a quadratic in one step. 
On a non-quadratic, if we are near an optimum, Newton’s method will drive very close to the 
optimum in one step. 
 
However we should note some drawbacks. First, it requires second derivatives. Normally we 
compute derivatives numerically, and computing second derivatives is computationally 
expensive, on the order of 2n function evaluations, where n is the number of design variables.  
 
The derivation of Newton’s method solved for where the gradient is equal to zero. The 
gradient is equal to zero at a min, a max or a saddle, and nothing in the method differentiates 
between these. Thus Newton’s method can diverge, or fail to go downhill (indeed, not only 
not go downhill, but go to a maximum!). This is obviously a serious drawback.  

7. Quasi-Newton Methods 

7.1. Introduction 

Let’s summarize the pros and cons of Newton's method and Steepest Descent: 
Pros Cons 

Steepest 
Descent 

Always goes downhill 
Always converges 
Simple to implement 

Slow on eccentric functions 

Newton’s 
Method 

Solves quadratic in one step. Very 
fast when close to optimum on non 
quadratic. 

Requires second derivatives,  
Can diverge 

  2 2
1 1 2 22 4f x x x x  x

3

1

 
    

x  
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We want to develop a method that starts out like steepest descent and gradually becomes 
Newton's method, doesn't need second derivatives, doesn't have trouble with eccentric 
functions and doesn't diverge!  Fortunately such methods exist.  They combine the good 
aspects of steepest descent and Newton's method without the drawbacks. These methods are 
called quasi-Newton methods or sometimes variable metric methods. 
 
In general we will define our search direction by the expression 
 
 ( )f  s N x   (3.28) 
 
where N will be called the “direction matrix.” 
 
If N I , then ( ) Steepest Descent f  s x  
 
If -1N H , then  1 Newton's Methodf   s H x  

 
If N is always positive definite, then s always points downhill. To show this, our criterion for 
moving downhill is: 
 T 0f s  
Or, 
 T 0f s  (3.29) 
 
Substituting (3.28) into (3.29): 
 

  T 0f f   N  (3.30) 

 
Since N is positive definite, we know that any vector which pre-multiplies N and post-
multiplies N will result in a positive scalar. Thus the quantity within the parentheses is 
always positive; with the negative sign it becomes always negative, and therefore always 
goes downhill. 
 

7.2. A Rank One Hessian Inverse Update 

7.2.1. Development 

In this section we will develop one of the simplest updates, called a “rank one” update 
because the correction to the direction matrix, N, is a rank one matrix (i.e., it only has one 
independent row or column). We first start with some preliminaries. 
 
Starting with a Taylor series: 

    T T1 1

2
k k k k k kf f f       x x H x  (3.31) 
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where  1k k k  x x x  
 
the gradient is given by, 
 
  1k k kf f    H x  (3.32) 
and defining:   
 k 1k kf f  γ   (3.33) 
we have, 
 -1k k k kor   γ H x H γ x  (3.34) 
 
Equation (3.34) is very important: it shows that for a quadratic function, the inverse of the 
Hessian matrix ( 1H ) maps differences in the gradients to differences in x. The relationship 
expressed by (3.34) is called the Newton condition.  
 
We will make the direction matrix satisfy this relationship.  However, since we can only 
calculate kγ  and kx  after the line search, we will make 
 
 1k k k  N γ x   (3.35) 
 
This expression is sometimes called the quasi-Newton condition. It is “quasi” in that it 
involves k+1 for N instead of k. Equation (3.35) involves more unknowns (the elements of 

1kN ) than equations, so how do we solve for 1kN ? 
 
One of the simplest possibilities is: 
 
 1 Tk k a  N N uu   (3.36)  
 
Where we will “update” the direction matrix with a correction which is of the form Tauu , 
which is a rank one symmetric matrix. 
 
If we substitute (3.36) into (3.35), we have, 
 
 Tk k k ka  N γ uu γ x   (3.37) 
or 

   T k k k k

scalar

a   uu γ x N γ  (3.38) 

 

Noting that T ku γ  is a scalar, then u must be proportional to  k k k x N γ .  Since any change 

in length can be absorbed by a, we will set 
 

  k k k  u x N γ   (3.39) 

 
Substituting (3.39) into (3.38): 
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     Tk k k k k k k k k k

scalar

a       x N γ x N γ γ x N γ


 (3.40) 

For this to be true, 

  T
1k k k ka   x N γ γ  

so 

 
 T

1
k k k k

a 
 x N γ γ

  (3.41) 

 
Substituting (3.41) and (3.39) into (3.36) gives the expression we need: 
 

 
  

 

T

1
T

k k k k k k

k k

k k k k


   

 
 

x N γ x N γ
N N

x N γ γ
 (3.42) 

 
Equation (3.42) allows us to get a new direction matrix in terms of the previous matrix and 
the difference in x and the gradient. We then use this to get a new search direction according 
to (3.28). 

7.2.2. Example: Rank One Hessian Inverse Update 

We wish to minimize the function   2 2
1 1 2 22 4f x x x x  x  

starting from 0 03 8

1 14
f

    
     
   

x  

We let 0 1 0

0 1

 
  
 

N  so the search direction is 

 0 0 0f f    s N  

We normalize the search direction to be: 0 0.496

0.868

 
   

s  

We execute a line search in this direction (using, for example, a quadratic fit) and stop at 
 

 1 12.030 2.664

0.698 1.522
f

    
         

x  

 

Then 0 1 0 2.030 3.000 0.970
 

0.698 1.000 1.698

      
                

x x x  

 

 0 1 0 2.664 8.000 5.336
   

1.522 14.000 15.522
f f

      
                

γ  
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and 0 0 0 0.970 1 0 5.336 4.366

1.698 0 1 15.522 13.824

       
                   

x N γ  

 

 
  

 

 

 

T0 0 0 0 0 0

T0 0 0 0

4.366
4.366 13.824

13.824

5.336
4.366 13.824

15.522

Ta

 
       

      

x N γ x N γ
uu

x N γ γ
 

 

 

19.062 60.364

60.364 191.158

237.932

 
  


 

 

 
0.080 0.254

0.254 0.803

 
   

 

 
 1 0 Ta N N uu  
 

 1 1 0 0.080 0.254

0 1 0.254 0.803

   
       

N  

 

 1 0.920 0.254

0.254 0.197

 
  
 

N  

 
New search direction:  
 

 1 0.920 0.254 2.664

0.254 0.197 1.522

   
        

s  

 

 
2.837

0.975

 
  
 

 

 
When we step in this direction, using again a line search, we arrive at the optimum 
 

  2 20 0

0 0
f

   
     
   

x x  

 
At this point we are done. However, if we update the direction matrix one more time, we find 
it has become the inverse Hessian. 
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 1 2 1 0 2.030 2.030

0 0.698 0.698

     
               

x x x  

 

 1 2 1 0 2.664 2.664

0 1.524 1.524
f f

     
               

γ  

 

 

 1 1 1 2.030 0.920 0.254 2.664

0.698 0.254 0.197 1.524

2.030 2.838 0.808

0.698 0.977 0.279

     
        

     

     
            

x N γ

 

 
 

  
 

 

 

T1 1 1 1 1 1

T
T1 1 1 1

0.808
0.808 0.279

0.253 0.0880.279

2.664 0.088 0.030
0.808 0.279

1.524

a

 
                       

 

x N γ x N γ
uu

x N γ γ
 

 
                            

 12 1 T 0.920 0.254 0.253 0.088 0.667 0.166

0.254 0.197 0.088 0.030 0.166 0.167
a       

                
N N uu H  

 

7.2.3. The Hereditary Property 

The hereditary property is an important property of all update methods. The hereditary 
property states that not only will 1kN  satisfy (3.35) , but 
 

 

1

1 1 1

1 2 2

1 1 1

k k k

k k k

k k k

k k n k n



  

  

    

 

 

 

 

N γ x

N γ x

N γ x

N γ x

 (3.43) 

 
where n is the number of variables. That is, (3.35) is not only satisfied for the current step, but for 
the last n-1 steps. Why is this significant?  Let's write this relationship of (3.43) as follows: 
 

 1 1 2 1 1 2 1, ,  . . . , , , ,k k k k k n k k k k n                  N γ γ γ γ x x x x  

 
Let the matrix defined by the columns of  be denoted by G, and the matrix defined by 
columns of x be denoted by X . Then, 
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 1k  N G X  
 
If 1k k n γ γ are independent, and if we have n vectors, i.e. G is a square matrix, then the 
inverse for G exists and is unique and 
 
 1 1k  N XG  (3.44) 

 
is uniquely defined. 
 
Since the Hessian inverse satisfies (3.44) for a quadratic function, then we have the important 
result that, after n updates the direction matrix becomes the Hessian inverse for a quadratic 
function. This implies the quasi-Newton method will solve a quadratic in no more than n+1 
steps. The proof that our rank one update has the hereditary property is given in the next 
section. 

7.2.4. Proof of the Hereditary Property for the Rank One Update 

THEOREM.  Let H be a constant symmetric matrix and suppose that 0 1, , , k  x x x  and 
0 1,  , ,  kγ γ γ  are given vectors, where , 0,1,2, ,i i i k  γ H x  , where  k n . Starting 

with any initial symmetric matrix 0N , let  

 
  

 

T

1
T

k k k k k k

k k

k k k k


   

 
 

x N γ x N γ
N N

x N γ γ
 (3.45)   

then 
 1  fork i i i k   N γ x  (3.46) 
 
PROOF. The proof is by induction. We will show that if (3.46) holds for previous direction 
matrix, it holds for the current direction matrix. We know that at the current point, k, the 
following is true, 
 
 1k k k  N γ x   (3.47) 
 
because we enforced this condition when we developed the update.  Now, suppose it is true 
that, 
 
 for -1k i i i k  N γ x  (3.48) 
 
i.e. that the hereditary property holds for the previous direction matrix. We can post multiply 
(3.45) by iγ , giving, 

 
  

 

T

1
T

k k k k k k i

k i k i

k k k k


   

 
 

x N γ x N γ γ
N γ N γ

x N γ γ
 (3.49) 
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To simplify things, let 
 

 T

k k k

k

k k k k

 


 

x N γ
y

x N γ γ
 so that we can write (3.49) as, 

 

  T1k i k i k k k k i    N γ N γ y x N γ γ  (3.50) 

 
We can distribute the transpose on the last term, and distribute the post multiplication iγ  to 
give (Note: Recall that when you take the transpose inside a product, the order of the product 

is reversed; also because N is symmetric, T N N  thus:    T Tk k i k k iN γ γ γ N γ ), 

 

    T T1k i k i k k i k k i       
N γ N γ y x γ γ N γ  (3.51) 

 
Since we have assumed (3.48) is true, we can replace k iN γ  with ix : 
 

    T T1k i i k k i k i         
N γ x y x γ γ x  (3.52) 

 
Now we examine the term in brackets.  We note that, 
 

        T T T Tk i k i k i k i        γ x H x x x H x x γ  (3.53) 

 
So the term in brackets in (3.52) vanishes, giving, 
 
 1k i i for i k   N γ x   (3.54) 
 
Thus, if the hereditary property holds for the previous direction matrix, it holds for the 
current direction matrix.  When 0k  , condition (3.47) is all that is needed to have the 
hereditary property for the first update, 1N .  The second update, 2N , will then have the 
hereditary property since 1N  does, and so on. 
 

7.3. Conjugacy 

7.3.1. Definition 

Quasi-Newton methods are also methods of conjugate directions. A set of search directions, 
0 1, ,..., ks s s  are said to be conjugate with respect to a square, symmetric matrix, H, if, 

  

   0
Tk i s Hs  for all i k  (3.55) 
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A set of conjugate directions possesses an important property: If minimizing line searches 
are used along each conjugate direction, a method of conjugate directions is guaranteed to 
minimize a quadratic function of n variables in at most n steps. Himmelblau indicates the 
excellent convergence properties of quasi-Newton methods on general functions may be due 
more to their conjugate direction properties than to their ability to approximate the Hessian 
inverse.2 Because of the importance of conjugate directions, we will prove two results here. 
 
PROPOSITION.  If H is positive definite and the set of non-zero vectors 0 1 1, ,..., ns s s  are 
conjugate to H, then these vectors are linearly independent. 
 
PROOF. Suppose we have constants, i , 0, 2,..., 1i n   such that 
 
 0 0 1 1 1 1... ...k k n n          s s s s 0  (3.56) 
 

Now we multiply each term by  Tks H : 

  

        0 0 1 1 1 1

0 0 0

... ...
T T T Tk k k k k n k n

positive

     

  

     s Hs s Hs s Hs s Hs 0
   

 (3.57) 

 

From conjugacy, all of the terms except  Tk k k s Hs  are zero. Since H is positive definite, 

then the only way for this remaining term to be zero is for k  to be zero. In this way we can 
show that for (3.57) to be satisfied all the coefficients must be zero. This is the definition of 
linear independence. 

7.3.2. Conjugate Direction Theorem 

We will now show that a method of conjugate directions will solve a quadratic function in n 
steps, if minimizing steps are taken. 
 
THEOREM.  Let 0 1 1, ,..., ns s s  be a set of non-zero H conjugate vectors, with H a positive 
definite matrix. For the function,  

        T T1 1 1 11

2
k k k k k k k k kf f f         x x x x H x x  (3.58) 

the sequence, 
  1k k k k  x x s  (3.59) 
with, 

  
 
 

Tk k

k
Tk k

f



 

s

s Hs
 (3.60) 

 

   1 1k k k kf f     H x x  

                                                 
2 Himmelblau, Applied Nonlinear Programming, p. 112. 
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converges to the unique solution, *( )k kf  H x x , after n steps, that is *n x x . 
 
PROOF. Based on (3.59) above we note that, 
 
  1 0 0 0 x x s  
 
Likewise for 2x : 
 
  2 1 1 1 0 0 0 1 1      x x s x s s  
 
Or, in general 
 

   0 0 0 1 1 1 1...k k k        x x s s s  (3.61) 

 
After n steps, we can write the optimum (assuming the directions are independent, which we 
just showed) as, 
 

   * 0 0 0 1 1 1 1... ...k k n n           x x s s s s  (3.62) 

 

Multiplying both sides of (3.62) by  Tks H , we have, 

 

           * 0 0 0 1 1 1 1

0 0 0

... ...
T T T T Tk k k k k k n k n

positive

     

  

      s H x x s Hs s Hs s Hs s Hs
   

 

Solving for k : 

  
 

 

* 0( )
Tk

k
Tk k





s H x x

s Hs
 (3.63) 

 
Unfortunately (3.63) is in terms of x*, which we presumably don’t know. However, if we 

multiply (3.61) by  Tks H , we have, 

 

          0 0 0 1 1 1 1

0 0 0

...
T T T Tk k k k k k k    

  

    s H x x s Hs s Hs s Hs
  

 (3.64) 

 
which gives, 

    0( ) 0
Tk k  s H x x  (3.65) 

 
Substituting this result into (3.63), we have 
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 

 

*( )
Tk k

k
Tk k





s H x x

s Hs
 (3.66) 

 
Noting that *( )k kf  H x x is the solution to (3.58), we can solve for the k  as, 
 

 
 
 

Tk k

k
Tk k

f



 

s

s Hs
 

 
which is identical with (3.60). 
 
We notice that (3.60) is the same as the minimizing step we derived in Section 9.2. Thus the 
conjugate direction theorem relies on taking minimizing steps. 

7.3.3. Examples 

We stated earlier that quasi-Newton methods are also methods of conjugate directions. Thus 
for the example given in Section 7.3, we should have, 
 

  0 1 0
T

s Hs  

 
Substituting the search directions and Hessian of that problem, 
 

   2. 2. 2.837
0.496 0.868 0.0017

2. 8. 0.975

   
       

 

 
Within the round-off of the data, we see this is verified. 
 
In the previous problem we only had two search directions. Let’s look at a problem where we 
have three search directions so we have more conjugate relationships to examine. We will 
consider the problem,  Min 2 2 2

1 1 2 2 3 32 4 4 8 2f x x x x x x      . 

 

Starting from 0 0 0

2 6 0.172

3 28 0.802

3 20 0.573

f

     
              
          

x s  

 
We execute a line search in the direction of steepest descent (normalized as 0s  above), stop 
at *  and determine the new point and gradient. We calculate the new search direction using 
our rank 1 update, 
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  1 1 1

1.079 4.157 4.251

1.300 6.401 3.320

0.072 7.714 8.657

f

     
               
           

x s  

 
We go through this cycle again, 
 

 2 2 2

0.019 2.038 2.107

0.473 0.218 0.056

2.229 0.917 0.474

f

     
               
           

x s  

 
After stepping in the above direction we arrive at the optimum, 
 

 3 3

1.000 0.000

0.500 0.000

2.000 0.000

f

   
         
      

x  

 
Since we have used a method of conjugate directions, 2s should be conjugate to 1s and 0s . 
We will check this: 

  0 2T
s Hs  

2 0 0 2.107

0.172 0.802 0.573 0 8 0 0.056 0.0023

0 0 4 0.474

   
           
      

 

  1 2T
s Hs  

2 0 0 2.107

4.251 3.320 8.657 0 8 0 0.056 0.0127

0 0 4 0.474

   
         
      

 

 

7.3.4. Some Insight into Conjugacy 

As we did in section 4.3, we will define the “error” in the objective at the current value of x 
as, 

     T1
( ) * *

2
E   x x x H x x  

 
We can rewrite this expression as, 
 

    1
( ) * *

2
TE   α α α S HS α α  (3.67) 

 
Where S is a matrix with columns, 0 1 1, ,..., ns s s . If the s vectors are conjugate then (3.67) 
reduces to, 
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1

2

0

1
( ) ( *)

2

n
i i

i

E d 




 α  

 

where   ( )Ti i id  s Hs . ( )E α  can then be minimized by choosing *i  , i.e., by making 

exact line searches. Quoting Fletcher,3 “Thus conjugacy implies a diagonalizing 
transformation TS HS of H to a new coordinate system, α , in which the variables are 
decoupled. A conjugate direction method is then the alternating variables method applied in 
this new coordinate system.” The “alternating variables” method referred to is just a method 
where the optimum is found with respect to one variable, holding the rest constant, and then 
a second variable, etc. Usually such a scheme would not work well. Conjugate directions are 
such that the i ’s are decoupled so it does work here. 
 
As we show in Section 9.3, another result of conjugacy is that at the k+1 step,  
 

 1 0 for all
Tk if i k  s  (3.68) 

 
Equation (3.68) indicates 1) that the current gradient is orthogonal to all the past search 
directions, and 2) at the current point we have zero slope with respect to all past search 
directions, i.e.,  
 

 0 for all
i

f
i k




 


 

 
meaning we have minimized the function in the “subspace” of the previous directions. As an 
example, for the three variable function of Section 7.5, 2f  should be orthogonal to 0s and 

1s : 

  2 0T
f s  

0.172

2.038 0.218 0.917 0.802 0.0007

0.573

 
    
  

 

  2 1T
f s  

4.251

2.038 0.218 0.917 3.320 0.0013

8.657

 
    
  

 

7.4. Rank 2 Updates 

7.4.1. The DFP Method 

Although the rank one update does have the hereditary property (and is a method of conjugate 
directions), it does not guarantee that at each stage the direction matrix, N, is positive definite.  
It is important that the update remain positive definite because this insures the search 

                                                 
3 R. Fletcher, Practical Methods of Optimization, Second Edition, 1987, pg. 26. 
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direction will always go downhill. It has been shown that (3.42) is the only rank one update 
which satisfies the quasi-Newton condition. For more flexibility, rank 2 updates have been 
proposed. These are of the form, 
 
 1 T Tk k a b   N N uu vv  (3.69) 
 
If we substitute this into the quasi-Newton condition, 
 
 1k k k  N γ x  (3.70) 
we have, 
 T Tk k k k ka b   N γ uu γ vv γ x  (3.71) 
 
There are a number of possible choices for u and v. One choice is to try, 
 
 ,k k k  u x v N γ  (3.72) 
 
Substituting (3.72) into (3.71), 
  

    T Tk k k k k k k k k k k

scalar scalar

a b     N γ x x γ N γ N γ γ x
 

 (3.73) 

 
In (3.73) we note that the dot products result in scalars. If we choose a and b such that, 
 

  T
1k ka  x γ  and  T

1k k kb  N γ γ  (3.74) 

 
Equation (3.71) becomes, 
 
 k k k k k k    N γ x N γ x  (3.75) 
 
and is satisfied. 
 
Combining (3.74), (3.72) and (3.69), the update is, 
 

 
 

 
 

 

T T

1
T T

k k k k k k

k k

k k k k k


 

  


x x N γ N γ
N N

x γ N γ γ
 (3.76) 

 
Or, with some rearranging, as it is more commonly given, 
 

 
 

 
 

 

T T

1
T T

k k k k k k

k k

k k k k k


 

  


x x N γ γ N
N N

x γ γ N γ
 (3.77) 
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Davidon4 was the first one to propose this update. Fletcher and Powell further developed his 
method;5 thus this method came to be known as the Davidon-Fletcher-Powell  (DFP) update. 
This update has the following properties, 
 

For quadratic functions: 
1. it has the hereditary property; after n updates, 1n N H . 
2. it is a method of conjugate directions and therefore terminates after at most n 

steps. 
 
For general functions (including quadratics): 

3. the direction matrix N remains positive definite if we do exact line searches. 
This guarantees the search direction points downhill at every step. This 
property is proved in the next section. 

 

7.4.2. Proof the DFP Update Stays Positive Definite 

THEOREM.  If   0
Tk x γ  for all steps of the algorithm, and if we start with any symmetric, 

positive definite matrix, 0N , then the DFP update preserves the positive definiteness of 
kN for all k. 

 
PROOF.  The proof is inductive. We will show that if kN is positive definite, k+1N is also. 
From the definition of positive definiteness, 
 
 T 1 0k z N z  for all 0z  
 
For simplicity we will drop the superscript k on the update terms. From (3.66), 
 

 
T T

T 1 T T T
T T

1

2 3

k k

term

term term

     
        

x x Nγγ N
z N z z N z z z z z

x γ γ Nγ
 

 (3.78) 

 
We need to show that all the terms on the right hand side are positive. We will focus for a 
moment on the first and third terms on the right hand side. Noting that N can be written as 

TN LL via Choleski decomposition, and if we substitute T T T, a L z a z L , 
T T T, b L γ b γ L the first and third terms are, 

 

 
 2TT

T T T
T T

 
   

 

a bNγγ N
z Nz z z a a

γ Nγ b b
 (3.79) 

 
The Cauchy-Schwarz inequality states that for any two vectors, x and y, 

                                                 
4 W. C. Davidon, USAEC Doc. ANL-5990 (rev.) Nov. 1959 
5 R. Fletcher and M. J. D. Powell, Computer J. 6: 163, 1963 
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 2T

T
T


x y

x x
y y

   thus  
 2T

T
T

0 
a b

a a
b b

 (3.80) 

 
So the first and third terms of (3.78) are positive. Now we need to show this for the second 
term, 
 

  
 2TT T T

T
T T T

    
     

z xx x z x x z
z z

x γ x γ x γ
 (3.81) 

 
The numerator of the right-most expression is obviously positive. The denominator can be 
written, 
 

        T T T TT 1 1

1 2

k k k k k k k k

term term

f f f f            x γ x x s s
 

 (3.82) 

The second term in (3.82),  Tk kfs , is negative if the search direction goes downhill which 

it does if kN is positive definite, and with the minus sign is therefore positive. The first term 

in (3.82),  T 1k kf s , can be positive or negative; however, it is zero if we are at *; thus 

the entire expression in (3.82) is positive if we take a minimizing step, *. 
 
We have now shown that all three terms of (3.78) are positive if we take a minimizing step. 
Thus, if kN  is positive definite, 1kN is positive definite, etc. 
 

7.4.3. DFP Update: Closing Remarks 

The DFP update was popular for many years.  As mentioned, we need to take a minimizing 
step to insure N stays positive definite.  Recall that we find * using a parabolic fit; on non-
quadratics there is usually some error here.  We can reduce the error by refitting the parabola 
several times as we obtain more points in the region of *.  However, this requires more 
function evaluations.  The DFP method is more sensitive to errors in * than the BFGS 
update, described in the next section, and can degrade if * is not accurate. 

7.5. The Broyden Fletcher Goldfarb Shanno (BFGS) Update 

The current "best" update is known as the Broyden, Fletcher, Goldfarb, Shanno or “BFGS” 
update, suggested by all four authors independently in 1970.  It is also a rank 2 update. It has 
the same properties as the DFP update but is less sensitive to errors in *.  This means we can 
be “sloppy” in our line search when we are far away from the optimum and the method still 
works well.  This update is, 
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 
 

 
 

   
 

T T T T

1
T T T1

k k k k k k k k k k k

k k

k k k k k k


           
      

γ N γ x x x γ N N γ x
N N

x γ x γ x γ
 (3.83) 

 
This update is currently considered to be the best update for use in optimization. It is the 
update inside OptdesX, Excel and many other optimization packages. 

7.6. Comments About Quasi-Newton Methods 

The quasi-Newton methods explained here combine the advantages of steepest descent and 
Newton’s method without the disadvantages. They start out as steepest descent, which works 
well far from the optimum, and gradually become Newton’s method, which works well near 
the optimum. They do this without requiring the evaluation of second derivatives. By 
insuring the update is positive definite, the search direction will always go downhill. 
 
Note that these methods use information the previous methods “threw away.” Quasi-Newton 
methods use differences in gradients and differences in x to estimate second derivatives 
according to (3.34). This allows information from previous steps to correct (or update) the 
current step. 
 
As mentioned, quasi-Newton methods are also methods of conjugate directions. This is 
shown in Section 9.4. 

7.7. Hessian Updates Vs. Hessian Inverse Updates 

All of the updates we have presented so far are updates for the Hessian Inverse.  We can 
easily develop updates for the Hessian itself, as will be required for the SQP algorithm, 
starting from the condition 
 
 k k k γ H x   (3.84) 
 

instead of  1 k k k  H γ x  which we used before.  The BFGS Hessian approximation 

(Equation (3.83) is the Hessian inverse approximation) is given by, 
 

 
 

 
 

 

T T

1
T T

k k k k k k

k k

k k k k k


 

  
  

γ γ H x x H
H H

γ x x H x
 (3.85) 

 
You will note that this looks a lot like the DFP Hessian inverse update but with H 
interchanged with N and  interchanged with x.  In fact these two formulas are said to be 
complementary to each other.   



  Chapter 3: Unconstrained Optimization 

  39 

8. The Conjugate Gradient Method 

8.1. Definition 

There is one more method we will learn, called the conjugate gradient method. We will 
present the results for this method primarily because it is an algorithm used in Microsoft 
Excel. 
 
The conjugate gradient method is built upon steepest descent, except a correction factor is 
added to the search direction. The correction makes this method a method of conjugate 
directions. For the conjugate direction method, the search direction is given by, 
 
 1 1–k kf    s sk k  (3.86) 
 
Where  k , a scalar, is given by 
 

 
 
 

1 1k k

k

k k

f f

f f


  


 

T

T  (3.87) 

 

8.2. Example: Conjuage Gradient Method 

We will optimize our usual function, 2 2
1 1 2 22 4f x x x x    

 

starting from 0 03 8

1 14
f

    
     
   

x  

 
We take a minimizing step in the negative gradient direction and stop at  
 

 1 12.03 2.664

0.7 1.522
f

    
         

x  

 
Now we calculate  0  as 
 

 
 
 

 

 

1 1

0

0 0

2.664
2.664 1.522

1.522 9.413
0.0362

8 260
8 14

14

f f

f f


 
         

     
 

T

T  

 
We calculate the new search direction as, 
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 1 1 0 2.664 8 2.954
0.0362

1.522 14 1.015
f 

     
                 

s s  

 

when we step in this direction, we arrive at the optimum, 2 20 0

0 0
f

   
     
   

x  

The main advantage of the conjugate gradient method, as compared to quasi-Newton 
methods, is computation and storage. The conjugate gradient method only requires that we 
store the last search direction and last gradient, instead of a full matrix. Thus this method is a 
good one to use for large problems (say with 500 variables).  
 
Although both conjugate gradient and quasi-Newton methods will optimize quadratic 
functions in n steps, on real problems quasi-Newton methods are better. Further, small errors 
can build up in the conjugate gradient method so some researchers recommend restarting the 
algorithm periodically (such as every n steps) to be steepest descent. 

9. Appendix 

9.1. The Gradient of a Quadratic Function in Vector Form 

We define the coordinate vector to be, 
 

 

0

1 A single 1 in the position

0

th
i i

 
 
 
  
 
 
  

e





 (3.88) 

 
We note that i ix  e  so 

 

 
 
 

T
1 2

1 2

,   , ,  

,   , ,  

n

n

x x x    

 

x

e e e I




 (3.89) 

 
Suppose we have a linear function: 
 
   Tf a x b x  

 

then       T T

1
2

 
term

term

f a a     x b x b x


 

For the first term, since a is a constant, 0a  . Looking at the second term, from the rule for 
differentiation of a product, 
 

     T T T    b x b x x b  
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but T T Tand   b 0 x I  
 

Thus     Tf a  x b x   

     T T0    b x x b    

  0 0   Ib    
   b   (3.90) 
 
Now suppose we have a quadratic function of the form: 

 

  T T1

2
q a  x b x x Hx  (3.91) 

 
We wish to evaluate the gradient in vector form. We will do this term by term, 
  

     T T1

2
q a    x b x x Hx  

 
Applying the results from a linear function, 
 

 
     

 

T T

T

1

2
1

0
2

q a    

   

x b x x Hx

b x Hx

 

So we only need to evaluate the term,  T1

2
 x Hx .  If we split this into two vectors, i.e. 

,   u x v Hx , then  
 

     T T T    x Hx x v v x  

 

We know  T  x v IHx Hx , so we must only evaluate     TT  v x Hx x . We can 

write, 

  T T T T
1 2 = [  ,  , , ]r r rnHx h x h x h x  

 
where T

1rh  represents the first row of H, T
2rh represents the second row, and so forth.  

Applying the gradient operator, 
 

        T T T T
1 2 ,  , , r r rn

      Hx h x h x h x 

From the previous result for Tb x , we know that T
ri ri h x h  since rih  is a vector constant.  

Therefore, 
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   T

1 2

T

,   , ,  r r rn 



Hx h h h

H


 

Returning now to the gradient of the expression,   T T1

2
q a  x b x x Hx   

    T T1

2
q a

      
 

x b x x Hx  

     TT1
0

2
    b x H Hx x   

  T1

2
  b H H x    

  b Hx   (3.92) 
 

If the quadratic we are approximating is a Taylor expansion, 
  

    T T1 1

2
k k k k k k kf f f       x x H x  

 
Then (3.92) is: 
 
 1k k k kf f    H x  (3.93)   
  

9.2. Optimal Step Length for Quadratic Function 

In this section we will derive (3.12). If we start with a Taylor expansion, 
 

    T T1 1

2
k k k k k kf f f       x x H x  (3.94) 

 
When we do a line search, 
 

k  x s  (3.95)  
 

Substituting (3.95) into (3.94) gives 
 

    T T1 1

2
k k kf f f       s s H s  

 
If we take the derivative of this expression with respect to  (a scalar), 
 

  
1

T T
k

kdf
f

d






  s s Hs  (3.96) 

 
Setting the derivative equal to zero and solving for  gives: 
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 T

*
k

T

f



 

s

s Hs
 (3.97) 

 

9.3. Proof that a Method of Conjugate Directions Minimizes the Current 
Subspace 

THEOREM.  A conjugate direction method is such that each 1kx  is the minimizer in the 
subspace generated by 0x  and the directions, 0 1, ,..., ks s s , i.e. 

1 0 0,1,...,k i i i k   x x s . 

 
We wish to show that, 
 

 1 0 for all 
Tk if i k  s  (3.98) 

 
which indicates that we have zero slope along any search direction in the subspace generated 
by 0x and the search directions 0 1, ,..., ks s s , i.e.,  
 

 0 for all
i

f
i k




 


 

 
PROOF.  The proof by induction. Given the usual expression for the gradient of a Taylor 
expansion, 
 
 1k k kf f    H x   
 
Which we will write as, 
 
 1k k kf f     Hs  (3.99) 
 
If we multiply both sides by ks  
 

      1 0
T T Tk k k k k kf f     s s s Hs  

 
By definition of k this is true for i=k. For i<k, 
 

      1

1 2

T T Ti k i k i k

term term

f f    s s s Hs
 

 

 
Term 1 vanishes by the induction hypothesis, while term 2 vanishes from the definition of 
conjugate directions. 
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9.4. Proof that an Update with the Hereditary Property is Also a Method of 
Conjugate Directions 

THEOREM.  An update with the hereditary property and exact line searches is a method of 
conjugate directions and therefore terminates after m n iterations on a quadratic function. 
 
We assume that the hereditary property holds for 1,2,...,k m  
 

1 for allk i i i k   N γ x  (3.100) 
 

We need to show that conjugacy holds as well, 
 

 k 0 for all 1
T i i k  s Hs  (3.101) 

 
The proof is by induction. We will show that if ks is conjugate then 1ks  is as well, i.e.,  
 

  k+1 0 for all
T i i k s Hs  (3.102) 

 
We note that 
  
 1 1 1k k kf    s N  (3.103) 
 
by definition of the quasi-Newton method. Or taking the transpose, 
 

    1 1 1T Tk k kf    s N  (3.104) 

 
Substituting (3.104) into (3.102); 
 

    k+1 1 1 for all
T Ti k k if i k    s Hs N Hs  (3.105) 

 
Also, 

 
i i

i
i i 


 
H x γ

Hs  

 
so (3.105) becomes, 
 

    1 1

k+1 for all

Tk k i
T i

i

f
i k



 
  

N γ
s Hs  (3.106) 

 
From the hereditary property we have 1k i i i k   N γ x , so (3.106) can be written, 
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    1

k+1 0 for all

Tk i
T i

i

f
i k



  
    
 
 

x
s Hs  

 
The term in brackets is zero for all values of 1,2,..., 1i k   from the assumption the 
previous search direction was conjugate which implies (3.98). It is zero for i k  from the 
definition of * . Thus if we have conjugate directions at k, and the hereditary property 
holds, we have conjugate directions at k+1. 

10. References 

For more information on unconstrained optimization and in particular Hessian updates, see:  
 
R. Fletcher, Practical Methods of Optimization, Second Edition, Wiley, 1987. 
 
D. Luenberger, and Y. Ye, Linear and Nonlinear Programming, Third Edition, 2008. 
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CHAPTER 4 

INTRODUCTION TO DISCRETE VARIABLE OPTIMIZATION 

1. Introduction 

1.1. Examples of Discrete Variables 

One often encounters problems in which design variables must be selected from among a set 
of discrete values.  Examples of discrete variables include catalog or standard sizes (I beams, 
motors, springs, fasteners, pipes, etc.), materials, and variables which are naturally integers 
such as people, gear teeth, number of shells in a heat exchanger and number of distillation 
trays in a distillation column. Many engineering problems are discrete in nature. 

1.2. Solving Discrete Optimization Problems 

At first glance it might seem solving a discrete variable problem would be easier than a 
continuous problem. After all, for a variable within a given range, a set of discrete values 
within the range is finite whereas the number of continuous values is infinite. When 
searching for an optimum, it seems it would be easier to search from a finite set rather than 
from an infinite set. 
 
This is not the case, however. Solving discrete problems is harder than continuous problems. 
This is because of the combinatorial explosion that occurs in all but the smallest problems. 
For example if we have two variables which can each take 10 values, we have 

210*10 10 100   possibilities. If we have 10 variables that can each take 10 values, we 
have 1010 possibilities. Even with the fastest computer, it would take a long time to evaluate 
all of these. Obviously we need better strategies than just exhaustive search. 

1.2.1. Example: Standard I Beam Sections 

There are 195 standard I beam sections. If we have a structure with 20 different beam sizes, 
how many combinations of beams are possible? 
 
 20 45195 6.3*10  
 
Since the number of grains of sand on the earth is estimated to be around 1*1025, this is a big 
number! 

1.3. Related Discrete Variables 

We also need to distinguish between discrete variables and related discrete variables.   Often 
two discrete variables are related, i.e. the discrete values are somehow tied to each other.  For 
example, suppose we wish to select a pipe, described by the thickness and diameter, from 
among a set of standard sizes.  This makes thickness and diameter discrete.  It also makes 
them related, because certain values of thickness are matched to certain diameters and vice-
versa.  In general, as diameters increase, the available values for thickness increase as well.  
Material properties also represent related discrete variables. When we pick a certain material, 
the modulus, density, yield strength, etc. are also set. These material properties are related to 
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each other.  We cannot match, for example, the density of aluminum with the modulus for 
steel. When we have related discrete variables, we have discrete variables that fix the values 
of several variables at once.  

2. Discrete Optimization with Branch and Bound 

2.1. Description of Branch and Bound Algorithm 

A classical method for handling discrete problem is called Branch and Bound. The word 
“branch” refers to a tree structure that is built. The word “bound” refers to an estimate of the 
objective function which is used to prune the tree. Branch and Bound requires that we have 
an efficient continuous optimization algorithm, which is called many times during the course 
of the discrete optimization.  
 
The branch and bound strategy works by developing a tree structure.   Initially, at the root of 
the tree, only one discrete variable is allowed to take on discrete values: other discrete 
variables are modeled as continuous. At each level in the tree one more discrete variable is 
made discrete.  The various combinations of values for discrete variables constitute nodes in 
the tree.   
 
We start by progressing down the tree according to the discrete variable combinations that 
appear to be the best. At each node, an optimization problem is performed for any continuous 
variables and those discrete variables modeled as continuous at that node. Assuming we are 
minimizing, the objective value of this optimization problem becomes a lower bound for any 
branches below that node, i.e. the objective value will underestimate (or, at best, be equal to) 
the true value of the objective since, until we reach the bottom of the tree, some of the 
discrete variables are modeled as continuous. Once a solution has been found for which all 
discrete variables have discrete values (we reach the bottom of the tree), then any node which 
has an objective function higher than the solution in hand can be pruned, which means that 
these nodes don't have to be considered further. 
 
As an example, suppose we have 3 discrete variables:  variables 1 and 2 have 3 possible 
discrete values and variable 3 has 4 possible discrete values. A branch and bound tree might 
look like Fig. 4.1 given below. 
 
In this tree, "Level 1" represents the nodes where variable 1 is allowed to be discrete and 
variables 2 and 3 are continuous.  For "Level 2," variables 1 and 2 are discrete; only variable 
3 is continuous.  In "Level 3," all variables are discrete. Each circle is a node. The numbers 
in the circles show the order in which the nodes were evaluated. The number shown at the 
upper right of each circle is the optimum objective value for the optimization problem 
performed at the node. An asterisk means no feasible solution could be found to the 
optimization problem; a double underscore indicates the node was pruned.   
 
At the first level, three optimizations are performed with variable 1 at its 1st, 2nd and 3rd 
discrete values respectively (variables 2 and 3 continuous).  The best objective value was 
obtained at node 3.  This node is expanded further.  Nodes 4, 5, 6 correspond to variable 1 at 
its 3rd discrete value and variable 2 at its 1st, 2nd and 3rd discrete values respectively, with 
variable 3 continuous.  The best objective value for nodes 1, 2, 4, 5,and 6 is at node 1, so it is 
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expanded into nodes 7, 8, and 9.  Now the best objective value among unexpanded nodes is 
at node 5, so it is expanded.  Nodes 10, 11, 12, 13 correspond to variable 1 at its 3rd discrete 
value, variable 2 at its 2nd discrete value, and variable 3 at its 1st, 2nd, 3rd, and 4th values.  
The best objective value, 59, is obtained at node 11.  This becomes the temporary optimal 
solution.  Any nodes with objectives higher than 59 can automatically be pruned since the 
objective only increases as we go down the tree from a node and make more and more 
variables discrete.  Thus nodes 2, 7, 8 are pruned.  Node 9, however, looks promising, so we 
expand this node.  As is shown, we eventually find at node 16, with variable 1 at its 1st 
discrete value, variable 2 at its 3rd discrete value, and variable 3 at its 3rd discrete value, a 
better optimum than we had before.  At this point all further nodes are pruned and we can 
stop. 
 
It should be clear that Branch and Bound gains efficiency by pruning nodes of the tree which 
have higher objective values (bounds) than known discrete solutions. In realistic problems, 
the majority of nodes are pruned—in the example which follows less than 0.001% of the 
nodes were expanded. 
 
However, there is a cost—at each node we have to perform an optimization, which could 
involve many calls to the analysis program. One way to reduce this cost is by making a linear 
approximation to the actual problem and optimizing the linear approximation. This greatly 
reduces the number of analysis calls, but at some expense in accuracy. 
 
Another way to reduce the size of the tree is to select discrete value neighborhoods around 
the continuous optimum. It is likely the discrete solution for a particular variable is close to 
the continuous one. Selecting neighborhoods of the closest discrete values makes it possible 
to further restrict the size of the problem and reduce computation. 
 

SCHEMATIC OF BRANCH AND BOUND METHOD 
* INFEASIBLE                 PRUNED 
 

LEVEL 1: 
(1 Var Discrete) 
 
 
 
LEVEL 2: 
(2 Vars Discrete) 
 
 
 
 
LEVEL 3: 
(3 Vars Discrete) 
 
 
 
Fig. 4.1 An example Branch and Bound Tree 
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3. Exhaustive Search 

The exhaustive search strategy examines all possible combinations of discrete variables to 
locate the discrete optimum. In terms of a branch and bound tree, exhaustive search examines 
those nodes found at the bottom of an un-pruned branch and bound tree structure.  If the 
branch and bound strategy is performed without much pruning, more nodes could be 
evaluated and thus more time required than exhaustive search.  In the above example, 17 
nodes were evaluated with branch and bound; exhaustive search would have required the 
evaluation of 3*3*4 = 36 nodes.  The efficiency of branch and bound relative to exhaustive 
search therefore depends on how much pruning is done.   

4. Discrete Variables in OptdesX 

4.1. Setting Up an Optimization Problem 

Discrete variables are handled in OptdesX by mapping design variables to be discrete 
variables. This is accomplished by pressing the “C” (Continuous) button so it changes to “D” 
(discrete). The bottom right part of the window opens to show the discrete variables.  
 
Related Discrete Variables are handled in OptdesX as a many-to-one mapping of design 
variables to a discrete variable.  The discrete variables appear in the lower right hand side of 
the Variables window. For example in Fig. 4.2 below, width and diameter have been made 
discrete. Width is associated with a file called “widths.” Diameter is associated with a file 
called “pipes.” When OptdesX reads the file pipes, it finds two columns in the file which 
represent diameter and thickness. It concludes this discrete variable is a related discrete 
variable. It then opens another row (NULL VARIABLE below) and expects the second 
variable to be specified by clicking on its “C” button. The user would click on thickness, 
since it is diameter and thickness values which are in the file “pipes,” and thickness would 
take the place of NULL VARIABLE. 

 
 

Fig. 4.2 The Variables window with discrete variables. 

When the “C” for 
thickness is 
“clicked” it will be 
specified as a 
discrete variable 
and will take this 
slot, where it will 
become a related 
discrete variable 
with diameter. 
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4.2. Providing Discrete Values in Files 

In OptdesX we will specify discrete values for discrete variables in separate file(s). The first 
line of a discrete value file contains the number of rows and the number of columns. If the 
discrete variable is not a related discrete variable, the number of columns is 1. The discrete 
values then follow, one value per line. 
 
Related discrete variables are specified by having multiple entries per line. For example, 
consider the following example data file: 
 
19 2 
3.0 .30 
3.0 .28 
3.0 .26 
2.5 .28 
2.5 .26 
2.5 .24 
2.5 .22 
2.0 .24 
2.0 .22 
2.0 .20 
2.0 .18 
1.5 .20 
1.5 .18 
1.5 .16 
1.5 .14 
1.0 .16 
1.0 .14 
1.0 .12 
1.0 .10 
 
Note that the first line has two values.  The first value specifies the number of rows (discrete 
values) and the second number specifies the number of columns (number of discrete 
variables which are related).  Each subsequent line refers to a discrete value. In this instance 
the file contains the discrete data for the tubes of the Two-bar truss, where each tube is 
described by a diameter and thickness. Thus the third line of the file indicates we can have a 
tube with a diameter of 3.0 and a thickness of 0.28. A regular, unrelated discrete variable 
would only have one column of data. 

4.3. Summary of Steps for Branch and Bound Algorithm with OptdesX 

Step 1: Define the discrete variable files; set up the discrete problem and specify a starting 
point. 
 
Step 2: Optimize to find the continuous optimum. 
Standard algorithms (GRG, SQP) are executed to find the continuous optimum.   
 
Step 3: Select neighborhoods. 
For some problems the number of discrete combinations is too large to practically consider 
all possibilities.  The user has the option to consider a neighborhood of discrete values within 
a certain distance of the continuous optimum.  As the user selects the neighborhood radius in 
scaled space, OptdesX will display how many discrete values fall within that neighborhood. 
 
Step 4:  Select linearization option if desired. 
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The number of variable combinations may be so large as to prohibit a nonlinear optimization 
at each node.  Therefore, the user can linearize the objective and constraints about the 
continuous optimum.  Then at each node a LP optimization is done--this doesn't require any 
additional calls to the analysis subroutine.  A nonlinear optimization is performed for the 
current best solution to verify actual feasibility.  Linearized strategies are thus faster but 
involve approximations that may lead to solutions that are not the true discrete optimum. 
 
Step 5: Perform Branch and Bound optimization. 
The branch and bound algorithm is executed and the tree is created as the optimization 
proceeds. 

5. Example: Design of 8 Story 3 Bay Planar Frame 

Prof. Richard Balling applied Branch and Bound to the design of a 2D structure.  The 
objective was to minimize weight, subject to AISC combined stress constraints.  
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FIG. 1. Example 8-Story 3-Bay Planar Frame  

Fig. 4.3 Schematic of eight story 2D frame, and graph showing band of possible discrete 
values. 
 
Each beam can take one of 195 possible sizes. It was assumed the same size girder continues 
across each floor.  The same size column continues for two stories.  Exterior columns were 
assumed the same size; interior columns were also assumed the same size. These 
assumptions resulted in 16 separate members; for each member we needed to specify A, I, S, 
giving a total of 48 design variables (but only 16 related discrete variables). The constraints 
represented combined stress constraints for each member. 
 
For the starting design all members were W12x65.  The weight was 58,243 lbs. There were 
13 violated stress constraints.  
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Step 1: The discrete files were created and the problem set up. 
 
Step 2: A continuous optimization was performed. Using GRG, an optimum was achieved 
after 9 iterations and 486 analyses.  The weight was 36,253 lbs.  There were 20 binding stress 
constraints. 
 
Step 3: Neighborhoods were chosen to reduce problem size.  Neighborhoods were sized so 
that each member had 3 to 5 discrete combinations. 
 
Step 4: Linearization was selected to further reduce computation. 
 
Step 5: Branch and bound was executed. The optimum required 3066 linear optimizations 
which represented only 0.001% of the possible nodes. The discrete optimum weighed 40,337 
lbs. and had 5 binding stress constraints. 

6. Simulated Annealing 

6.1. Introduction 

Branch and Bound and Exhaustive Search both suffer from a serious problem—as the 
number of variables increases, the number of combinations to be examined explodes. Clearly 
this is the case for Exhaustive Search, which does nothing to reduce the size of the problem. 
The same is true for Branch and Bound, although to a lesser degree, because of the pruning 
and approximations which are employed. Even if Branch and Bound reduces the search 
space by 99.99%, however, many problems are still too large. Consider, for example, a 
problem with 20 discrete variables which can each take on 25 values. The number of 
combinations equals, 
 
 20 2725 9.1*10  
 
If we can reduce the search space by 99.99%, we still must search 9*1023 combinations! In 
general then, algorithms which try to search the entire combinatorial space can easily be 
overwhelmed by the shear size of the problem. In contrast, the evolutionary algorithms we 
study in this and the following sections do not suffer from this problem. These algorithms are 
so-named because they mimic natural processes that govern how nature evolves. These 
algorithms do not attempt to examine the entire space. Even so, they have been shown to 
provide good solutions.  
 
Simulated annealing copies a phenomenon in nature--the annealing of solids--to optimize a 
complex system.  Annealing refers to heating a solid to a liquid state and then cooling it 
slowly so that thermal equilibrium is maintained.  Atoms then assume a nearly globally 
minimum energy state.  In 1953 Metropolis created an algorithm to simulate the annealing 
process.  The algorithm simulates a small random displacement of an atom that results in a 
change in energy.  If the change in energy is negative, the energy state of the new 
configuration is lower and the new configuration is accepted.  If the change in energy is 
positive, the new configuration has a higher energy state; however, it may still be accepted 
according to the Boltzmann probability factor: 
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 exp b

E
k T

b

E
P e

k T

  
 

 
  

 
 (4.1) 

     
where bk is the Boltzmann constant and T is the current temperature. By examining this 

equation we should note two things: the probability is proportional to temperature--as the 
solid cools, the probability gets smaller; and inversely proportional to E --as the change in 
energy is larger the probability of accepting the change gets smaller. 
 
When applied to engineering design, an analogy is made between energy and the objective 
function.  The design is started at a high “temperature,” where it has a high objective (we 
assume we are minimizing).  Random perturbations are then made to the design.  If the 
objective is lower, the new design is made the current design; if it is higher, it may still be 
accepted according the probability given by the Boltzmann factor.  The Boltzmann  
probability is compared to a random number drawn from a uniform distribution between 0 
and 1; if the random number is smaller than the Boltzmann probability, the configuration is 
accepted. This allows the algorithm to escape local minima. 
 
As the temperature is gradually lowered, the probability that a worse design is accepted 
becomes smaller.  Typically at high temperatures the gross structure of the design emerges 
which is then refined at lower temperatures.   
 
Although it can be used for continuous problems, simulated annealing is especially effective 
when applied to combinatorial or discrete problems.  Although the algorithm is not 
guaranteed to find the best optimum, it will often find near optimum designs with many 
fewer design evaluations than other algorithms.  (It can still be computationally expensive, 
however.)  It is also an easy algorithm to implement.   
 
Fig. 4.4 below shows how the weight of a structure changed as simulated annealing was used 
to select from among discrete structural members. Each cycle represents a temperature.  It 
can be seen that in earlier cycles worse designs were accepted more often than in later cycles. 
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Fig. 4.4 Change in weight of structure during simulated annealing. 

 
The analogy between annealing and simulated annealing is summarized in the table below 
(Liu, 1990). 
 

Annealing objective –  
minimum energy configuration 

Simulated annealing objective - 
minimum cost 

Annealing Boltzmann equation 

exp b

E
k T

B

E
P e

k T

  
  

  
 

 

Simulated annealing Boltzmann 
equation 

exp avg

E
E T

avg

E
P e

E T

   
 

    
 

P is the probability that an atom will 
move from a lower to a higher 
energy state 

P is the probability that a higher cost 
design will be accepted 

E  is the change in energy to go 
from a lower energy state to a higher 
one 

E  is the cost difference between 
the current design and the previous 
one 

T is the absolute current annealing 
temperature; it correlates to the 
amount of mobility of the molecules 
or atoms 

T is a unitless value; it correlates to 
the mobility of the optimization 
process to accept a higher cost 
design 

Bk is the Boltzmann constant avgE is the running average value of 

the E ; it normalizes the change in 
the objective  E  
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6.2. Algorithm Description  

6.2.1. Selecting Algorithm Parameters 

In the above table, notice that instead of (4.1), we use the following to estimate Boltzmann 
probability: 

 

exp avg

E
E T

avg

E
P e

E T

   
 

    
 (4.2) 

 
We see that this equation includes avgE instead of k. The constant avgE is a running average 

of all of the “accepted” E (objective changes) to this point in the optimization. It 
normalizes the change in the objective, E , in (4.2). 
 
Equation (4.2) is also a function of a “temperature,” T. How is this chosen? We recommend 
you set the probability level, sP , that you would like to have at the beginning of the 

optimization that a worse design could be accepted.  Do the same for the probability level at 
the end of the optimization, fP .  Then, if we assume avgE E   , (which is clearly true at the 

start of the optimization), 
 

  
   
1 1

ln ln
s f

s f

T T
P P

 
    (4.3) 

 
Select the total number of cycles, N, you would like to run. Each cycle corresponds to a 
temperature.  Decrease temperature according to the expression, 
 

  
 1 1

1

N

f
n n

s

T
T F T F

T





 
    

 
 (4.4) 

 
where 1nT  is the temperature for the next cycle and nT  is the current temperature. Note that 

the design should be perturbed at each temperature until “steady state” is reached. Since it is 
not clear when steady state is reached for a design, we recommend perturbing the design at 
least n (n = no. of design variables) or more if computationally feasible.  

6.2.2. Example: Choosing Parameters for Simulated Annealing 

We pick the following: 
 
  -80.5 10 100s fP P N    

 
and using (4.3) and (4.4) we calculate, 
 
  1.4426 0.054278 0.9674s fT T F    
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6.2.3. Algorithm Steps 

1. Choose a starting design. 
2. Select ,  s fP P , N, and calculate ,  s fT T and F. 

3. Randomly perturb the design to different discrete values close to the current design. 
4. If the new design is better, accept it as the current design. 
5. If the new design is worse, generate a random number between 0 and 1 using a 

uniform distribution.  Compare this number to the Boltzmann probability.  If the 
random number is lower than the Boltzmann probability, accept the worse design as 
the current design. 

6. Continue perturbing the design randomly at the current temperature until “steady 
state” is reached. 

7. Decrease temperature according to 1n nT F T    

8. Go to step 3. 
9. Continue the process until Tf is reached. 

 
In the early stages, when the temperature is high, the algorithm has the freedom to “wander” 
around design space. Accepting worse designs allows it to escape local minima. As 
temperature is decreased the design becomes more and more “frozen” and confined to a 
particular region of design space. 
 
A diagram of the algorithm is given in Fig. 4.5: 

 

Fig. 4.5. The simulated annealing algorithm. 
 

6.2.4. Limitations of Simulated Annealing 

Simulated annealing is really developed for unconstrained problems.  Questions arise when 
applied to constrained problems--if the perturbed design is infeasible, should it still be 
accepted?  Some implementations automatically reject a design if it is infeasible; others use a 
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Starting Design 

Current Design 

Replace current 
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                  design 
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Reject 
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If ( Random Number < Boltzmann Prob ) 
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Generate probability 
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penalty function method so the algorithm “naturally” wants to stay away from infeasible 
designs. 
 
Simulated annealing does not use any gradient information. Thus it is well suited for discrete 
problems. However, for continuous problems, if gradient information is available, a gradient-
based algorithm will be much (>100 times) faster. 

6.3. Examples of Simulated Annealing 

Balling describes the optimization of a 3D, unsymmetric 6 story frame, shown below. 
 

 
Fig. 4.6. Six story frame. 
 
The 156 members were grouped into 11 member groups--7 column groups and 4 beam 
groups.  Beams and columns must be selected from a set of 47 economy sections for beams 
and columns respectively. The starting design had a weight of 434,600 lbs.  Eleven 
perturbations were examined at each temperature, and with 100N  , an optimization 
required 1100 analyses.  Two iterations of simulated annealing were performed, with the 
starting design of the second iteration being the optimum from the first.  The results were as 
follows: 
 

Iteration Optimal Weight Execution Time 
1 416,630 lbs. 1:24:09 
2 414,450 lbs. 1:26:24 

Total  2:50:33 
 

 
The change in weight observed as temperature was decreased for the first iteration was very 
similar to the diagram given Fig. 4.4. 
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Simulated annealing was compared to the branch and bound strategy.  First a continuous 
optimization was performed.  Each design variable was then limited to the nearest 4 discrete 
variables.  To reduce computation, a linear approximation of the structure was made using 
information at the continuous optimum.  Because the neighborhoods were so small, the 
algorithm was run 4 iterations, where the starting point for the next iteration was the 
optimum from the current iteration. 
 

Iteration Optimal Weight Execution Time 
1 420,410 lbs. 0:13:44 
2 418,180 lbs. 1:09:44 
3 414,450 lbs. 0:12:24 

Total  1:35:52 
 

 
Liu used simulated annealing for the discrete optimization of pipe network systems.  Pipes, 
like wide flange sections, are only manufactured in certain sizes.  For this work, each pipe 
could be selected from 30 possible values. 
 
An example network is shown in Fig. 4.7.  This network has 22 pipe sizes to be chosen. 
 

 
Fig. 4.7 Pipe network optimized with simulated annealing 
 
Arrows give required flows that must enter or leave the network.  Simulated annealing was 
used to find the network with the least cost that could meet these demands.  For this problem, 
Ps = 0.9, F=0.9, N=65, and 5 perturbed designs were evaluated at each temperature.  For this 
optimization 7221 analysis calls to the network flow solver were required. 
 
The change in cost during optimization is given below. 
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Fig. 4.8 Simulated annealing history for pipe network 

 
Liu also compared the results of simulated annealing to branch and bound: 
 

Comparison of continuous and branch and bound results with simulated annealing.  
Ten different starting points. 

Run OptdesX continuous 
cost ($) 

OptdesX branch and 
bound cost ($) 

Simulated annealing 
cost ($) 

1 42729 45279 48687 

2 44101 47013 47013 

3 43241 46173 45288 

4 44101 46770 45893 

5 43241 46173 46080 

6 44101 47013 45257 

7 43242 46175 46990 

8 43241 45275 47013 

9 44097 47013 45279 

10 44102 47013 45279 
 

 
 
For branch and bound, local neighborhoods of 3 to 5 pipes around the continuous optimum 
were used.  
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7. Classical Genetic Algorithms 

7.1. Introduction 

Genetic Algorithms (GA) are based on the Darwinian theory of natural selection.  The search 
algorithm mimics reproduction, crossover, and mutations in nature. The roots of genetic 
algorithms are traced to work done by (Holland, 1975). Taking a quote from (Davis, 1987): 
 
“In nature species are searching for beneficial adaptations to a complicated and changing 
environment.  The “knowledge” that each species gains with a new generation is embodied in 
the makeup of chromosomes.  The operations that alter the chromosomal makeup are applied 
when parent reproduce; among them are random mutation, inversion of chromosomal 
material and crossover--exchange of chromosomal material between two parents’ 
chromosomes.  Random mutation provides background variation and occasionally introduces 
beneficial material into a species’ chromosomes.  Inversion alters the location of genes on a 
chromosome, allowing genes that are co-adapted to cluster on a chromosome, increasing 
their probability of moving together during crossover.  Crossover exchanges corresponding 
genetic material from two parent chromosomes, allowing beneficial genes on different 
parents to be combined in their offspring.” 
 
Goldberg has suggested four ways that genetic algorithms are different from traditional 
derivative-based algorithms: 
 

 GA’s work with a coding of the variables, not the variables themselves. 
 GA’s search from a population of points, not a single point. 
 GA’s use objective function information, not derivatives or other auxiliary 

knowledge. 
 GA’s use probabilistic transition rules, not deterministic rules. 

 
As given in Gen (2000), there are five basic components to a genetic algorithm: 
 

1. A genetic representation of solutions to the problem. 
2. A way to create an initial population of solutions. 
3. An evaluation function rating solutions in terms of the fitness. 
4. Genetic operators that alter the genetic composition of children during reproduction. 
5. Values for parameters of genetic algorithms. 

 
In the next section all of the components will be specified as we step through the algorithm. 

7.2.  Steps of the Classical Algorithm 

1. Determine a coding for the design. The classical algorithm uses binary coding. A 
design is coded as a “chromosome.” 

2. Develop the initial population. This can be done by randomly creating a set of 
designs which are evenly spread through the design space. A population of 20 to 100 
designs often works well. 
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3. Pick a crossover and mutation rate. Typical values are 0.8 and 0.01, respectively. 
These are problem dependent, however, and are often determined experimentally. 

4. Select a way to measure the “fitness” or goodness of a design. Often we will just use 
the objective value. (In Chapter 5, we will learn other ways of measuring fitness.) 

5. Select the mating pool.  These will be the designs which will be chosen to become 
parents and produce the next generation. This selection can be done several ways. 
Two of the most popular are roulette wheel selection and tournament selection. In 
roulette wheel selection, we select a parent based on spinning a “roulette wheel.” The 
size of the slot on the wheel is proportional to the fitness. In tournament selection, a 
subset of the population is randomly selected and then the best design from the subset 
(the tournament) is taken to be the parent. We will illustrate both of these. 

6. Perform “crossover.”  This requires that we select a crossover site and then “swap” 
strings at the crossover point, creating two new children. 

7. Perform “mutation.”  The check for mutation is done on a bit by bit basis.  The 
mutation rate is usually kept low (0.005, for example).  If a bit mutates, change it 
from 1 to 0 or vice-versa. 

8. The new population has now been created.  Decode the population strings to get the 
normal variable values and evaluate the fitness of each design.  We now have a new 
generation of designs, and so we go back to step 2. 

9. Continue for a specific number of generations or until the average change in the 
fitness value falls below a specified tolerance. 

 
The above steps can be modified by several changes to enhance performance.  We will 
discuss these more in Chapter 5.  
 
There are several parts to the above steps which must be explained further.   

7.3. Binary Coded Chromosomes 

7.3.1. Precision with Binary Strings 

The original GA algorithm worked with binary coded strings.  Since our design variables are 
usually real and continuous, we will need to convert them to binary. This requires that we 
establish an acceptable level of precision.  This is determined from, 
 

 Precision =  
( )

2 1
i i
p

U L


 (4.8) 

 
 where  Ui  = upper bound for ith variable 
  Li = lower bound for ith variable 
  p = length of binary string 
 
The precision determines the smallest change we can make in a variable and have it reflected 
in the binary string. 
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7.3.2. Example: Determining the Precision of Binary Coding 

We decide to have a binary string length of 8, and a variable has an upper bound of 10 and a 
lower bound of zero.  The precision is, 
 

 
8

(10 0) 10
0.0392

2 1 255


 


 

 
This is the smallest change in a variable we will be able to distinguish using a binary coding 
with a string length of 8. 

7.3.3. Converting from Real to Binary 

To convert a real number value to a binary string, first convert it to a base 10 integer value, 
using the formula, 
 

 int10

( )*

( )
realx L J

x
U L





 (4.9) 

 
 where xreal  = real number value 
  xint10 = base 10 integer 

  J = 2 1p   
 
Then convert the integer to a binary string using 0 1 22 1, 2 2, 2 4   , etc. 

7.3.4. Example: Converting from Real to Binary 

We have a variable value of 3.567, with a string of length 8, and an upper bound of 10 and a 
lower bound of zero.  The base 10 integer value is, 
 

 xint10 = 
(3.567 – 0) 255

10 – 0    = 90.95 = 91 

 
In binary, this value is 01011011 = ( 0 1 3 4 6(2 1) (2 2) (2 8) (2 16) (2 64)         = 91 
 
To go from binary back to real, just solve (4.9) for the real value: 
 

 int10

( )
*real

U L
x x L

J


   (4.10) 

7.3.5. Creating Chromosomes 

A chromosome is created by combining the binary strings of all variables together.  If we had 
two variables, which in binary form were 01011011 and 10001101, the chromosome would 
be: 
  0101101110001101  
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7.4. Genetic Operators: Crossover and Mutation 

7.4.1. Crossover 

Crossover is the exchange of genetic material between two parent chromosomes to form two 
children.  We randomly pick the crossover point and then swap the binary strings which 
follow after the crossover point. For example if before crossover we have the following 
parents with the indicated crossover point, 

 
 Parent 1: 00111 010 
 Parent 2: 11100 111 
 
Then after crossover we have: 

 
Child 1: 00111111 
Child 2: 11100010 

7.4.2. Mutation 

It is sometimes beneficial to introduce random “mutations” into our design. This is usually 
done bit by bit. If we have a mutation rate of 0.001 (0.1%), we draw random numbers from a 
uniform distribution. If the number is less than 0.001, we switch the bit from 0 to 1 or vice 
versa. Mutation helps introduce unexpected changes into the population. However, the 
mutation rate cannot be too high, or a high fraction of designs are essentially changed 
randomly. However, some practitioners have used mutation rates as high as 10%. 

7.5. Example: Converting a Chromosome Back to Variables 

Suppose the chromosome for two variables (x1, x2), each of string length 10, is given by: 
 00101101111011011100 
 
We partition the chromosome into: 
 x1: 0010110111   x2:  1011011100 
 
Minimum and maximum values: 
 5 ≤ x1 ≤ 10    1 ≤ x2 ≤ 25 
 
Base10 integer values: 
 x1,int10 = 183    x2,int10 = 732 
 
Continuous real values: 
 x1,real = 5.894    x2,real = 18.17 
 

7.6. Example: Classical Genetic Algorithm for One Generation 

In this problem we have the objective function 1 2
2 2f x x  which we wish to maximize.  The 

variables range from –2 to +5.  We will have a string length of 7.  We assume we have 
available a random number generator that generates uniformly distributed numbers between 
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0 and 1.  We will have a population size of 6 (which is small, but is used here for illustration 
purposes), a crossover probability of 0.8 and a mutation probability of 0.001. We will use 
roulette wheel selection to choose parents. 
 
We randomly generate the following six designs as our starting population: 
 
Design 

1x  2x  Fitness 

1 1.521 –0.824 2.9924 
2 3.922 –1.006 16.394 
3 2.179 –0.033 4.7491 
4 –0.292 4.405 19.489 
5 –0.523 –1.636 2.95 
6 2.956 –1.951 12.544 
 
We then convert the designs to binary strings and form chromosomes: 
 
Desig
n 1x  Base 

10 Int 
Binary 

2x  Base 
10 Int 

Binary Chromosome 

1 1.521 64 1000000 –0.824 21 0010101 1000000001010
1 

2 3.922 107 1101011 –1.006 18 0010010 1101011001001
0 

3 2.179 76 1001100 –0.033 36 0100100 1001100010010
0 

4 –0.292 31 0011111 4.405 116 1110100 0011111111010
0 

5 –0.523 27 0011011 –1.636 7 0000111 0011011000011
1 

6 2.956 90 1011010 –1.951 1 0000001 1011010000000
1 

 
There is some additional information we need to compute for the roulette wheel selection: 
 
Design Fitness Fitness/Sum Cumulative 

Probability 
1 2.992 0.0506 0.0506 
2 16.39 0.2773 0.328 
3 4.749 0.0803 0.408 
4 19.49 0.3297 0.738 
5 2.950 0.0499 0.788 
6 12.54 0.2122 1.00 
Sum 59.12 1.00  
Average 9.85   
 
The cumulative probability will be used to set the size of the slots on the roulette wheel. For 
example, Design 2 has a relatively high fitness of 16.39; this represents 27.7% of the total 
fitness for all designs. Thus it has a slot which represents 27.7% of the roulette wheel. This 
slot is the distance from 0.0506 to 0.328 under the cumulative probability column. If a 
random number falls within this interval, Design 2 is chosen as a parent. In like manner, 
Design 5, which has a low fitness, only gets 5% of the roulette wheel, represented by the 
interval from 0.738 to 0.788. 
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We draw out six random numbers: 
0.219, 0.480, 0.902, 0.764, 0.540, 0.297 
 
The first random number is in the interval of Design 2—so Design 2 is chosen as a parent. 
The second number is within the interval of Design 4—so Design 4 is chosen as a parent. 
Proceeding in this fashion we find the parents chosen to mate are 2,4,6,5,4,2. 
 
We will mate the parents in the order they were selected.  Thus we will mate 2 with 4, 6 with 
5, and 4 with 2. 
 
Should we perform crossover for the first set of parents?  We draw a random number, 0.422, 
which is less than 0.8 so we do. We determine the crossover point by selecting a random 
number, multiplying by 13 (the length of the chromosome minus 1) and taking the interval 
the number lies within for the crossover point (i.e., 0-1 gives crossover at point 1, 10-11 
gives crossover at point 11, etc.) , since there are 1–13 crossover points in a 14 bit string.  
Crossover occurs at: 0.659 * 13 = 8.56 = 9th place. 
 
 Parent 1: 001111111 10100    
 Parent 2: 110101100 10010   
 
 Child 1:  00111111110010 
 Child 2: 11010110010100 
 
Do we perform mutation on any of the children?  We check random numbers bit by bit--none 
are less than 0.001. 
 
Do we do crossover for the second set of parents? We draw a random number of 0.749, less 
than 0.8, so we do. Crossover for second mating pair: 0.067*13 = 0.871 = 1st place 
 
 Parent 3: 1 0110100000001  
 Parent 4: 0 0110110000111  
 
 Child 3: 10110110000111 
 Child 4: 00110100000001 
 
Again, no mutation is performed. 
 
Do we do crossover for third set of parents? Random number = 0.352 ≤ 0.8, so we do.  
Crossover for third mating pair: 0.260*13 = 3.38 = 4th place 
  
 Parent 5: 1101 0110010010 
 Parent 6: 0111 1111110100  
 
 Child 5: 11011111110100 
 Child 6: 00110110010010 
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As we check mutation, we draw a random number less than 0.001 for the last bit of Child 5. 
We switch this bit. Thus this child becomes, 
 
 Child 5: 11011111110101 
We now have a new generation. 
 
We decode the binary strings to Base 10 integers which are converted to real values, using 
(4.10).  Information on this new generation is given below. 
 
Desig
n 

Chromosome Binary 1x  Base 
10 Int 1x  Binary 2x Base 

10 Int 2x  Fitness 

1 0011111111001
0 

0011111 31 –0.291 1110010 114 4.283 18.43 

2 1101011001010
0 

1101011 107 3.898 0010100 20 –0.898 16.00 

3 1011011000011
1 

1011011 91 3.016 0000111 7 –1.614 11.7 

4 0011010000000
1 

0011010 26 –0.567 0000001 1 –1.945 4.10 

5 1101111111010
1 

1101111 111 4.118 1110101 117 4.394 36.26 

6 0011011001001
0 

0011011 27 –0.5118 0010010 18 –1.008 1.278 

       Sum 87.78 
       Averag

e 
14.63 

 
We see that the average fitness has increased from 9.85 to 14.63. 
 
This completes the process for one generation. We continue the process for as many 
generations as we desire. 

7.7. Example: Genetic Algorithm with Tournament Selection 

The previous example used roulette wheel selection. The roulette wheel selection process is 
dependent upon the scaling we choose for the objective. It must also be modified if we wish 
to minimize instead of maximize.  
 
Another way to select parents which does not have these drawbacks is tournament selection. 
This involves randomly selecting a subset of the population and then taking the best design 
of the subset. For example, with a tournament size of two, two designs are randomly chosen 
and the best of the two is selected as a parent. 
 
Tournament selection can be partly understood by considering the extremes. With a 
tournament size of one you would have random selection of parents, and with a tournament 
size equal to the population size, you would always be picking the best design as the parent. 
 
We will have a tournament size of two. We generate two random numbers and then multiply 
them by the population size: 
 
0.219* 6 =  1.31. Values between 1 and 2 give Design 2 
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0.812* 6 =  4.87. Values between 4 and 5 give Design 5 
 
The best design of these two is Design 2, so design 2 is chosen to be Parent 1.  (We are still 
working with the starting generation, not the second generation given above.) We then 
conduct another tournament to find Parent 2. We continue in a similar fashion until six 
parents are chosen. 

8. Comparison of Algorithms 

Some time ago I came across this comparison of gradient-based algorithms, simulated 
annealing and genetic algorithms. I regret I cannot give credit to the author. The author 
assumes we are trying to find the top of a hill using kangaroo(s). 
 
“Notice that in all [hill climbing, i.e., gradient-based] methods discussed so far, the kangaroo 
can hope at best to find the top of a mountain close to where he starts. There’s no guarantee 
that this mountain will be Everest, or even a very high mountain. Various methods are used 
to try to find the actual global optimum.  
 
In simulated annealing, the kangaroo is drunk and hops around randomly for a long time. 
However, he gradually sobers up and tends to hop up hill. 
 
In genetic algorithms, there are lots of kangaroos that are parachuted into the Himalayas (if 
the pilot didn’t get lost) at random places. These kangaroos do not know that they are 
supposed to be looking for the top of Mt. Everest. However, every few years, you shoot the 
kangaroos at low altitudes and hope the ones that are left will be fruitful and multiply.” 
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CHAPTER 5 

GENETIC AND EVOLUTIONARY OPTIMIZATION 

1. Introduction 

Gradient-based algorithms have some weaknesses relative to engineering optimization.  
Specifically, it is difficult to use gradient-based algorithms for optimization problems with: 
 
 1) discrete-valued design variables 
 2) large number of design variables 
 3) multiple local minima, maxima, and saddle points 
 4) nondifferentiable objectives and constraints 
 5) analysis programs which crash for some designs 
 
In recent years, a new family of optimization algorithms has emerged for dealing with the 
above characteristics. These algorithms are known as evolutionary algorithms.  Evolutionary 
algorithms mimic the optimization process in nature as it optimizes biological species in 
order to maximize survival of the fittest. One type of evolutionary algorithm is the genetic 
algorithm. We will examine genetic algorithms in detail.   
 
I express my appreciation to Professor Richard J. Balling of the Civil and Environmental 
Engineering Department at BYU for allowing me to use this chapter. 

2. Genetic Algorithms:  Representation 

2.1. Chromosomes and Genes 

In order to apply a genetic algorithm to a particular optimization problem, one must first 
devise a representation.  A representation involves representing candidate designs as 
chromosomes.  The simplest representation is a value representation where the chromosome 
consists of the values of the design variables placed side by side.  For example, suppose we 
have 6 discrete design variables whose values are integer values ranging from 1 to 5 
corresponding to 5 different cross-sectional shapes for each of 6 members.  Suppose we also 
have 4 continuous design variables whose values are real numbers ranging from 3.000 to 
9.000 representing vertical coordinates of each of 4 joints.  A possible chromosome is shown 
in Fig. 5.1: 

 

 
Fig. 5.1:  Chromosome for a Candidate Design 

The chromosome in Fig. 5.1 consists of ten genes, one for each design variable.  The value of 
each gene is the value of the corresponding design variable.  Thus, a chromosome represents 
a particular design since values are specified for each of the design variables. 
 
Another possible representation is the binary representation.  In this representation, multiple 
genes may be used to represent each design variable.  The value of each gene is either zero or 

4 3 1 3 2 5 3.572 6.594 5.893 8.157
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one.  Consider the case of a discrete design variable whose value is an integer ranging from 1 
to 5.  We would need three binary genes to represent this design variable, and we would have 
to set up a correspondence between the gene values and the discrete values of the design 
variable such as the following: 
 
  gene values   design variable value 
  0 0 0     1 
  0 0 1     2 
  0 1 0     3 
  0 1 1     4 
  1 0 0     5 
  1 0 1     1 
  1 1 0     2 
  1 1 1     3 
 

In this case, note that there is bias in the representation since the discrete values 1, 2, and 3 
occur twice as often as the discrete values 4 and 5.   
 
Consider the case of a continuous design variable whose value is a real number ranging from 
3.000 to 9.000.  The number of genes used to represent this design variable in a binary 
representation will dictate the precision of the representation.  For example, if three genes are 
used, we may get the following correspondence between the gene values and equally-spaced 
continuous values of the design variable: 
 
  gene values   design variable value 
  0 0 0     3.000 
  0 0 1     3.857 
  0 1 0     4.714 
  0 1 1     5.571 
  1 0 0     6.429 
  1 0 1     7.286 
  1 1 0     8.143 
  1 1 1     9.000 
 

Note that the precision of this representation is 857.0
12

000.3000.9
3





. 

 
Historically, the binary representation was used in the first genetic algorithms rather than the 
value representation.  However, the value representation avoids the problems of bias for 
discrete design variables and limited precision for continuous design variables.  It is also 
easy to implement since it is not necessary to make conversions between gene values and 
design variable values.   
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2.2. Generations 

Genetic algorithms work with generations of designs.  The designer specifies the generation 
size N, which is the number of designs in each generation.  The genetic algorithm begins 
with a starting generation of randomly generated designs.  This is accomplished by randomly 
generating the values of the genes of the N chromosomes in the starting generation.  From 
the starting generation, the genetic algorithm creates the second generation, and then the 
third generation, and so forth until a specified M = number of generations has been created.   
 

3. Fitness 

The genetic algorithm requires that a fitness function be evaluated for every chromosome in 
the current generation.  The fitness is a single number indicating the quality of the design 
represented by the chromosome.  To evaluate the fitness, each design must be analyzed to 
evaluate the objective f (minimized) and constraints 0gi   (i = 1 to m).  If there are no 
constraints, the fitness is simply the value of the objective f.  When constraints exist, the 
objective and constraint values must be combined into a single fitness value.  We begin by 
defining the feasibility of a design: 
 
  1 2max 0, , ,..., mg g g g        (5.1) 

 
Note that the design is infeasible if g > 0 and feasible if g = 0.  We assume that in (5.1) the 
constraints are properly scaled.   
 
One possible definition of fitness involves a user-specified positive penalty parameter P: 
 
 fitness = *f P g          (5.2) 
 
The fitness given by (5.2) is minimized rather than maximized as in biological evolution.  If 
the penalty parameter P in (5.2) is relatively small, then some infeasible designs will be more 
fit than some feasible designs.   This will not be the case if P is a large value. 
 
An alternative to the penalty approach to fitness is the segregation approach.  This approach 
does not require a user-specified parameter: 
 

 
max

                   if 0

        if 0   feas

f g
fitness

f g g


 

 
      (5.3) 

 
In (5.3), max

feasf  is the maximum value of f for all feasible designs in the generation (designs 

with g = 0).  The fitness given by (5.3) is minimized.  The segregation approach guarantees 
that the fitness of feasible designs in the generation is always better (lower) than the fitness 
of infeasible designs.  
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3.1. Example 1 

The three-bar truss in Fig. 5.2 has two design variables: x1 = cross-sectional area of members 
AB and AD, and x2 = cross-sectional area of member AC.  Suppose each design variable 
ranges from 0.0 to 0.5 and is represented by a single continuous value gene.  The starting 
generation consists of the following six chromosomes.   
 
1) 0.2833, 0.1408  2) 0.0248, 0.0316  3) 0.1384, 0.4092 
4) 0.3229, 0.1386  5) 0.0481, 0.1625  6) 0.4921, 0.2845 
The problem is the same as in a previous example where the objective and constraints are: 
 
 f = (100in)x1+(40in)x2   

0xg 11     

0xg 22   

 0x)ksi37500(x)ksi38400(kip9600g 213   

 0x)ksi75000(x)ksi76800(kip15000g 214   
 
Scale the objective and constraints by their respective values at x1 = x2 = 0.5in2.  Then 
evaluate the segregation fitness of the starting generation.  Calculate the average and best 
fitness for the generation. 
 
 

 

 

 

 

 

 

 

Fig. 5.2 The three-bar truss 

 

Solution 
Evaluating the objective and constraints at x1 = x2 = 0.5in2 gives: 

 f = 70in3 g1 = 0.5in2 g2 = 0.5in2 g3 = 28350kip     g4 = 60900kip 

The scaled objective and constraints are: 

30 in 30 in 

40 in 

A 

B C D 

20 kip 
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 f =     2
2

1
2

3
21 xin571.0xin429.1

in70

(40in)x(100in)x  


   

  0xin2
in5.0

x
g 1

2
2

1
1 


     

  0xin2
in5.0

x
g 2

2
2

2
2 


     

 
kip28350

x)ksi37500(x)ksi38400(kip9600
g 21

3


     

              0xin323.1xin354.13386.0 2
2

1
2    

 
kip60900

x)ksi75000(x)ksi76800(kip15000
g 21

4


  

              0xin232.1xin261.12463.0 2
2

1
2    

design 1: x1 = 0.2833in2   x2 = 0.1408in2 
 f = 0.4852 g1 = -0.5666 g2 = -0.2816 g3 = -0.2313 g4 = -0.2844 
 g = 0  fitness = 0.4852 
 
design 2: x1 = 0.0248in2   x2 = 0.0316in2 
 f = 0.0535 g1 = -0.0496 g2 = -0.0632 g3 = 0.2632 g4 = 0.1761 
 g = 0.2632 
 
design 3: x1 = 0.1384in2   x2 = 0.4092in2 
 f = 0.4314 g1 = -0.2768 g2 = -0.8184 g3 = -0.3902 g4 = -0.4324 
 g = 0  fitness = 0.4314 
 
design 4: x1 = 0.3229in2   x2 = 0.1386in2 
 f = 0.5406 g1 = -0.6458 g2 = -0.2772 g3 = -0.2820 g4 = -0.3316 
 g = 0  fitness = 0.5406 
 
design 5: x1 = 0.0481in2   x2 = 0.1625in2 
 f = 0.1615 g1 = -0.0962 g2 = -0.3250 g3 = 0.0585 g4 = -0.0146 
 g = 0.0585 
 
design 6: x1 = 0.4921in2   x2 = 0.2845in2 
 f = 0.8657 g1 = -0.9842 g2 = -0.5690 g3 = -0.7041 g4 = -0.7247 
 g = 0  fitness = 0.8657 
 

8657.0f feas
max   
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design 2: fitness = 0.8657+0.2632 = 1.1289 
design 5: fitness = 0.8657+0.0585 = 0.9242 
average fitness for generation 1 = 0.7293 best fitness for generation 1 = 0.4314 

4.   Genetic Algorithms:  New Generations 

  The genetic algorithm goes through a four-step process to create a new generation from the 
current generation: 
 
 1) selection 
 2) crossover 
 3) mutation 
 4) elitism 
 

4.1. Selection 

In this step, we select two designs from the current generation to be the mother design and 
the father design.  Selection is based on fitness.  The probability of being selected as mother 
or father should be greatest for those designs with the best fitness.  We will mention two 
popular selection processes.  The first selection process is known as tournament selection.  
With tournament selection, the user specifies a tournament size.  Suppose our tournament 
size is three.  We randomly select three designs from the current generation, and the most fit 
of the three becomes the mother design.  Then we randomly select three more designs from 
the current generation, and the most fit of the three becomes the father design.  One may vary 
the fitness pressure by changing the tournament size.  The greater the tournament size, the 
greater the fitness pressure.  In the extreme case where the tournament size is equal to the 
generation size, the most fit design in the current generation would always be selected as 
both the mother and father.  At the other extreme where the tournament size is one, fitness is 
completely ignored in the random selection of the mother and father. 
 
The second selection process is known as roulette-wheel selection.  In roulette-wheel 
selection, the continuous interval from zero to one is divided into subintervals, one for each 
design in the current generation.  If we assume fitness is positive and minimized, then the 
lengths of the subintervals are proportional to (1/fitness).  Thus, the longest subintervals 
correspond to the most fit designs in the current generation.  The greater the roulette 
exponent, , the greater the fitness pressure in roulette-wheel selection.  A random number 
between zero and one is generated, and the design corresponding to the subinterval 
containing the random number becomes the mother design.  Another random number 
between zero and one is generated, and the design corresponding to the subinterval 
containing the random number becomes the father design.   
 

4.2. Crossover 

After selecting the mother and father designs from the current generation, two children 
designs are created for the next generation by the crossover process.  First, we must 
determine whether or not crossover should occur.   A crossover probability is specified by 
the user.  A random number between zero and one is generated, and if it is less than the 
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crossover probability, crossover is performed.  Otherwise, the mother and father designs, 
without modification, become the two children designs.  There are several different ways to 
perform crossover.  One of the earliest crossover methods developed for genetic algorithms 
is single-point crossover.  Fig. 5.3 shows the chromosomes for a mother design and a father 
design.  Each chromosome has n = 10 binary genes: 
 

 

 

 

 

 

 

 

Fig. 5.3:  Single-Point Crossover 

 
With single-point crossover, we randomly generate an integer i from 1 to n known as the 
crossover point, where n is the number of genes in the chromosome.  We then cut the mother 
and father chromosomes after gene i, and swap the tail portions of the chromosomes.  In Fig. 
5.3, i = 7.  The first child is identical to the mother before the crossover point, and identical 
to the father after the crossover point.  The second child is identical to the father before the 
crossover point, and identical to the mother after the crossover point.   
 
Another crossover method is uniform crossover.  With uniform crossover, a random number 
r between zero and one is generated for each of the n genes.  For a particular gene, if x1 is the 
value from the mother design and x2 is the value from the father design, then the values y1 
and y2 for the children designs are:  
 

if r   0.5 y1 = x2  y2 = x1 

          (5.4) 
if r > 0.5 y1 = x1  y2 = x2 

  

The goal of crossover is to generate two new children designs that inherit many of the 
characteristics of the fit parent designs.  However, this goal may not be achieved when the 
binary representation is used.  Suppose the last four genes in the chromosomes in Fig. 5.3 
represent a single discrete design variable whose value is equal to the base ten value of the 
last four genes.  For the mother design, binary values of 1000 give a design variable value of 
8, and for the father design, binary values of 0111 give a design variable value of 7.  For the 
first child design, binary values of 1111 give a design variable value of 15, and for the 

1 0 0 1 1 0 1 0 0 0

1 1 1 0 1 0 0 1 1 1 

1 0 0 1 1 0 1 1 1 1

1 1 1 0 1 0 0 0 0 0 

crossover 
point 

mother 

father 

first child 

second child 
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second child, binary values of 0000 give a design variable value of 0.  Thus, the parents have 
close values of 8 and 7, while the children  have values that are very different from the 
parents of 15 and 0.  This is known as the Hamming cliff problem of the binary 
representation.  With a value representation, a single gene would have been used for this 
design variable, and the parent values of 7 and 8 would have been inherited by the children 
with either single point or uniform crossover. 
 
Blend crossover is similar to uniform crossover since it is also performed gene by gene.  
Blend crossover makes it possible for children designs to receive random values anywhere in 
the interval between the mother value and the father value.  Thus, we generate a random 
number between zero and one for a particular gene.  If x1 is the mother value and x2 is the 
father value, then the children values y1 and y2 are: 
 

y1 = (r)x1 + (1-r)x2  
           (5.5) 

y2 = (1-r)x1 + (r)x2  
 
It is possible to transition between uniform and blend crossover with a user-specified 
crossover parameter : 
 

y1 = (a)x1 + (1-a)x2  
           (5.6) 

y2 = (1-a)x1 + (a)x2 

  
where: 

if  r   0.5  
2

)r2(
a

/1 
  

           (5.7) 

if  r > 0.5  
2

)r22(
1a

/1 
  

 
Note that if  = 1, then a = r and (5.6) becomes (5.5), giving blend crossover.  If  = 0, then 
in the limit a = 0 for r   0.5 and a = 1 for r > 0.5, and (5.6) becomes (5.4), giving uniform 
crossover.  In the limit as  goes to  , a goes to 0.5 and (5.7) becomes y1 = y2 = (x1+x2)/2, 
which we may call average crossover. 
 

4.3. Mutation 

The next step for creating the new generation is mutation.  A mutation probability is 
specified by the user.  The mutation probability is generally much lower than the crossover 
probability.  The mutation process is performed for each gene of the first child design and for 
each gene of the second child design.  The mutation process is very simple.  One generates a 
random number between zero and one.  If the random number is less than the mutation 
probability, the gene is randomly changed to another value.  Otherwise, the gene is left alone.  
Since the mutation probability is low, the majority of genes are left alone.  Mutation makes it 
possible to occasionally introduce diversity into the population of designs.   
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If all possible values are equally probable for the mutated gene, the mutation is said to be 
uniform mutation.  It may be desirable to start out with uniform mutation in the starting 
generation, but as one approaches the later generations one may wish to favor values near the 
current value of the gene.  We will refer to such mutation as dynamic mutation.  Let x be the 
current value of the gene.  Let r be a random number between xmin and xmax, which are the 
minimum and maximum possible values of x, respectively.  Let the current generation 
number be j, and let M be the total number of generations.  The parameter  is a user-
supplied mutation parameter.  The new value of the gene is: 
 

 if r   x   1
minminmin )xx()xr(xy  

           (5.8) 

 if r > x     1
maxmaxmax )xx()rx(xy  

 
where 









 


M

1j
1         (5.9) 

 
In Fig. 5.4, we plot the value of y as a function of r for various values of the uniformity 
exponent .  Note that if  then y = r, which is uniform mutation.  For values of  less 
than one, the mutated gene value favors values near x.  The bias increases as  decreases.  In 
fact if  = 0, then y = x, which means that the gene is not mutated at all.   
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Fig. 5.4:  Dynamic Mutation 

In Fig. 5.5, we plot the uniformity exponent  versus the mutation parameter  and the 
generation number j.  Note that if  = 0, then  = 1, and the mutation is uniform for all 
generations.  If  > 0, then  = 1 for the starting generation (j = 1) and decreases to near zero 
in the final generation, giving dynamic mutation. 
 
 

 

 

 

 

 

 

 
Fig. 5.5:  Uniformity Exponent 

4.4. Elitism 

The selection, crossover, and mutation processes produce two new children designs for the 
new generation.  These processes are repeated again and again to create more and more 

1 

0 
M 

j 

1 



 = 1

 = 1/2

 = 2

 = 0

xmin 

xmin 

xmax 

xmax 

r x 
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y 

 = 1

 = 0.5
 = 0.25

 = 0
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children until the number of designs in the new generation reaches the specified generation 
size.  The final step that must be performed on this new generation is elitism.  This step is 
necessary to guarantee that the best designs survive from generation to generation.  One may 
think of elitism as the rite of passage for children designs to qualify as future parents.  The 
new generation is combined with the previous generation to produce a combined generation 
of 2N designs, where N is the generation size.  The combined generation is sorted by fitness, 
and the N most fit designs survive as the next parent generation.  Thus, children must 
compete with their parents to survive to the next generation. 
 

4.5. Summary 

Note that there are many algorithm parameters in a genetic algorithm including: generation 
size, number of generations, penalty parameter, tournament size, roulette exponent, crossover 
probability, crossover parameter, mutation probability, and mutation parameter.  
Furthermore, there are choices between value and binary representation, penalty and 
segregation fitness, tournament and roulette-wheel selection, single-point, uniform, and 
blend crossover, and uniform and dynamic mutation.  Thus, there is no single genetic 
algorithm that is best for all applications.  One must tailor the genetic algorithm to a specific 
application by numerical experimentation. 
 
Genetic algorithms are far superior to random trial-and-error search.  This is because they are 
based on the fundamental ideas of fitness pressure, inheritance, and diversity.  Children 
designs inherit characteristics from the best designs in the preceding generation selected 
according to fitness pressure.  Nevertheless, diversity is maintained via the randomness in the 
starting generation, and the randomness in the selection, crossover, and mutation processes.  
Research has shown that genetic algorithms can achieve remarkable results rather quickly for 
problems with huge combinatorial search spaces.   
 
Unlike gradient-based algorithms, it is not possible to develop conditions of optimality for 
genetic algorithms.  Nevertheless, for many optimization problems, genetic algorithms are 
the only game in town.  They are tailor-made to handle discrete-valued design variables.  
They also work well on ground-structure problems where constraints are deleted when their 
associated members are deleted, since constraints need not be differentiable or continuous.  
Analysis program crashes can be handled in genetic algorithms by assigning poor fitness to 
the associated designs and continuing onward.  Genetic algorithms can find all optima 
including the global optimum if multiple optima exist.  Genetic algorithms are conceptually 
much simpler than gradient-based algorithms.  Their only drawback is that they require many 
executions of the analysis program.  This problem will diminish as computer speeds increase, 
especially since the analysis program may be executed in parallel for all designs in a 
particular generation. 
 

4.6. Example 2 

Perform selection and crossover on the starting generation from Example 1.  Use tournament 
selection with a tournament size of two, and blend crossover according to (5.5) with a 
crossover probability of 0.6.  Use the following random number sequence: 
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0.5292  0.0436  0.2949  0.0411  0.9116  0.7869 
0.3775  0.8691  0.1562  0.5616  0.8135  0.4158  
0.7223  0.3062  0.1357  0.5625  0.2974  0.6033 
 
 
Solution 

 ))6(5292.0(truncate1  design 4  fitness = 0.5406 

 ))6(0436.0(truncate1  design 1  fitness = 0.4852 

mother = design 1 

 ))6(2949.0(truncate1  design 2  fitness = 1.1289 

 ))6(0411.0(truncate1  design 1  fitness = 0.4852 

father = design 1 

since mother and father are the same, no crossover needed 

child 1 = child 2 = 0.2833, 0.1408 

 

 ))6(9116.0(truncate1  design 6  fitness = 0.8657 

 ))6(7869.0(truncate1  design 5  fitness = 0.9242 

mother = design 6 

 ))6(3775.0(truncate1  design 3  fitness = 0.4314 

 ))6(8691.0(truncate1  design 6  fitness = 0.8657 

father = design 3 

0.1562 < 0.6 ==> perform crossover    

( 5616.0 )0.4921 + (1- 5616.0 )0.1384 = 0.3370  
(1- 5616.0 )0.4921 + ( 5616.0 )0.1384 = 0.2935 

(0.8135) 0.2845+ (1-0.8135) 0.4092  = 0.3078 
(1-0.8135) 0.2845+ (0.8135) 0.4092  = 0.3859 

child 3 = 0.3370, 0.3078 
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child 4 = 0.2935, 0.3859 

 

 ))6(4158.0(truncate1  design 3  fitness = 0.4314 

 ))6(7223.0(truncate1  design 5  fitness = 0.9242 

mother = design 3 

 ))6(3062.0(truncate1  design 2  fitness = 1.1289 

 ))6(1357.0(truncate1  design 1  fitness = 0.4852 

father = design 1 

0.5625 < 0.6 ==> perform crossover 

 (0.2974) 0.1384+ (1-0.2974) 0.2833= 0.2402  
(1-0.2974) 0.1384+ (0.2974) 0.2833= 0.1815 

(0.6033) 0.4092+ (1-0.6033) 0.1408  = 0.3027 
(1-0.6033) 0.4092+ (0.6033) 0.1408  = 0.2473 

child 5 = 0.2402, 0.3027 

child 6 = 0.1815, 0.2473 

4.7. Example 3 

Perform mutation on the problem in Examples 1 and 2.  Use a mutation probability of 10%, 
and perform dynamic mutation according to (5.8) and (5.9) with a mutation parameter of  = 
5.  Assume that this is the second of 10 generations.  Use the following random number 
sequence: 
 
 0.2252  0.7413  0.5135  0.8383  0.4788  0.1916 

 0.4445  0.8220  0.2062  0.0403  0.5252  0.3216 

 0.8673 

Solution 

child 1, gene 1: 0.2252 > 0.1 ==> no mutation 

child 1, gene 2: 0.7413 > 0.1 ==> no mutation 
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child 1 = 0.2833, 0.1408 

child 2, gene 1: 0.5135 > 0.1 ==> no mutation 

child 2, gene 2: 0.8383 > 0.1 ==> no mutation 

child 2 = 0.2833, 0.1408 

child 3, gene 1: 0.4788 > 0.1 ==> no mutation 

child 3, gene 2: 0.1916 > 0.1 ==> no mutation  

child 3 = 0.3370, 0.3078 

child 4, gene 1: 0.4445 > 0.1 ==> no mutation 

child 4, gene 2: 0.8220 > 0.1 ==> no mutation 

child 4 = 0.2935, 0.3859 

child 5, gene 1: 0.2062 > 0.1 ==> no mutation 

child 5, gene 2: 0.0403 > 0.1 ==> mutate!!! 

5905.0
10

12
1

5







 
  

xmin = 0.0 xmax = 0.5 x = 0.3027   (child 5, gene 2 from Example 2) 

Generate random number y between xmin and xmax. 

y = xmin + 0.5252(xmax - xmin) = 0.2626 < x 

  1
minminmin )xx()xy(xz  = 0.2783 

child 5 = 0.2402, 0.2783 

child 6, gene 1: 0.3216 > 0.1 ==> no mutation 

child 6, gene 2: 0.8673 > 0.1 ==> no mutation 

child 6 = 0.1815, 0.2473 
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4.8. Example 4 

Determine the segregation fitness for each of the 6 child chromosomes in Example 3.  Then 
perform the elitism step to create the second generation.  Calculate the average and best 
fitness of the second generation and compare to the average and best fitness of the starting 
generation. 
 
Solution 
Recall the formulas for the scaled objective and constraints from Example 3(?): 

 f =     2
2

1
2 xin571.0xin429.1      

  0xin2g 1
2

1      

  0xin2g 2
2

2      

g3     0xin323.1xin354.13386.0 2
2

1
2    

g4     0xin232.1xin261.12463.0 2
2

1
2    

 

child 1: x1 = 0.2833in2   x2 = 0.1408in2  

 f = 0.4852 g1 = -0.5666 g2 = -0.2816 g3 = -0.2313 g4 = -0.2844 

 g = 0  fitness = 0.4852 

child 2: x1 = 0.2833in2   x2 = 0.1408in2  

 f = 0.4852 g1 = -0.5666 g2 = -0.2816 g3 = -0.2313 g4 = -0.2844 

 g = 0  fitness = 0.4852 

child 3: x1 = 0.3370in2   x2 = 0.3078in2 

 f = 0.6573 g1 = -0.6740 g2 = -0.6156 g3 = -0.5249 g4 = -0.5579 

 g = 0  fitness = 0.6573 

child 4: x1 = 0.2935in2   x2 = 0.3859in2 

 f = 0.6398 g1 = -0.5870 g2 = -0.7718 g3 = -0.5693 g4 = -0.5992 

 g = 0  fitness = 0.6398 

child 5: x1 = 0.2402in2   x2 = 0.2783in2 
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 f = 0.5022 g1 = -0.4804 g2 = -0.5566 g3 = -0.3548 g4 = -0.3995 

 g = 0  fitness = 0.5022 

child 6: x1 = 0.1815in2   x2 = 0.2473in2 

 f = 0.4006 g1 = -0.3630 g2 = -0.4946 g3 = -0.2343 g4 = -0.2872 

 g = 0  fitness = 0.4006 

Parent generation: 
design 1: 0.2833, 0.1408 fitness = 0.4852 
design 2: 0.0248, 0.0316 fitness = 1.1289 
design 3: 0.1384, 0.4092 fitness = 0.4314 
design 4: 0.3229, 0.1386 fitness = 0.5406 
design 5: 0.0481, 0.1625 fitness = 0.9242 
design 6: 0.4921, 0.2845 fitness = 0.8657 

 
Child generation: 

child 1: 0.2833, 0.1408  fitness = 0.4852 
child 2: 0.2833, 0.1408  fitness = 0.4852 
child 3: 0.3370, 0.3078 fitness = 0.6573 
child 4: 0.2935, 0.3859 fitness = 0.6398 
child 5: 0.2402, 0.2783 fitness = 0.5022 
child 6: 0.1815, 0.2473 fitness = 0.4006 

 
Generation 2: 

design 1: 0.1815, 0.2473 fitness = 0.4006 
design 2: 0.1384, 0.4092 fitness = 0.4314 
design 3: 0.2833, 0.1408  fitness = 0.4852 
design 4: 0.2833, 0.1408  fitness = 0.4852 
design 5: 0.2833, 0.1408  fitness = 0.4852 
design 6: 0.2402, 0.2783 fitness = 0.5022 

 
 
average fitness for generation 2 = 0.4650 best fitness for generation 2 = 0.4006 
Significantly better than starting generation. 
 

5. Multi-Objective Optimization 

Many optimization problems possess multiple objective functions.  In structural design we 
may wish to minimize cost, maximize safety, maximize aesthetic beauty, minimize 
maintenance, maximize usable space, etc.  Suppose, for example, we desire to minimize cost 
and minimize deflection at a particular location.  These two objectives are competing.  This 
means that the minimum cost design is not likely to be the minimum deflection design.  Fig. 
5.6 shows an objective space plot for a particular structural optimization problem.  The 
shaded region represents the possible combinations of cost and deflection for all feasible 
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designs.  Design A is the minimum cost design and design B is the minimum deflection 
design.  Designs lying on the Pareto front are good compromise designs between the two 
objectives.  It is often difficult to numerically quantify the relative preference of cost versus 
deflection.  Many people do not know what their preferences are until they have a chance to 
inspect a variety of good designs.  Without a numerical quantification of preference, it is 
impossible to combine the two objectives into a single objective and then execute an 
optimization algorithm.  Since genetic algorithms work with generations of designs, they 
have the ability to produce a variety of designs on the Pareto front in a single run without 
requiring any numerical quantification of preference.  Designers can then inspect these 
designs, form their opinions, and make a selection. 
 
 
 
 

 

 

 

 

 

 

 
Fig. 5.6 Objective Space Plot 

 
Now let's see how to modify a genetic algorithm to produce a variety of Pareto designs in a 
single run.  First, it is necessary to formally define Pareto design.  Pareto designs are the 
nondominated designs from a given set of designs.  Design j dominates design i if it is equal 
or better in every objective, and better in at least one objective.  Consider the generation of 
ten designs plotted in objective space in Fig. 5.7: 

Design A 

Design B 

deflection 

cost 

Pareto front 
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Fig. 5.7:  A Generation of Ten Designs 

Design H dominates design D because it has lower values in both objectives.  Design B 
dominates design D because it has a lower value of cost and an equal value of deflection.  
There are no designs that dominate designs A, B, H, of J.  These four designs are the Pareto 
designs for this particular set of ten designs. 
 
It is our goal that the genetic algorithm converges to the Pareto designs for the set of all 
possible designs.  We do this by modifying the fitness function.  We will examine three 
different fitness functions for multi-objective optimization.  The first fitness function is 
called the scoring fitness function.  For a particular design i in a particular generation, the 
scoring fitness is equal to one plus the number of designs that dominate design i.  We 
minimize this fitness function.  For example, in Fig. 5.7, the scoring fitness of design D is 3 
since it is dominated by designs B and H.  The scoring fitness of design F is 10 since it is 
dominated by all other designs.  Note that the scoring fitness of the Pareto designs is one 
since they are nondominated. 
 
Another fitness function for multi-objective optimization is the ranking fitness function.  This 
fitness function is also minimized.  To begin, the Pareto designs in the generation are 
identified and assigned a rank of one.  Thus, designs A, B, H, and J in Fig. 5.7 are assigned a 
rank of one.  These designs are temporarily deleted, and the Pareto designs of the remaining 
set are identified and assigned a rank of two.  Thus, designs C, D, and I in Fig. 5.7 are 
assigned a rank of two.  These designs are temporarily deleted, and the Pareto designs of the 
remaining set are identified and assigned a rank of three.  Thus, designs E and G in Fig. 5.7 
are assigned a rank of three.  This procedure continues until all designs in the generation 
have been assigned a rank.  Thus, design F in Fig. 5.7 is assigned a rank of four.  The ranking 
fitness differs from the scoring fitness.  In Fig. 5.7, designs C and D have the same rank but 
they have different scores (design C has a score of 2 and design D has a score of 3). 
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deflection 

cost 

B 
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Note that since all Pareto designs in a particular generation have ranks and scores of one, 
they are all regarded as equally fit.  Thus, there is nothing to prevent clustering on the Pareto 
front.  Indeed, numerical experiments have shown that genetic algorithms with scoring or 
ranking fitness will often converge to a single design on the Pareto front.  We also observe 
that the scoring and ranking fitness functions are discontinuous functions of the objective 
values.  An infinitesimal change in the value of an objective may cause the ranking or 
scoring fitness to jump to another integer value. 
 
The third multi-objective fitness function we will consider is the maximin fitness function.  
We derive this fitness function directly from the definition of dominance.  Let us assume that 
the designs in a particular generation are distinct in objective space, and that the n objectives 
are minimized.  Let j

kf value of the k’th objective for design i. Design j dominates design i 

if: 
 

i j
k kf f  for 1 tok n  (5-10) 

Equation (5-10) is equivalent to: 
 

min( ) 0i j
k k

k
f f   (5-11) 

 
Thus, design i is a dominated design if: 

 

 max min( ) 0i j
k k

kj i
f f


    

 (5-12) 
The maximin fitness of design i is: 

 

 max min( ) 0i j
k k

kj i
f f


   (5-13) 

 
The maximin fitness is minimized.  The maximin fitness of Pareto designs will be less than 
zero, while the maximin fitness of dominated designs will be greater than or equal to zero.  
The maximin fitness of all Pareto designs is not the same.  The more isolated a design is on 
the Pareto front, the more negative its maximin fitness will be.  On the other hand, two 
designs that are infinitesimally close to each other on the Pareto front will have maximin 
fitnesses that are negative and near zero.  Thus, the maximin fitness function avoids 
clustering.  Furthermore, the maximin fitness is a continuous function of the objective values.  
 

5.1. Example 5 

Consider an optimization problem with two design variables, x1 and x2, no constraints, and 
two objectives: 

 211 xx10f    
1

2
2 x

x1
f


  
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A particular generation in a genetic algorithm consists of the following six designs: 

 design 1 x1=1 x2=1  design 4 x1=1 x2=0 

 design 2 x1=1 x2=8  design 5 x1=3 x2=17 

 design 3 x1=7 x2=55  design 6 x1=2 x2=11 

Calculate the objective values for these designs and make an objective space plot of this 
generation. 
 
Solution 

 91)1(10f 1
1    2

1

11
f 1

2 


  

 28)1(10f 2
1    9

1

81
f 2

2 


  

 1555)7(10f 3
1    8

7

551
f 3

2 


  

 100)1(10f 4
1    1

1

01
f 4

2 


  

 1317)3(10f 5
1    6

3

171
f 5

2 


  

 911)2(10f 6
1    6

2

111
f 6

2 


  

 
 

 

 

 

 

 

Fig. 5.8 
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f
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2
3
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5.2. Example 6 

Determine the scoring fitness and ranking fitness for the designs in Example 5. 

Solution 

Scoring Fitness: 

 Designs 2, 1, and 4 are not dominated by any other designs.  Their score is 1. 

 Design 6 is dominated by design 1.  Its score is 2. 

 Design 5 is dominated by designs 1, 4, and 6.  Its score is 4. 

 Design 3 is dominated by designs 1, 4, 6, and 5.  Its score is 5. 

Ranking Fitness: 

 Designs 2, 1, and 4 have a rank of 1. 

 Design 6 has a rank of 2. 

 Design 5 has a rank of 3. 

 Design 3 has a rank of 4. 

5.3. Example 7 

Determine the maximin fitness for the designs in Example 5. 

Solution 

design 1: 
     
    











62 ,99min,62 ,139min

,12 ,109min,82 ,159min,92 ,29min
max  

                         4,0min,4,4min,1,1min,6,6min,7,7minmax   

                4,4,1,6,7max   

               1  

design 2: 
     
    











69 ,92min,69 ,132min

,19 ,102min,89 ,152min,29 ,92min
max  

                         3,7min,3,11min,8,8min,1,13min,7,7minmax   
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                7,11,8,13,7max   

               7  

design 3: 
     
    











68 ,915min,68 ,1315min

,18 ,1015min,98 ,215min,28 ,915min
max  

                         2,6min,2,2min,7,5min,1,13min,6,6minmax   

                2,2,5,1,6max   

               6  

design 4: 
     
    











61 ,910min,61 ,1310min

,81 ,1510min,91 ,210min,21 ,910min
max  

                         5,1min,5,3min,7,5min,8,8min,1,1minmax   

                5,5,7,8,1max   

               1  

design 5: 
     
    











66 ,913min,16 ,1013min

,86 ,1513min,96 ,213min,26 ,913min
max  

                         0,4min,5,3min,2,2min,3,11min,4,4minmax   

                0,3,2,3,4max   

               4  

design 6: 
     
    











66 ,139min,16 ,109min

,86 ,159min,96 ,29min,26 ,99min
max  

                         0,4min,5,1min,2,6min,3,7min,4,0minmax   

                4,1,6,3,0max   

               0  
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Note that design 2 is more fit than designs 1 and 4 even though all three are Pareto designs 

(negative fitness).  This is because designs 1 and 4 are clustered. 
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CHAPTER 6 

CONSTRAINED OPTIMIZATION 1: K-T CONDITIONS 

1 Introduction 

We now begin our discussion of gradient-based constrained optimization. Recall that in 
Chapter 3 we looked at gradient-based unconstrained optimization and learned about the 
necessary and sufficient conditions for an unconstrained optimum, various search directions, 
conducting a line search, and quasi-Newton methods. We will build on that foundation as we 
extend the theory to problems with constraints. 

2 Necessary Conditions for Constrained Optimum 

At an unconstrained local optimum, there is no direction in which we can move to improve 
the objective function.  We can state the necessary conditions mathematically as 0f  . At 
a constrained local optimum, there is no feasible direction in which we can move to improve 
the objective.  That is, there may be directions from the current point that will improve the 
objective, but these directions point into infeasible space. 
 
The necessary conditions for a constrained local optimum are called the Kuhn-Tucker 
Conditions, and these conditions play a very important role in constrained optimization 
theory and algorithm development.  

2.1 Problem Form 

It will be convenient to cast our optimization problem into one of two particular forms.  This 
is no restriction since any problem can be cast into either of these forms. 
 
 Max  f x   

 s.t.: 
   0 1,  ,  i ig b i k  x    

   0 1,  ,i ig b i k m   x    

or  
 Min  f x   

 s.t.: 
   0 1,  ,  i ig b i k  x    

   0 1,  ,i ig b i k m   x    

2.2 Graphical Examples 

For the graphical examples below, we will assume we are maximizing with ≤ constraints. 
 
We have previously considered how we can tell mathematically if some arbitrary vector, s, 
points downhill.  That condition is, T 0f s . We developed this condition by noting that 
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any vector s could be resolved into vector components which lie in the tangent plane and 
along the gradient (or negative gradient) direction. 
 
Now suppose we have the situation shown in Fig. 6.1 below. We are maximizing. We have 
contours increasing in the direction of the arrow. The gradient vector is shown. What is the 
set of directions which improves the objective? It is the set for which T 0f s . We show 
that set as a semi-circle in Fig. 6.1 
 

 
Fig. 6.1 Gradient and set of directions which improves objective function. 

 
 
Now suppose we add in a less-than inequality constraint, ( ) 0g x . Contours for this 
constraint are given in Fig. 6.2. The triangular markers indicate the contour for the allowable 
value and point towards the direction of the feasible space. What is the set of directions 
which is feasible? It is the set for which T 0f s . That set is shown as a semi-circle in the 
figure. 
 

 
Fig. 6.2 Gradient and set of feasible directions for a constraint. 

 
Now suppose we overlay these two sets of contours on top of each other, as in Fig. 6.3. 
Where does the optimum lie? By definition, a constrained optimum is a point for which there 
is no feasible direction which improves the objective. We can see that that condition occurs 
when the gradient for the objective and gradient for the constraint lie on top of each other. 
When this happens, the set of directions which improves the objective (dashed semi-circle) 
does not overlap with the set of feasible directions (solid semi-circle.) 
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Fig. 6.3 An optimum for one binding constraint occurs when the gradient vectors 
overlap. When this condition occurs, no feasible point exists which improves the 
objective. 

 
Mathematically we can write the above condition as 
  

    * *
1f g  x x  (6.1) 

 
where  is a positive constant. 
 
Now consider a case where there are two binding constraints at the solution, as shown in Fig. 
6.4 
 

 
Fig. 6.4 Two binding constraints at an optimum. As long as the objective gradient is 
within the cone of the constraint gradients, no feasible point exists which improves 
the objective.  

 
We see that the objective gradient vector is “contained inside” the constraint gradient 
vectors.  If the objective gradient vector is within the constraint gradient vectors, then no 
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direction exists which simultaneously improves the objective and points in the feasible 
region. We can state this condition mathematically as: 
   

      * * *
1 1 2 2f g g     x x x  (6.2) 

 
where, as with the single constraint case,   and  are positive constants. Having 
graphically motivated the development of the main mathematical conditions for a constrained 
optimum, we are now ready to state these conditions. 

2.3 The Kuhn-Tucker Conditions 

The Kuhn-Tucker conditions are the necessary conditions for a point to be a constrained 
local optimum, for either of the general problems given below. (The K-T equations also work 
for an unconstrained optimum, as we will explain later.) 
 
If *x  is a local max for: 
 
 Max  f x  (6.3) 

 s.t.: 
   0 1,  ,  i ig b i k  x   (6.4)  

   0 1,  ,i ig b i k m   x   (6.5)  

 
Or if *x  is a local min for: 
 
 Min  f x  (6.6)  

 s.t.: 
   0 1,  ,  i ig b i k  x   (6.7)  

   0 1,  ,i ig b i k m   x   (6.8)  

 

and if the constraint gradients at the optimum,  *
ig x , are independent, then there exist 

   T*
1 m λ  , called Lagrange multipliers, such that *x and *λ satisfy the following 

system of equations, 

   is feasible 1, ,i ig b i m  x   (6.9) 

    * * *

1

m

i i
i

f g


   x x 0  (6.10) 

  * * 0 1, ,i i ig b i k     x   (6.11) 

 * 0 1, ,i i k     (6.12) 

 
* unrestricted for 1, ,

or
i

i

i k m


 
   


 (6.13) 
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Note in the above equations, 1, ,i k   indicates inequality constraints, 1, ,i k m    
indicates equality constraints, and 1, ,i m  indicates all constraints. 
 
Just as with the necessary conditions for an unconstrained optimum, the K-T conditions are 
necessary but not sufficient conditions for a constrained optimum. 
 
We will now explain each of these conditions. 
 
Equation (6.9) requires that a constrained optimum be feasible with respect to all constraints. 
 
Equation (6.10) requires the objective function gradient to be a linear combination of the 
constraint gradients.  This insures there is no direction that will simultaneously improve the 
objective and satisfy the constraints. 
 
Equation (6.11) enforces a condition known as complementary slackness.  Notice that this 
condition is for the inequality constraints only.  This condition states that either an inequality 
constraint is binding, or the associated Lagrange multiplier is zero.  Essentially this means 
that nonbinding inequality constraints drop out of the problem. 
 
Equation (6.12) states that the Lagrange multipliers for the inequality constraints must be 
positive. 
 
Equation (6.13) states that the Lagrange multipliers for the equality constraints can be either 
positive or negative. 
 
Note that (6.10) above, which is given in vector form, represents a system of n equations.  
We can rewrite (6.10) as: 
 

 

1 2
1 2

1 1 1 1

1 2
1 2

0

0

m
m

m
m

n n n n

gg gf

x x x x

gg gf

x x x x

  

  

 
    

   

 
    

   



     



 (6.14) 

 
We note there is a Lagrange multiplier, , for every constraint.  Recall, however, that if the 
constraint is not binding then its Lagrange multiplier is zero, from (6.11). 
 
Taken together, the K-T conditions represent m+n equations in m+n unknowns. The 
equations are the n equations given by (6.14) (or (6.10)) and the m constraints ( (6.9)). The 
unknowns are the n elements of the vector x and the m elements of the vector  
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2.4 Examples of the K-T Conditions 

2.4.1 Example 1: An Equality Constrained Problem 

Using the K-T equations, find the optimum to the problem, 
 
 Min   2 2

1 22 4f x x x  

 s.t. 1 1 2: 3 2 12g x x   

 
A picture of this problem is given below: 
 

 
Fig. 6.5 Contours of functions for Example 1. 

   
Since the constraint is an equality constraint, we know it is binding, so the Lagrange 
multiplier will be non-zero. With two variables and one constraint, the K-T equations 
represent three equations in three unknowns. 
 
The K-T conditions can be written: 
 

  

 

1

1 1

1

2 2

1 1

0

0

0

gf

x x

gf

x x

g b






 

 


 
 

 x

 

 
evaluating these expressions: 
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 
 

1

2

1 2

4 3 0

8 2 0

3 2 12 0

x

x

x x





 

 

  

 

 
which we can write in matrix form as: 
 

 
1

2

4 0 3 0

0 8 2 0

3 2 0 12

x

x



     
           
          

 

 
The solution to this system of equations is 1 23.2727,  1.0909,  4.3636x x    .  The value 

of the objective at this point is 26.18f  . This optimum occurs where the gradient vectors of 
the constraint and objective overlap, just as indicated by the graphical discussion. We should 
verify to make sure this is a constrained min and not a constrained max, since the K-T 
equations apply at both. 
 
Because the objective function for this problem is quadratic and the constraint is linear, the 
K-T equations are linear and thus easy to solve. We call a problem with a quadratic objective 
and linear constraints a quadratic programming problem for this reason. Usually the K-T 
equations are not linear. However, the SQP algorithm attempts to solve these equations by 
solving a sequence of quadratic program approximations to the real program—thus the name 
of “Sequential Quadratic Programming.” 

2.4.2 Example 2: An Inequality Constrained Problem 

In general it is more difficult to use the K-T conditions to solve for the optimum of an 
inequality constrained problem (than for a problem with equality constraints only) because 
we don’t know beforehand which constraints are binding at the optimum.  Thus we often use 
the K-T conditions to verify that a point we have reached is a candidate optimal solution. 
Given a point, it is easy to check which constraints are binding. 
 
Verify that the point  T 0.7059 2.8235x  is an optimum to the problem:  

 
   Min    2 2

1 2f x x x  

   s.t. 1 2: 4 12g x x   

 
Step 1: Put problem in proper form: 
 
   Min    2 2

1 2f x x x  

   s.t. 1 24 12 0g x x     

 
Step 2: See which constraints are binding: 
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    0.7059 4 2.8235 12 -0.0001 0      

 
Since this constraint is binding, the associated Lagrange multiplier is solved for.  (If it were 
not binding, the Lagrange multiplier would be zero, from complementary slackness.) 
 
Step 3: Write out the Lagrange multiplier equations represented by (6.10): 
 

 1
1

1 1

2 (1) 0
gf

x
x x

 
   

 
 

 1
2

2 2

2 (4) 0
gf

x
x x

 
   

 
 

 
Step 4: Substitute in the given point: 
 
  2 0.7059   (6.15) 

  2 2.8235 4  (6.16) 

 
 From (6.15), 1.4118   
 From (6.16), 1.4118   
 
Since these 's are consistent and positive, the above point satisfies the K-T equations and is 
a candidate optimal solution. 

2.4.3 Example 3: Another Inequality Constrained Problem 

Given the problem: 
 
  Min   2

1 2f x x x  

  s.t.   2 2
1 1 2 9 0g x x   x  

    2 1 2 1 0g x x x     

 

See if  T* 0 3 x satisfies the K–T conditions.   

 
Graphically the problem looks like, 
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Fig. 6.6. Contour plot and proposed point for Example 3. 

 
At the proposed point constraint 1g  is binding; 2g  is not. 

 
 
Step 1: Change problem to be in the form of (6.3-6.5): 
 
  Max    2

1 2f x x  x  

  s.t.   2 2
1 1 2: 9 0g x x  x  

    2 1 2: 1 0g x x  x  

 
Step 2: See which constraints are binding: 
 
In this case we can check constraints graphically. Because  2g x  is not binding, 2 0   

from (6.11). However, 1 is solved for since  1g x  is binding. 

 
Step 3: Write out the Lagrange multiplier equations represented by (6.10): 
 

 1 2
1 2 1 1 1

1 1 1

 2 (2 ) 0
g gf

x x
x x x

   
     

  
 (6.17) 

  1 2
1 2 1 2

2 2 2

1 2 0
g gf

x
x x x

   
     

  
 (6.18) 
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Step 4: Substitute in the given point: 
 
At  T 0 3 x , (6.17) vanishes; from (6.18): 

   1 1

1
2 3 1

6
       

so a valid set of ’s, i.e.,  T* 1
0

6
     

 has been found and the K–T conditions are 

satisfied. This is therefore a candidate optimal solution. 
   

2.4.4 Example 4: Another Point for the Same Problem 

Check to see if    T
* 1 0x  satisfies the K–T conditions for the problem given in Example 

3 above. This point is shown in Fig. 6.7 
 

 
Fig. 6.7 Contour plot and proposed point for Example 4. 

 
Step 1: Change problem to be in the form of (6.3-6.5): 
 
  Max    2

1 2f x x  x  

  s.t.   2 2
1 1 2: 9 0g x x  x  

    2 1 2: 1 0g x x  x  
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Step 2: See which constraints are binding: 
 
From Fig. 6.7 we can see that  1g x  is not binding and therefore 1 0  ;  2g x is binding so 

2 0   

 
Step 3: Write out the Lagrange multiplier equations represented by (6.10): 
 

 1 2
1 2 1 2

1 1 1

 2 (1) 0
g gf

x
x x x

   
     

  
 (6.19) 

  1 2
1 2 2

2 2 2

1 1 0
g gf

x x x
   

     
  

 (6.20) 

 
Step 4: Substitute in the given point: 
 
Substituting  T 1 0x  

 
 2 2    from (6.19) 

 2 1    from (6.20) 

 
Since we cannot find a consistent set of  ’s, and the  ’s are negative as well (either 
condition being enough to disqualify the point), this point does not satisfy the Kuhn-Tucker 
conditions and cannot be a constrained optimum. 
 
Question: In Examples 3 and 4 we have looked at two points—a constrained min, and point 
which is not an optimum. Are there any other points which would satisfy the K-T conditions 
for this problem? Where would a constrained max be found? Would the K-T conditions 
apply there? 

2.5 Unconstrained Problems 

We mentioned the K-T conditions also apply to unconstrained problems. This is fortunate 
since a constrained optimization problem does not have to have a constrained solution. The 
optimum might be an unconstrained optimum in the interior of the constraints. 
 
If we have an unconstrained optimum to a constrained problem, what happens to the K-T 
conditions? In this case none of the constraints are binding so all of the Lagrange multipliers 
are zero, from (6.11), so (6.10) becomes, 
 
 

      * * * *

1

0
m

i i
i

f g f


        
x x x  

 
Thus we see that the K-T equations simplify to the necessary conditions for an unconstrained 
optimum when no constraints are binding. 

= 0
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3 The Lagrangian Function 

3.1 Definition 

It will be convenient for us to define the Lagrangian Function: 
 

      
1

L ,
m

i i i
i

f g b


    x λ x x  (6.21) 

 
Note that the Lagrangian function is a function of both x and .  Thus the gradient of the 
Lagrangian function is made up of partials with respect to x and :  
    

   T

1 1

L L L L
L ,

n mx x  
    

          
x λ    (6.22) 

 
We will evaluate some of these partials to become familiar with them, 
 

The partial 
1

L

x




 is: 
11 1 1

L m
i

i
i

gf

x x x




 
 

    

 

Similarly,
2

L

x




is given by, 
12 2 2

L m
i

i
i

gf

x x x




 
 

    

 

The partial 
1

L





 is:  1 1
1

L
g b




  


 

 
It is convenient, given these results, to split the gradient vector of the Lagrangian function 
into two parts:  the vector containing the partial derivatives with respect to x, written xL , 

and the vector containing the partials with respect to , written L .  

 
The gradient of the Lagrangian function with respect to x can be written in vector form as: 
 

    
1

L
m

x i i
i

f g


    x x   (6.23) 

 
so that we could replace (6.10) by xL  0  if we wished. 

 
The gradient of the Lagrangian function with respect to  is: 
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 
 

 

1 1

2 2L

m m

g b

g b

g b



 
    
 
 

  

x

x

x


 (6.24) 

 

3.2 The Lagrangian Function and Optimality 

For a problem with equality constraints only, we can compactly state the K-T conditions as, 
 

 
L

L
L

x



 
    

0  (6.25) 

 
For a problem with inequality constraints as well, the main condition of the K-T equations, 
(6.10), can be stated as, 
 
 Lx  0  (6.26) 

 
Thus we can consider that at an optimum, there exist * and x* such that x* is a stationary 
point of the Lagrangian function. 
 
The Lagrangian function provides information about how the objective and binding 
constraints together affect an optimum. Suppose we are at a constrained optimum. If we were 
to change the objective function, this would clearly have an effect on the solution. Likewise, 
if we were to change the binding constraints (perhaps by changing the right hand sides), 
these changes would also affect the value of the solution. The Lagrangian function tells how 
these changes trade-off against each other, 
 

      
1

L ,
m

i i i
i

f g b


    x λ x x  

 
The Lagrange multipliers serve as “weighting factors” between the individual constraints and 
the objective. Appropriately, the multipliers have units of (objective function/constraint 
function). Thus if our objective had units of pounds, and constraint i had units of inches, 
Lagrange multiplier i would have units of pounds per inch. 

3.3 Interpreting Values of Lagrange Multipliers 

Thus far we have solved for Lagrange multipliers, but we have not attached any significance 
to their values. We will use the Lagrangian function to help us interpret what their values 
mean. 
 
We will start with the Lagrangian function at an optimum: 
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      * * * * *

1

L ,
m

i i i
i

f g b


    x λ x x  (6.27) 

 
Suppose now we consider the right-hand side of constraint i, bi, to be a variable.  How does 

the optimal solution change as we change bi?  To answer this question, we need to find 
*

i

df

db
.  

That is, we need to find how the optimal value of the objective changes as we change the 
right hand side, 

i
b . The Lagrangian function, which relates how constraints and the objective 

interact at the optimum, can give us this information.  
 
We will be concerned only with small perturbations at the optimum. This allows us to ignore 
nonbinding inequality constraints, which will be treated as if they were not there. Thus 
instead of m constraints, we will have m* constraints, which is the set of equality and binding 
inequality constraints.  
 
At an optimum, the value of L becomes the same as the value of f. This is because all of the 
terms in braces go to zero, 
 

        
*

* * * * * *

1

L ,
m

i i i
i

f g b f


        
x λ x x x  

 

since all constraints in our set m* are binding. At the optimum therefore, 
* L*

i i

df d

db db
 .   

As we change bi, we would expect x* and * to change, so we need to consider x and  

themselves to be functions of bi, i.e.,    ,  i ib bx λ .  Then by the chain rule: 
 
 

 
T T* L* L

Lx
i i i i i

df d
L

db db b b b
  

     
  
x λ

 (6.28) 

 

At the optimum L 0x   and L 0  , leaving only 
L

ib




.  

From the Lagrangian function, 
L

i
ib





,  

Thus we have the result, 
 

**
i

i

df

db
  (6.29) 

 
The Lagrange multipliers provide us with sensitivity information about the optimal solution.  
They tell use how the optimal objective value would change if we changed the right-hand 
side of the constraints.  This can be very useful information, telling us, for example, how we 

= 0
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could expect the optimal weight of a truss to change if we relaxed the right-hand side of a 
binding stress constraint (i.e. increased the allowable value of the stress constraint). 
 
Caution:  The sensitivity information provided by the Lagrange multipliers is valid only for 
small changes about the optimum (since for nonlinear functions, derivatives change as we 
move from point to point) and assumes that the same constraints are binding at the perturbed 
optimum. 

3.3.1 Example 5: Interpreting the Value of the Lagrange Multipliers 

In Example 1, Section 2.4.1, we solved the following problem 
 
   Min   2 2

1 22 4f x x x  

   s.t. 1 1 2: 3 2 12g x x   

 
We found the optimal solution to be: 

1 23.2727,  1.0909,  4.3636x x    , at which point * 26.18f  . 

 
What would be the expected change in the objective be if we increased the right-hand side of 
the constraint from 12 to 13?  From (6.29), 
 
 * *

i if b    

 
For 1b  , the change in the objective should be approximately 4.36. 
 
If we change the right hand side and re-optimize the problem, the new optimum is, 

1 23.5454,  1.1818,  4.7272x x    , at which point * 30.72f  . The actual change in the 

objective is 4.54. (Indeed, it is the average of the two 's .)  
 
Thus, without optimizing, the Lagrange multiplier provides an estimate of how much the 
objective would change per unit change in the constraint right hand side. This helps us 
evaluate how sensitive the optimum is to changes. 
 
Sometimes the objective represents profit, and the right hand side of a constraint is viewed as 
a resource which can be purchased. The value of the Lagrange multiplier is a breakpoint 
between realizing a net increase in profit or a net loss. If, for a binding constraint, we can 
purchase more right hand side for less than the Lagrange multiplier, net profit will be 
positive. If not, the cost of the resource will outweigh the increase in profit. 

3.4 Necessary and Sufficient Conditions 

The K-T Conditions we have presented in previous sections are necessary conditions for a 
constrained optimum.  That is, for a point to be a candidate optimal solution, it must be 
possible to find values of  that satisfy (6.9)-(6.13).  If we cannot find such , then the 
candidate point cannot be a constrained optimal solution.   
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Note, however, that as part of the KT conditions we require the constraint gradients, 
 *ig x , to be independent at the optimal solution; otherwise it is possible, although 

unlikely, that we could have a point be a constrained optimum and not satisfy the KT 
conditions. 
 
If a point satisfies the KT conditions, then it is a candidate optimal solution.  As we have 
seen, the necessary conditions can hold at a constrained max, constrained min, or a point that 
is neither.  An example showing how this might occur is given below: 
 

X1

X2

Decreasing Objective

C

B
A

* KT Conditions 
can be satisfied 
at points A, B, 
and C.

A, C - Locally Constrained Optima
B - Saddle Point

Infeasible Space

 
Fig. 6.8. Points where the K-T equations would be satisfied. 

 
For an unconstrained optimum we saw that sufficient conditions for a minimum were that 

0f  and, the Hessian, 2 ( )f x , is positive definite. 
   
Likewise, for a constrained optimum, sufficient conditions for a point to be a constrained 
minimum are the K-T equations are satisfied (6-9-6.13) and the Hessian of the Lagrangian 

function with respect to x,  2 * *L ,x x λ , is positive definite, where, 

 

     2 * * 2 * * 2 *

1

L ,
m

x i i
i

f g


    x λ x x  (6.30) 

 
Some further discussion is needed, however. If we write the condition of positive 
definiteness as, 
 

 2 * *L , 0T
x y x λ y  (6.31) 

 
The vectors y must satisfy, 
 
 ( *) 0J x y  (6.32) 
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Where ( *)J x is the Jacobian matrix of the constraints (matrix whose rows are the gradients of 
the constraints) active at x*. These vectors comprise a tangent plane and are orthogonal to 
the gradients of the active constraints. For more information about the sufficient conditions, 
see Luenberger, (1984), Fletcher (1987) or Edgar et al. (2001). 
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CHAPTER 7 

CONSTRAINED OPTIMIZATION 2: SQP AND GRG 

1 Introduction 

In the previous chapter we examined the necessary and sufficient conditions for a 
constrained optimum. We did not, however, discuss any algorithms for constrained 
optimization. That is the purpose of this chapter. 
 
In an oft referenced study done in 19801, dozens of nonlinear algorithms were tested on 
roughly 100 different nonlinear problems.  The top-ranked algorithm was SQP.  Of the five 
top algorithms, two were SQP and three were GRG.  Although many different algorithms 
have been proposed, based on these results, we will study only these two. 
 
SQP works by solving for where the KT equations are satisfied. SQP is a very efficient 
algorithm in terms of the number of function calls needed to get to the optimum.  It 
converges to the optimum by simultaneously improving the objective and tightening 
feasibility of the constraints.  Only the optimal design is guaranteed to be feasible; 
intermediate designs may be infeasible. 
 
The GRG algorithm works by computing search directions which improve the objective and 
satisfy the constraints, and then conducting line searches in a very similar fashion to the 
algorithms we studied in Chapter 3. GRG requires more function evaluations than SQP, but it 
has the desirable property that it stays feasible once a feasible point is found. If the 
optimization process is halted before the optimum is reached, the designer is guaranteed to 
have in hand a better design than the starting design.  GRG also appears to be more robust 
(able to solve a wider variety of problems) than SQP, so for engineering problems it is often 
the algorithm tried first. 

2 The Sequential Quadratic Programming (SQP) Algorithm 

The SQP algorithm was developed in the early 1980’s by M. J. D. Powell, a mathematician 
at Cambridge University. Before we begin describing this algorithm, we need to present 
some background information. 

2.1 The Newton Raphson Method for Solving Nonlinear Equations 

If we were to sum up how the SQP methods works in one sentence it would be: the SQP 
algorithm applies the Newton-Raphson method to solve the Kuhn-Tucker equations. Or, in 
short, SQP does N-R on the K-T! Thus we will begin by reviewing how the Newton Raphson 
method works. 

                                                 
1 Schittkowski, K., "Nonlinear Programming codes: Information, Tests, Performance," Lecture Notes in 
Economics and Mathematical Systems, vol. 183, Springer-Verlag, New York, 1980.  
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2.1.1 One equation with One Unknown 

The N-R method is used to find the solution to sets of nonlinear equations.  For example, 
suppose we wish to find the solution to the equation: 
 
 2 xx e   
 
We cannot solve for x directly.  The N-R method solves the equation in an iterative fashion 
based on results derived from the Taylor expansion. 
 
First, the equation is rewritten in the form, 
 
 2 0xx e    (7.1) 
 
We then provide a starting estimate of the value of x that solves the equation. This point 
becomes the point of expansion for a Taylor series:  
 

  
0

0 0dF
F F x x

dx
    (7.2) 

 
(For reasons that will become apparent later, we will use F instead of f for our functions 
here.) We would like to drive the value of the function to zero: 
 

  
0

0 00 -  
dF

F x x
dx

   (7.3) 

 
If we denote 0x x x   , and solve for x  in (7.3): 
 

 
0

/

F
x

dF dx


   (7.4)  

 
We then add x to 0x  to obtain a new guess for the value of x that satisfies the equation, 
obtain the derivative there, get the new function value, and iterate until the function value or 
residual, goes to zero. The process is illustrated in Fig. 7.1 for the example given in (7.1), 
with a starting guess 2.0x  . 
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1 2 3 x

Second trial, x  = 1.469

First trial, x  = 2

dy /dx
4

2

y 0

- 2

- 4  
 Fig. 7.1 Newton Raphson method on (7.1) 
 
Numerical results are: 
 

K x f(x) df/dx 
1 2 –3.389056 –6.389056 
2 1.469553 –0.877738 –3.347291 
3 1.20732948 –0.13721157 –2.34454106 
4 1.14880563 –0.00561748 –2.15442311 
5 1.146198212 –0.000010714 –2.146208926 
6 1.1461932206 –0.00000000004 –2.1461932254 

 
For simple roots, N-R has second order convergence. This means that the number of 
significant figures in the solution roughly doubles at each iteration. We can see this in the 
above table, where the value of x at iteration 2 has one significant figure (1); at iteration 3 it 
has one (1); at iteration 4 it has three (1.14); at iteration 5 it has six (1.14619), and so on. We 
also see that the error in the residual, as indicated by the number of zeros after the decimal 
point, also decreases in this fashion, i.e., the number of zeros roughly doubles at each 
iteration. 

2.1.2 Multiple Equations with Multiple Unknowns 

The N-R method is easily extended to solve n equation in n unknowns.  Writing the Taylor 
series for the equations in vector form: 
 

 

 
 

 

T0 0
1 1

T0 0
2 2

T0 0

0

0

0 n n

F F

F F

F F

   

   

   

x

x

x

 
 

 
We can rewrite these relationships in matrix form: 
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 
 

 

T0
01

1
T 00

22

0
T0

     

n
n

F
F

FF

F
F

    
        
  
  
    

x


 (7.5) 

 
For 2 X 2 System, 
 

 

1 1

1 2 1 1

2 22 2

1 2

F F

x x x F

x FF F

x x

  
                   
   

 (7.6)  

 
In (7.5) we will denote the vector of residuals as 0F .  (This violates our notation convention 
that bold caps represent matrices, not vectors. Just remember that F is a vector, not a matrix.) 
We will denote the matrix of coefficients as G.  Equation (7.5) can then be written, 
 
    G x F  (7.7) 
 
The solution is obviously 
 

  -1  x G F  (7.8) 

 

2.1.3 Using the N-R method to Solve the Necessary Conditions 

In this section we will make a very important connection—we will apply N-R to solve the 
necessary conditions. Consider for example, a very simple case—an unconstrained problem 
in two variables. We know the necessary conditions are, 
 

 1

2

0

0

f

x

f

x










  (7.9) 

Now suppose we wish to solve these equations using N-R, that is we wish to find x* to drive 
the partial derivatives of f to zero. In terms of notation and discussion this gets a little tricky 
because the N-R method involves taking derivatives of the equations to be solved, and the 
equations we wish to solve are composed of derivatives. So when we substitute (7.9) into the 
N-R method, we end up with second derivatives. 
 

For example, if we set 1 2
1 2

and
f f

F F
x x

 
 
 

. Then we can write (7.6) as,  
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1 1 2 1 11

2

1 2 2 2 2

f f f

x x x x xx

xf f f

x x x x x

            
                                                          

 (7.10) 

 
or, 
 

 

2 2

2
1 2 1 11

2 2
2

2
21 2 2

f f f

x x x xx

x ff f
xx x x

                               

 (7.11) 

 
which should be familiar from Chapter 3, because (7.11) can be written in vector form as, 
 
 f  H x  (7.12) 
 
and the solution is, 
 

  1 f   x H  (7.13) 

 
We recognize (7.12-7.13) as Newton’s method for solving for an unconstrained optimum. 
Thus we have the important result that Newton’s method is the same as applying N-R on the 
necessary conditions for an unconstrained problem. From the properties of the N-R method, 
we know that if Newton’s method converges (and recall that it doesn’t always converge), it 
will do so with second order convergence—which is very fast. 
 
Now just to indicate where we are heading, after we introduce the SQP approximation, the 
next step is to show that the SQP method is the same as doing N-R on the necessary 
conditions for a constrained problem (with some tweaks to make it efficient and to ensure it 
converges). 

2.2 Constrained Optimization: Equality Constraints 

2.2.1 Problem Definition 

We will start with a problem which only has equality constraints. We recall that when we 
only have equality constraints, we do not have to worry about complementary slackness 
which makes things simpler. So the problem we will focus on is, 
 
 Min  f x  (7.14) 

 st.   0 1, 2, ,i ig b i m  x   (7.15) 
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The necessary conditions for a constrained optimal solution are: 
 

 
1

m

i i
i

f g


    0  (7.16) 

 0 1, ,i ig b i m     (7.17) 

 

2.2.2 The SQP Approximation 

As we have previously mentioned in Chapter 6, a problem with a quadratic objective and 
linear constraints is known as a quadratic programming problem. These problems have a 
special name because the K-T equations are linear and are easily solved. We will make a 
quadratic programming approximation at the point 0x  to the problem given by (7.14-7.15) 
 

  T0 0 T 2 01
L

2a xf f f       x x x  (7.18) 

  T0 0
, 1, ,i a i i ig g g b i m     x   (7.19) 

 
where the subscript a is used in af  to indicate the approximation. Close examination of 

(7.18) shows something unexpected. Instead of 2 f as we would normally have if we were 

doing a Taylor approximation of the objective, we have 2
xL , the Hessian of the Lagrangian 

function with respect to x. Why is this case? It is directly tied to applying N-R on the K-T, as 
we will presently show. For now we will just accept that the objective uses the Hessian of the 
Lagrangian instead of the Hessian of the objective. 
 
We will solve the QP approximation, (7.18-7.19), by solving the K-T equations for this 
problem, which, as mentioned, are linear. These equations are given by, 
 

 ,
1

m

a i i a
i

f g


    0  (7.20) 

 , 0 1, ,i a ig b for i m     (7.21) 

 
Since, for example, from (7.18), 
 
 0 2 0La xf f    x  

 
we can also write these equations in terms of the original problem, 
 

 0 2 0 0

1

L
m

x i i
i

f g


     x 0  (7.22) 

  T0 0 0 1, ,i i ig g b for i m     x   (7.23) 
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These are a linear set of equations we can readily solve, as shown in the example in the next 
section. For Section 2.2.4, we will want to write these equations even more concisely. If we 
define the following matrices and vectors, 
 

 

 
 

 

 

T0
1

T0
0 0 0 0 02

1 2

T0

, ,
T

m

m

g

g
g g g

g

 
 
          
 
  

J J 


 

 

 

0
11

0
20 2 0 2 0 2 02

1

0

L
m

x i i
i

mm

bg

bg
f g

bg




   
   
         
   
   
    

g b


 

 
We can write (7.22-7.23) as, 
 

  T2 0 0 0Lx f     x J λ  (7.24) 

  0 0   J x g b  (7.25) 

 
Again, to emphasize, this set of equations represents the solution to (7.18-7.19). 
 

2.2.3 Example 1: Solving the SQP Approximation 

Suppose we have as our approximation the following, 
 

 

   

 

1 1
1 2

2 2

1

2

1 01
3 3 2

0 12

5 1 3 0

a

a

x x
f x x

x x

x
g

x

     
             

 
    

 (7.26) 

 
We can write out the K-T equations for this approximation as, 
  

 

 

1

2

1

2

3 1 0 1
0

2 0 1 3

5 1 3 0

a

a

x
f

x

x
g

x


      

                
 

    

 (7.27) 

We can rewrite these equations in matrix form as, 
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1

2

1 0 1 3

0 1 3 2

1 3 0 5

x

x



       
             
          

 (7.28) 

 
The solution is, 
 

 
1

2

2.6

0.8

0.4

x

x



    
        
      

 (7.29) 

 
Observations: This calculation represents the main step in an iteration of the SQP algorithm 
which solves a sequence of quadratic programs. If we wanted to continue, we would add 
x to our current x, update the Lagrangian Hessian, make a new approximation, solve for 
that solution, and continue iterating in this fashion. 
 
If we ever reach a point where x goes to zero as we solve for the optimum of the 
approximation, the original K-T equations are satisfied. We can see this by examining (7.22-
7.23). If x is zero, we have, 
 

 2 *

1
0

L
m

x i i
i

f g


     x 0


 (7.30) 

 

  T

0

0 1, ,i i ig g b for i m


     x 


 (7.31) 

 
which then match (7.16-7.17). 
 

2.2.4 N-R on the K-T Equations for Problems with Equality Constraints 

In this section we wish to look at applying the N-R method to the original K-T equations. 
The K-T equations for a problem with equality constraints only, as given by (7.16-7.17), are, 
 

 
1

m

i i
i

f g


    0  (7.32) 

 0 1, ,i ig b i m     (7.33) 

 
Now suppose we wish to solve these equations using the N-R method. To implement N-R we 
would have, 
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   

   
   

   

 

 

1 1
1

1 11 1

T T

x

T T

x n n n
TT

x

TT m m
x m m

F F F

F F F

g bg g

g b
g g









     
  
       

            
  
         

x

λ

  

 

 (7.34) 

 
where 1F  for example, is given by, 

 1
11 1

m
i

i
i

gf
F

x x





 
    (7.35) 

 
If we substitute (7.35) into matrix (7.32), the first row becomes, 
 

2 2 22 2 2
1 2

2 2
1 1 11 1 2 1 2 1 1 1 1 1 1

, , , , , , ,
m m m

i i i m
i i i

i i in n

g g g gg gf f f

x x x x x x x x x x x x x
  

  

                
                                     
   

 
Recalling, 

 2 2 2

1

m

x i i
i

L f g


      

 
And using the matrices we defined above, 
 

 

 
 

 

 

T0
1

T0
0 0 0 0 02

1 2

T0

, ,
T

m

m

g

g
g g g

g

 
 
          
 
  

J J 


 

 

 

0
11

0
20 2 0 2 0 2 02

1

0

L
m

x i i
i

mm

bg

bg
f g

bg




   
   
         
   
   
    

g b


 

 
we can rewrite (7.34) as, 
 

    02 0 0 0 0 0

00 0

L

0 ( )

T T

x f       
             

x xJ J λ

λ λJ g b
 (7.36) 
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If we do the matrix multiplications we have 
 

    T2 0 0 0 0 0 0L ( )
T

x f       x J λ λ J λ  (7.37) 

  0 0   J x g b  

 
and collecting terms, 
 

  T2 0 0 0Lx f     x J λ  (7.38)  

  0 0   J x g b  

 
which equations are the same as (7.24-7.25).  Thus we see that doing a N-R iteration on the 
K-T equations is the same as solving for the optimum of the QP approximation. This is the 
reason we use the Hessian of the Lagrangian function rather than the Hessian of the objective 
in the approximation. 

2.3 Constrained Optimization: Inequality and Equality Constraints 

In the previous section we considered equality constraints only. We need to extend these 
results to the general case. We will state this problem as 
 
 Min  f x   

 s.t.   0 1, ,i ig b i k  x   (7.39)  

   0 1, ,i ig b i k m   x    

 
The quadratic approximation at point xo is: 
 

 Min     T T0 0 2 01
L

2a xf f f       x x x   

 s.t.  , :i ag   0 0 1, 2,...,
T

i i ig g b i k    x  (7.40)  

  0 0 1,...,
T

i i ig g b i k m     x  

 
Notice that the approximations are a function only of ∆x.  All gradients and the Lagrangian 
hessian in (7.40) are evaluated at the point of expansion and so represent known quantities. 
 
In the article where Powell describes this algorithm,2 he makes a significant statement at this 
point. Quoting, “The extension of the Newton iteration to take account of inequality 
constraints on the variables arises from the fact that the value of x  that solves (7.39) can 

                                                 
2 Powell, M.J.D., "A Fast Algorithm for Nonlinearly Constrained Optimization Calculations," Numerical 
Analysis, Dundee 1977, Lecture Notes in Mathematics no. 630, Springer-Verlag, New York, 1978 
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also be found by solving a quadratic programming problem.  Specifically, x  is the value 
that makes the quadratic function in (7.40) stationary.” 
 
Further, the value of  for the K-T conditions is equal to the vector of Lagrange multipliers 
of the quadratic programming problem. Thus solving the quadratic objective and linear 
constraints in (7.40) is the same as solving the N-R iteration on the original K-T equations. 
 
The main difficulty in extending SQP to the general problem has to do the with the 
complementary slackness condition. This equation is non-linear, and so makes the QP 
problem nonlinear. We recall that complementary slackness basically enforces that either a 
constraint is binding or the associated Lagrange multiplier is zero. Thus we can incorporate 
this condition if we can develop a method to determine which inequality constraints are 
binding at the optimum. An example of a modern solution technique is given by Goldfarb 
and Idnani.3 This algorithm starts out by solving for the unconstrained optimum to the 
problem and evaluating which constraints are violated. It then moves to add in these 
constraints until it is at the optimum. Thus it tends to drive to the optimum from infeasible 
space. 
 
There are other important details to develop a realistic, efficient SQP algorithm. For 
example, the QP approximation involves the Lagrangian hessian matrix, which involves 
second derivatives.  As you might expect, we don't evaluate the Hessian directly but 
approximate it using a quasi-Newton update, such as the BFGS update. 
 
Recall that updates use differences in x and differences in gradients to estimate second 
derivatives. To estimate 2Lx  we will need to use differences in the gradient of the 

Lagrangian function, 
 

  
1

L
m

x i i
i

f g


      

 
Note that to evaluate this gradient we need values for i.  We will get these from our solution 
to the QP problem. Since our update stays positive definite, we don’t have to worry about the 
method diverging, like Newton’s method does for unconstrained problems. 

2.4 Comments on the SQP Algorithm 

The SQP algorithm has the following characteristics, 
 The algorithm is very fast. It is the most efficient optimization algorithm available 

today. 
 Because it does not rely on a traditional line search, it is often more accurate in 

identifying an optimum.  

                                                 
3 Goldfarb, D., and A. Idnani, "A Numerically Stable Dual Method for Solving Strictly Convex Quadratic 
Programs," Math. Programming, v. 27, 1983, p.1-33. 
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 The efficiency of the algorithm is partly because it does not enforce feasibility of the 
constraints at each step. Rather it gradually enforces feasibility as part of the K-T 
conditions. It is only guaranteed to be feasible at the optimum. 

 
Relative to engineering problems, there are some drawbacks:  

 Because it can go infeasible during optimization—sometimes by relatively large 
amounts—it can crash engineering models. 

 It is more sensitive to numerical noise and/or error in derivatives than GRG. 
 If we terminate the optimization process before the optimum is reached, SQP does 

not guarantee that we will have in-hand a better design than we started with. GRG 
does guarantee this. 

2.5 Summary of Steps for SQP Algorithm 

1.   Make a QP approximation to the original problem.  For the first iteration, use a 
Lagrangian Hessian equal to the identity matrix. 
 

2. Solve for the optimum to the QP problem. As part of this solution, values for the 
Lagrange multipliers are obtained.   

 
3. Execute a simple line search by first stepping to the optimum of the QP problem. So the 

initial step is ∆x, and new old  x x x . See if at this point a penalty function, composed of 
the values of the objective and violated constraints, is reduced.  If not, cut back the step 
size until the penalty function is reduced.  The penalty function is given 

by
1

vio

i i
i

P f g


   where the summation is done over the set of violated constraints, and 

the absolute values of the constraints are taken.  The Lagrange multipliers act as scaling 
or weighting factors between the objective and violated constraints. 
 

4. Evaluate the Lagrangian gradient at the new point. Calculate the difference in x and in 
the Lagrangrian gradient, . Update the Lagrangian Hessian using the BFGS update. 

 
5. Return to Step 1 until ∆x is sufficiently small.  When ∆x approaches zero, the K-T 

conditions for the original problem are satisfied. 

2.6 Example of SQP Algorithm 

Find the optimum to the problem, 
 
 Min   4 2 2 2

1 2 1 2 1 12 2 5f x x x x x x     x  

 s.t.    2

1 20.25 0.75 0g x x    x  

 
starting from the point  -1,4 .  A contour plot of the problem is shown in Fig. 7.2. This 

problem is interesting for several reasons: the objective is quite eccentric at the optimum, the 
algorithm starts at point where the search direction is pointing away from the optimum, and 
the constraint boundary at the starting point has a slope opposite to that at the optimum. 
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Fig. 7.2. Contour plot of example problem for SQP algorithm. 

 
Iteration 1  
We calculate the gradients, etc. at the beginning point. The Lagrangian Hessian is initialized 
to the identity matrix. 

At        T0 0 0 2 0 1   0
-1,4 , 17, 8,6 ,  L

0   1

T
f f

 
       

 
x  

    0 02.4375,  1.5,  0.75
T

g g    

 
Based on these values, we create the first approximation, 
 

    1 1
1 2

2 2

1 01
17.0 8 6

0 12a

x x
f x x

x x

     
             

 

 

   1

2

2.4375 1.5 0.75 0a

x
g

x

 
    

 

 
We will assume the constraint is binding.  Then the K-T conditions for the optimum of the 
approximation are given by the following equations: 
 
 0a af g     

 0ag   
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These equations can be written as, 
 
  18 1.5 0x      

  26 0.75 0x      

 1 22.4375 1.5 0.75 0x x      

 
The solution to this set of equations is 1 20.5,  2.25,  5.00x x         

 

The proposed step is, 1 0 1 0.5 1.5

4 2.25 1.75

       
               

x x x  

 
Before we accept this step, however, we need to check the penalty function, 
 

 
1

vio

i i
i

P f g


   

 
to make sure it decreased with the step. At the starting point, the constraint is satisfied, so the 
penalty function is just the value of the objective, 17P  . At the proposed point the 
objective value is 10.5f  and the constraint is slightly violated with 0.25g   . The penalty 

function is therefore, 10.5 5.0* 0.25 11.75P     . Since this is less than 17, we accept the 

full step. Contours of the first approximation and the path of the first step are shown in Fig. 
7.3. 
 

 
Fig. 7.3 The first SQP approximation and step. 
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Iteration 2  

At        T1 1 11.5 1.75 ,  10.5, 8.0 1.0 ,
T

f f      x  

   1 10.25, 2.5 0.75
T

g g     

 
We now need to update the Hessian of the Lagrangian.  To do this we need the Lagrangian 
gradient at x0 and x1. (Note that we use the same Lagrange multiplier, 1 , for both 
gradients.) 
 

    0 1 8.0 1.5 0.5
L , 5.0

6.0 0.75 2.25

     
        

     
x λ  

 

    1 1 8.0 2.5 20.5
L , 5.0

1.0 0.75 4.75

      
              

x λ   

 

    0 1 1 0 1 21.0
L , L ,

7.0

 
      

γ x λ x λ  

 0 1.5 1.0 0.5

1.75 4.0 2.25

       
             

x  

 
From Chapter 3, we will use the BFGS Hessian update, 
 

 
 

 
 

 

T T

1
T T

k k k k k k

k k

k k k k k


 

  
  

γ γ H x x H
H H

γ x x H x
 

 
Substituting: 
 

 
 

 

 

 
2 1

21.0 1. 0. 0.5 1. 0.
21.0 7.0 0.5 2.25

1. 0. 7.0 0. 1. 2.25 0. 1.
L

0.5 1. 0. 0.50. 1.
21.0 7.0 0.5 2.25

2.25 0. 1. 2.25

        
                                               

 

 

2 1 1. 0. 16.8000 5.6000 0.0471 0.2118
L

0. 1. 5.6000 1.8667 0.2118 0.9529

     
        

     
 

 

2 1 17.7529  5.3882
L

5.3882   1.9137

 
   

 
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The second approximation is therefore, 
 

    1 1
1 2

2 2

17.753  5.38821
10.5 8.0 1.0

5.3882   1.91372a

x x
f x x

x x

     
               

 

 

   1

2

0.25 2.5 0.75 0a

x
g

x

 
     

 

 
 
As we did before, we will assume the constraint is binding. The K-T equations are, 
 
  1 28 17.753 5.3882 2.5 0x x         

  1 21 5.3882 1.9137 0.75 0x x         

  1 20.25 2.5 0.75 0x x       

 
The solution to this set of equations is 1 21.6145,  5.048,  2.615x x        . Because is 

negative, we need to drop the constraint from the picture. (We can see in Fig. 7.4 below that 
the constraint is not binding at the optimum.) With the constraint dropped, the solution 
is, 1 22.007, 5.131, 0.x x        This gives a new x of, 

 

 2 1 1.5 2.007 0.507

1.75 5.131 3.381

     
                

x x x  

 
However, when we try to step this far, we find the penalty function has increased from 11.75 
to 17.48 (this is the value of the objective only—the violated constraint does not enter in to 
the penalty function because the Lagrange multiplier is zero). We cut the step back. How 
much to cut back is somewhat arbitrary. We will make the step 0.5 times the original. The 
new value of x becomes, 
 

 2 1 1.5 2.007 0.4965
0.5  

1.75 5.131 0.8155

      
                

x x x   

 
At which point the penalty function is 7.37. So we accept this step. Contours of the second 
approximation are shown in Fig. 7.4, along with the step taken. 
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Fig. 7.4 The second approximation and step. 

  
Iteration 3 

At        T2 2 20.4965 0.8155 ,  7.367, 5.102 2.124 ,
T

f f       x  

   2 20.6724, 0.493 0.75
T

g g     

 

    1 2 8.0 2.5 8.0
L , 0

1.0 0.75 1.0

      
              

x λ  

 

    2 2 5.102 0.493 5.102
L , 0

2.124 0.75 2.124

      
              

x λ  

 

    1 2 2 1 2 2.898
L , L ,

1.124

 
      

γ x λ x λ  

 1 0.4965 1.5 1.004

0.8155 1.75 2.5655

      
              

x  

 
Based on these vectors, the new Lagrangian Hessian is, 
 

 2 2 17.7529  5.3882 1.4497 0.5623 5.8551 0.7320
L

5.3882   1.9137 0.5623 0.2181 0.7320 0.0915

     
             
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 2 2 13.3475  4.0939
L

4.0939   2.0403

 
   

 
 

 
So our next approximation is, 

    1 1
1 2

2 2

13.3475  4.09391
7.367 5.102 2.124

4.0939   2.04032a

x x
f x x

x x

     
               

 

 

   1

2

0.6724 0.493 0.75 0a

x
g

x

 
     

 

 
The K-T equations, assuming the constraint is binding, are, 
 
  1 25.102 13.3475 4.0939 0.493 0x x         

  1 22.124 4.0939 2.0403 0.75 0x x         

  1 20.6724 0.493 0.75 0x x       

 
The solution to this set of equations is 1 20.1399,  0.8046,  0.1205x x      .  

 

Our new proposed point is,  3 2 0.4965 0.1399 0.3566
 

0.8155 0.8046 0.0109

      
                

x x x   

 
At this point the penalty function has decreased from 7.37 to 5.85. We accept the full step. A 
contour plot of the third approximation is shown in Fig. 7.5. 
 

 
Fig. 7.5 The third approximation and step. 
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Iteration 4 

At        3 3 30.3566 0.0109 ,  5.859, 2.9101 0.2761 ,
T T

f f       x  

   3 30.01954, 0.2132 0.75
T

g g     

 

    2 3 5.102 0.493 5.161
L , 0.1205

2.124 0.75 2.214

      
              

x λ  

 

    3 3 2.910 0.2132 2.936
L , 0.1205

0.2761 0.75 0.3665

      
              

x λ  

 

    2 3 3 2 3 2.225
L , L ,

1.8475

 
     

 
γ x λ x λ  

 

 2 0.3566 0.4965 0.1399

0.0109 0.8155 0.8046

      
              

x  

 
Based on these vectors, the new Lagrangian Hessian is, 
 

 2 3 13.3475  4.0939 2.7537 2.2865 10.6397 4.5647
L

4.0939   2.0403 2.2865 1.8986 4.5647 1.9584

     
        

     
 

 

 2 3 5.4616  1.8157
L

1.8157   1.9805

 
   

 
 

 
Our new approximation is, 

    1 1
1 2

2 2

5.4616  1.81571
5.859 2.910 0.2761

1.8157   1.98052a

x x
f x x

x x

     
               

 

 

   1

2

0.0195 0.2132 0.75 0a

x
g

x

 
     

 

 
The K-T equations, assuming the constraint is binding, are, 
 
 1 22.910 5.4616 1.8157 (0.2132) 0x x         

  1 20.2761 1.8157 1.9805 0.75 0x x         

  1 20.0195 0.2132 0.75 0x x       

 



 Chapter 7: Constrained Optimization 2 
 

 20 

The solution to this problem is, 1 20.6099,  0.1474,  0.7192x x       . Since  is 

positive, our assumption about the constraint was correct. Our new proposed point is, 
 

  4 3 0.3566 0.6099 0.2533

0.0109 0.1474 0.1583

     
                 

x x x   

 
At this point the penalty function is 4.87, a decrease from 5.85, so we take the full step. The 
contour plot is given in Fig. 7.6 
 

 
Fig. 7.6 The fourth approximation and step. 

 
Iteration 5 

At        4 4 40.2533 0.1583 ,  4.6071, 1.268 0.4449 ,
T T

f f      x  

   4 40.3724, 1.007 0.75
T

g g      

 

    3 4 2.9101 0.2132 3.063
L , 0.7192

0.2761 0.75 0.8155

      
              

x λ  

 

    4 4 1.268 1.007 0.5438
L , 0.7192

0.4449 0.75 0.9843

       
              

x λ  

 

    3 4 4 3 4 2.519
L , L ,

0.1688

 
      

γ x λ x λ  
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 3 0.2533 0.3566 0.6099

0.1583 0.0109 0.1474

     
               

x  

 
Based on these vectors, the new Lagrangian Hessian is, 
 

 2 4 5.4616  1.8157 4.0644 0.2724 5.3681 1.4290
L

1.8157   1.9805 0.2724 0.0183 1.4290 0.3804

     
             

 

 

 2 4 4.1578  0.1144
L

0.1144   1.6184

 
   

 
 

 
Our new approximation is, 

    1 1
1 2

2 2

4.1578   0.11441
4.6071 1.268 0.4449

0.1144   1.61842a

x x
f x x

x x

     
               

 

 

   1

2

0.3724 -1.007 0.75 0a

x
g

x

 
     

 

 
The K-T equations, assuming the constraint is binding, are, 
 
 1 21.268 4.1578 0.1144 ( 1.007) 0x x          

  1 20.4449 0.1144 1.6184 0.75 0x x         

  1 20.3724 1.007 0.75 0x x       

 
The solution to this problem is, 1 20.0988,  0.6292,  0.7797x x      . Since  is positive, 

our assumption about the constraint was correct. Our new proposed point is, 
 

  5 4 0.2533 0.0988 0.3521

0.1583 0.6292 0.4709

     
               

x x x   

 
At this point the penalty function is 4.55, a decrease from 4.87, so we take the full step. The 
contour plot is given in Fig. 7.7 
 
We would continue in this fashion until x goes to zero. We would then know the original 
K-T equations were satisfied. The solution to this problem occurs at, 
 

    T* *0.495 0.739 ,  4.50f x  

 
Using OptdesX, SQP requires 25 calls to the analysis program. GRG takes 50 calls. 
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Fig. 7.7 The fifth approximation and step. 

 
A summary of all the steps is overlaid on the original problem in Fig. 7.8. 
 

 
Fig. 7.8 The path of the SQP algorithm. 
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3 The Generalized Reduced Gradient (GRG) Algorithm 

3.1 Introduction 

In the previous section we learned that SQP works by solving for the point where the K-T 
equations are satisfied. SQP gradually enforces feasibility of the constraints as part of the K-
T equations. In this section we will learn how GRG works. We will find it is very different 
from SQP. If started inside feasible space, GRG goes downhill until it runs into fences—
constraints--and then corrects the search direction such that it follows the fences downhill. At 
every step it enforces feasibility. The strategy of GRG in following fences works well for 
engineering problems because most engineering optimums are constrained. 

3.2 Explicit vs. Implicit Elimination 

Suppose we have the following optimization problem, 
 
 Min   2 2

1 23f x x x  (7.41) 

 
 s.t.   1 22 6 0g x x   x  (7.42) 

 
A contour plot is given in Fig. 7.9a.  
 
From previous discussions about modeling in Chapter 2, we know there are two approaches 
to this problem—we can solve it as a problem in two variables with one equality constraint, 
or we can use the equality constraint to eliminate a variable and the constraint. We will use 
the second approach. Using (7.42) to solve for 2x , 

 
 2 16 2x x   

 
Substituting into the objective function, (7.41), we have, 
 
 Min   2 2

1 13(6 2 )f x x  x  (7.43) 

 
Mathematically, solving the problem given by (7.41-7.42) is the same as solving the problem 
in (7.43). We have used the constraint to explicitly eliminate a variable and a constraint. 
Once we solve for the optimal value of 1x , we will obviously have to back substitute to get 

the value of 2x  using 7.42. The solution in 1x  is illustrated in Fig. 7.9b, where the sensitivity 

plot for 7.43 is given (because we only have one variable, we can’t show a contour plot). The 

derivative 
1

df

dx
of (7.43) would be considered to be the reduced gradient relative to the 

original problem. 
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Usually we cannot make an explicit substitution as we did in this example. So we eliminate 
variables implicitly. We show how this can be done in the next section. 
 

  
Fig. 7.9 a) Contour plot in 1 2,x x with equality 

constraint. The optimum is at 

 2.7693 0.4613T x . 

 

Fig. 7.9 b) Sensitivity plot for 7.43. The 
optimum is at 1 2.7693x   

 

3.3 Implicit Elimination 

In this section we will look at how we can eliminate variables implicitly. We do this by 
considering differential changes in the objective and constraints. We will start by considering 
a simple problem of two variables with one equality constraint, 
  
 Min    1 2

Tf x xx x  (7.44) 

 s.t.   0g b x  (7.45) 

 
Suppose we are at a feasible point.  Thus the equality constraint is satisfied. We wish to 
move to improve the objective function. The differential change is given by, 
 

 1 2
1 2

f f
df dx dx

x x

 
 
 

 (7.46) 

 
to keep the constraint satisfied the differential change must be zero: 
     

 1 2
1 2

0
g g

dg dx dx
x x

 
  
 

 (7.47) 

 
Solving for 2dx  in (7.47) gives:  
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 1
2 1

2

g x
dx dx

g x

 


 
 

 
substituting into  (7.46) gives, 
 

 1
1

1 2 2

f f g x
df dx

x x g x

             
 (7.48) 

 
where the term in brackets is the reduced gradient. 
 

i.e., 1

1 1 2 2

Rdf f f g x

dx x x g x

             
 (7.49) 

 
If we substitute x for dx , then the equations are only approximate.  We are stepping tangent 
to the constraint in a direction that improves the objective function. 

3.4 GRG Algorithm with Equality Constraints Only   

We can extend the concepts of the previous section to the general problem which we 
represent in vector notation. Suppose now we consider the general problem with equality 
constraints, 
 
 Min  f x  

 s.t.   0 1, ,i ig b i m  x   

 
We have n design variables and m equality constraints. We begin by partitioning the design 
variables into (n-m) independent variables, z, and m dependent variables y. The independent 
variables will be used to improve the objective function, and the dependent variables will be 
used to satisfy the binding constraints. If we partition the gradient vectors as well we have, 
 

        T

1 2 n m

f f f
f

z z z 

   
      

x x x
z 

        T

1 1 m

f f f
f

y y y

   
      

x x x
y   

 
We will also define independent and dependent matrices of the partial derivatives of the 
constraints: 
 

 

1 1 1

1 2

1 2

n m

m m m

n m

g g g

z z z

g g g

z z z

 



   
     
   
    

z





 

1 1

1 2

1 2

m

m

m m m

m

gg g

y y y

g g g

y y y


       

   
    

y
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We can write the differential changes in the objective and constraints in vector form as: 
 

    T T
df f d f d z z y y  (7.50) 

 d d d
   

  
 

z y 0
z y

 (7.51) 

 

Noting that 

y

 is a square matrix, and solving (7.51) for dy,  

 

 
1

d d
  

 
 

y z
y z

 (7.52) 

 
substituting (7.52) into (7.50), 
 

      
1

T T
df f d f d

  
  

 
z z y z

y z
  

or     
1

T TT
Rf f f

  
   

 
z y

y z
 (7.53) 

 
where T

Rf is the reduced gradient. The reduced gradient is the direction of steepest ascent 

that stays tangent to the binding constraints. 

3.5 GRG Example 1: One Equality Constraint 

We will illustrate the theory of the previous section with the following example. For this 
example we will have three variables and one equality constraint. We state the problem as, 
 
 Min 2 2 2

1 2 34 3f x x x    

  
 s.t. 1 2 32 4 10g x x x     

 
Step 1: Evaluate the objective and constraints at the starting point. 
The starting point will be  2 2 2T x , at which point 32 and 10f g  . So the 

constraint is satisfied. 
 
Step 2: Partition the variables. 
We have one binding constraint so we will need one dependent variable. We will arbitrarily 
choose 1x as the dependent variable, so  1xy . The independent variables will therefore be 

 2 3
T x xz . Thus,  
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         22 2
1 1 @2

3 3 1@2,2

3

2 4
8 16

6 12

f

xx x f
x f f x

x xf x

x

 
                                 
  

z y z y  

 

   
2 3 1

4 1 2
g g g

z x x y x

        
             

 

 
Step 3: Compute the reduced gradient. 
We now have the information we need to compute the reduced gradient: 
 

    
1

T TT
Rf f f

  
   

 
z y

y z
 

 
     

 

T 1
4 12 16 4 1

2

28 20

Rf
      

 
 

 
Step 4: Compute the direction of search. 
We will step in the direction of steepest descent, i.e., the negative reduced gradient direction, 
which is the direction of steepest descent which stays tangent to the constraint.  
 

 
28

20

 
   

s  or, normalized, 
0.8137

0.5812

 
   

s  

 
Step 5: Do a line search in the independent variables 
We will use our regular formula, 
 
 new old  z z s  
 
We will arbitrarily pick a starting step length 0.5   
 

 2

3

2 0.8137 2.4068
0.5

2 0.5812 1.7094

new

new

x

x

       
               

 

 
Step 6: Solve for the value of the dependent variable. 
We do this using (7.52) above, only we will substitute fory dy : 
 

 
1  

   
 

y z
y z
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 

 

1
2

1
3

0.40691
4 1

0.29062

0.9590

x
x

x
    

       
           

 

y z

 

 
So the new value of 1x is, 

 

 
1 1

2 0.9590

1.041

new oldx x x  
 


 

 
Our new point  is  1.041 2.4069 1.7094T x at which point 18.9 and 10f g  . We 

observe that the objective has decreased from 32 to 18.9 and the constraint is still satisfied. 
This only represents one step in the line search. We would continue the line search until we 
reach a minimum. 

3.6 GRG Algorithm with Equality and Inequality Constraints   

In this section we will consider the general problem with both inequality and equality 
constraints, 
 
 Min  f x  

 s.t.   0 1, ,i ig b i k  x   

    0 1, ,i ig b i k m   x   

 
The extension of the GRG algorithm to include inequality constraints involves some 
additional complexity, because the derivation of GRG is based on equality constraints. We 
therefore convert inequalities into equalities by adding slack variables. So for example, 
 
  1 25 6x x   is changed to 1 2 15 6x x s     

 
where 1s is the slack variable and must be positive for the constraint to be feasible. The slack 

variable is zero when the constraint is binding. The word “slack” comes from the idea the 
variable “takes up the slack” between the function value and the right hand side. 
  
The GRG algorithm described here is an active constraint algorithm—only the binding 
inequality constraints are used to determine the search direction. The non-binding constraints 
enter into the problem only if they become binding or violated. 
 
With these changes the equations of Section 3.4 can be used. In particular, (7.53) is used to 
compute the reduced gradient.  
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3.7 Steps of the GRG Algorithm for the General Problem   

 
1. Evaluate the objective function and all constraints at the current point. 
 
2. For any binding inequality constraints, add a slack variable, si  
 
3. Partition the variables into independent variables and dependent variables. We will 

need one dependent variable for each binding constraint. Any variable at either its 
upper or lower limit should become an independent variable. 

 
4. Compute the reduced gradient using (7.53). 
 
5. Calculate a direction of search.  We can use any method to calculate the search 

direction that relies on gradients since the reduced gradient is a gradient. For example, 
we can use a quasi-Newton update. 

 
6. Do a line search in the independent variables.  For each step, find the corresponding 

values in the dependent variables using (7.52) with z and y substituted for dz and dy.  
 
7. At each step in the line search, drive back to the constraint boundaries for any violated 

constraints using Newton-Raphson to adjust the dependent variables.  If an independent 
variable hits its bound, set it equal to its bound. 

 

 The N-R iteration is given by 
1

( )
 

   


y g b
y

 We note we already have the matrix 

1 
y

 from the calculation of the reduced gradient. 

 
8. The line search may terminate either of 4 ways 
 

1) The minimum in the direction of search is found (using, for example, quadratic 
interpolation). 

2) A dependent variable hits its upper or lower limit. 

3) A formerly non-binding constraint becomes binding. 

4) N-R fails to converge.  In this case we must cut back the step size until N-R does 
converge. 

9. If at any point the reduced gradient in step 4 is equal to 0, the K-T conditions are 
satisfied.   

 

3.8 GRG Example 2: Two Inequality Constraints 

In this problem we have two inequality constraints and will therefore need to add in slack 
variables. 
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Fig. 7.10 Example problem for GRG algorithm 
 

   Min.    2
1 2f x x x  

 s.t.:   2 2
1 1 2 9 0g x x   x   

   2 1 2 1 0g x x   x  

 
Suppose, to make things interesting, we are starting at  T 2.56155, 1.56155 x  where both 

constraints are binding. 
 

Step 1: Evaluate functions. 

      1 25.0 0.0 0.0f g g  x x x  

Step 2: Add in slack variables. 

We note that both constraints are binding so we will add in two slack variables. 1 2,  s s . 

 
Step 3: Partition the variables 
Since the slack variables are at their lower limits (=0) they will become the independent 
variables; x1, x2 will be the dependent variables. 
              
  T

1 2s sz   T
1 2x xy  

Step 4: Compute the reduced gradient  
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    T
0.0 0.0f z     T

5.123 1.0f y  

 

 
1 0

0 1

  
    z

 
5.123 3.123

1.0 1.0

  
    y

 

 

 
1 0.1213 0.3787

0.1213 0.6213

   
    y

 

 

thus     
1 0.1213 0.3787 1 0 0.1213 0.3787

0.1213 0.6213 0 1 0.1213 0.6213

        
              y z

 

 

 

   

   
 

T 0.1213 0.3787
0.0 0.0 5.123 1  

0.1213 0.6213

0.0 0.0 0.50 2.56

0.50 2.56

rf
 

     
 

  

 

 
Step 5: Calculate a search direction. 
We want to move in the negative gradient direction, so our search direction will be 

 T 0.50 2.56s . This is the direction for the independent variables (the slacks).  When 

normalized this direction is  T 0.19 0.98s . 
 
Step 6: Conduct the line search in the independent variables 
We will start our line search, denoting the current point as 0z , 
 
  1 0 0 z z s  
 
Suppose we pick  = 1.0.  Then 
 

 

 1

1

0.0 0.19
1.0

0.0 0.98

0.19

0.98

   
    
   
 

  
 

z

z

 

 
Step 7: Adjust the dependent variables 
To find the change in the dependent variables, we use (7.52) 
 

 
1

1

2

x

x

                     
y z

y z
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0.1213 0.3787 0.19

0.1213 0.6213 0.98

   
       

 

 
0.394

0.586

 
   

 

 

 
1
1

1
2

2.56155 0.394 2.168

1.56155 0.586 2.148

x

x

  

    
 

 
at which point   2.522f x  

 
Have we violated any constraints? 
 

      2 22 2
1 1 2 9 2.168 2.148 9 0.31g x x       x  (violated) 

  2 1 2 1 2.168 2.148 1 0.98g x x       x  (satisfied) 

 
We need to drive back to where the violated constraint is satisfied.  We will use N-R to do 
this. Since we don't want to drive back to where both constraints are binding, we will set the 
residual for constraint 2 to zero. 
 
N-R Iteration 1: 

    
1

0 ( )n  
  


y y g b

y
 

  

2.168 0.1213 0.3787 0.31

2.148 0.1213 0.6213 0.0

2.130

2.110

     
            
 

   

 

 
 at this point   

 
   2 2

1

2

2.130 2.110 9 0.011

0.98

g

g

    

 
 

 
 N-R Iteration 2: 

 

2.130 0.1213 0.3787 0.011

2.110 0.1213 0.6213 0.0

2.1313
  

2.113

     
            
 

   

 

 
evaluating constraints: 
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   2 2

1

2

2.1313 2.113 9 0

0.98

g

g

    

 
 

 
We are now feasible again. We have taken one step in the line search! 
 

Our new point is 
2.1313

  
2.113

 
   

x at which point the objective is 2.43, and all constraints are 

satisfied. 
 
We would continue the line search until we run into a new constraint boundary, a dependent 
variable hits a bound, or we can no longer get back on the constraint boundaries (which is not 
an issue in this example, since the constraint is linear). 
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CHAPTER 8 

ROBUST DESIGN 

1 Introduction 

In the “real” world, almost all designs are subject to variation. Such variation can arise from 
multiple sources, including manufacturing processes, material properties, changing operating 
conditions, or the environment. We can also have uncertainty associated with our computer 
model. We may not know some assumed values as well as we would like (e.g. heat transfer 
coefficients, friction coefficients), and our assumptions about boundary conditions might also 
be faulty. For example, loads or temperatures might be different than we assumed. 
 
The consequences of variation are almost always bad. Variation in product dimensions can 
lead to assemblies which assemble poorly or not at all, or function improperly. Failure to 
take into account variation can lead to product failure, poor performance and customer 
dissatisfaction. A famous quality researcher, Genichi Taguchi, has promoted the idea that 
any deviation from a desired target value results in a loss to the customer. 
 
Optimized designs may be particularly vulnerable to variation. This is because optimized 
designs often include active or binding constraints. Such constraints are on the verge of being 
violated. Slight variations in problem parameters can cause designs to become infeasible. 
 
Thus it should be clear that we should not only be interested in an optimal design, but also in 
an optimal design which is robust.  A robust design is a design which can tolerate variation. 
Fortuitously, a general approach to robust design can be formulated in terms of optimization 
techniques, further extending the usefulness of these methods. In this chapter we will learn 
how to apply optimization methods to determine a robust design. 
 
We will define variation in terms of tolerances which give upper and lower limits on the 
expected deviation of uncertain quantities about their nominal values.   We consider a design 
to be robust if it can tolerate variability, within the ranges of the tolerances, and still function 
properly.  The term “function properly” will be taken to mean the constraints remain feasible 
when subjected to variation. We define this type of robustness as feasibility robustness. 

2 Worst-case Tolerances 

2.1 Introduction 

We will begin by considering worst-case tolerances. With a worst-case tolerance analysis, 
we assume all tolerances can simultaneously be at the values which cause the largest 
variation. We ignore the sign of the variation, assuming it always adds. This gives us a 
conservative estimate of the worst situation we should encounter. 

2.2 Background 

We will consider a design problem of the form, 
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  Min  ,  f x p  

  s.t.  ,  1, ,i ig b i m x p   

 
where  

x is an n dimensional vector of design variables  
p is a l dimensional vector of constant parameters, i.e., unmapped 
analysis variables.   

 
We will group the right-hand-side values, bi, into a vector b. 

 
For a given set of nominal values for x, p, and b, there can be fluctuations x, p, and b 
about these nominal values.  We would like the design to be feasible even if these 
fluctuations occur.  As we will see, in a constrained design space, the effect of variation is to 
reduce the size of the feasible region.  

2.3 Two Approaches to Robust Optimal Design 

Several researchers have incorporated worst-case tolerances into the design process, using a 
“tolerance box” approach, as illustrated in Fig. 8.1.  A tolerance box is defined for the design 
variables; the robust optimum is the design that is as close to the nominal optimum as 
possible and keeps the entire box in the feasible region.  A main drawback is that it does not 
allow us to specify tolerances on parameters. 
 

 

x1

x2 

Feasible Region 

 x1

– x1

– x2

 x2 

Nominal Optimum
Robust Optimum 

 
Fig 8.1. Tolerance box approach for robust design with worst-case 
tolerances. 

 
In contrast to the tolerance box approach, the method we will develop relies on “transmitted 
variation.” As will be explained, we transmit the variation from the variables and 
parameters to the constraints, and then correct the nominal optimum so that it is feasible 
with respect to the constraints with the transmitted variation added in.  This method is 
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illustrated in Fig. 8.2.  The same optimization methods used to find the nominal optimum can 
be used to find the robust optimum, and tolerances may be placed on any model value, 
whether a variable or a parameter. 
 

 

x1

x2 

Feasible Region 

Nominal Optimum 
Robust Optimum 

New constraint boundaries with  
transmitted variation added in

 
Fig 8.2. Transmitted variation approach for robust design with 
worst-case tolerances. 

 

2.4 Calculating Transmitted Variation: Linear Analysis 

Worst-case tolerance analysis assumes that all fluctuations may occur simultaneously in the 
worst possible combination.  The effect of variations on a function can be estimated from a 
first order Taylor series, as follows: 
 

 
1 1

n m
i i

i j j
j jj j

g g
g x p

x p 

 
    

    (8.1) 

 
where the bars indicate that the absolute value is taken.  With the absolute value, (8.1) allows 
the tolerances to assume any sign and therefore computes the worst possible effect of the 
tolerances. We will refer to gi as the “functional variation.”  For constraints, we must also 
add in variation of the right hand side bi, 
 
 i i ig b      (8.2) 

 
We will refer to i as the “total constraint variation.” 
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2.5 Developing a Robust Optimal Design 

2.5.1 Compensating for Variation 

Robustness can be developed for worst-case tolerances by adjusting the value of the 
constraint functions by the amount of the total constraint variation during optimization. For a 
less than constraint, we add the variation; for a greater than constraint, we subtract the 
variation. In both cases, this has the effect of reducing the size of the feasible region, with a 
corresponding degradation in the value of the objective.  Thus a less than constraint becomes, 
   
 i i ig b    (8.3) 

 
A greater than constraint becomes, 
 
 i i ig b   (8.4) 

 
Alternatively, we can consider that the variation has reduced (or increased) the right side, 
depending on whether we have a less than or greater than constraint, respectively: 
 
 i i ig b   (8.5) 

 
 i i ig b    (8.6) 

 

2.5.2 An Efficient Solution Method 

Adding in the transmitted variation can be computationally expensive because the 
transmitted variation is a function of derivatives, and these would have to be evaluated every 
time the constraint is evaluated. 
 
To reduce computation, we propose the following process, 
 
1. Drive to the nominal optimum. 
2. Calculate the transmitted variation. 
3. Adjust the constraint right hand sides by the amount of transmitted variation. 
4. Assuming the transmitted variation is a constant, re-optimize to find the robust 

optimum. 
 
The assumptions that are built into this method are,  

 the robust optimum is close to the nominal optimum. 
 the derivatives are constant, i.e. second derivatives are equal to zero.  

 
These assumptions are consistent with assuming a linear Taylor expansion, (8.1), for the 
transmitted variation. 
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2.5.3 An Example: The Two-bar Truss 

We will illustrate the method on our familiar example, the Two-bar Truss. Now, however, 
we will add in tolerances on all the analysis variables and the right hand side for stress. (The 
right hand side for stress is the yield strength, a material property, and so has variation 
associated with it. The other right hand sides are set by the user and are not uncertain.) Data 
regarding the truss are given in Table 1. 

Table 1 Worst-case Tolerance Data for the Two-bar Truss 

Description Nominal 
Value

Worst-case 
Tolerance 

Height, H Design 
Variable 

0.5 in 

Width, B 60 in 0.5 in 
Diameter, d Design 

Variable 
0.1 in 

Thickness, t 0.15 in 0.01 in 
Modulus 30000 ksi 1500 ksi 
Density 0.3 lb/in3 0.01 lb/in3 
Load, P 66 kips 3 kips 
Yield Strength   
Right Hand Side 

100 ksi 5 ksi 

Buckling   
Right Hand Side 

0.0 0.0 

Deflection   
Right Hand Side 

0.25 in 0.0 

 
Fig. 8.3 is a contour plot showing the design space for this problem. As a first step, we drive 
to the nominal optimum to the problem, which occurs at the intersection of the boundaries 
for stress and deflection, shown as a solid circle in the figure.   
 
We then calculate the transmitted variation, given by Eq (8.1), using derivatives that are 
already available from the nominal optimization.  If we calculate the worst-case variation for 
each constraint using (8.3), and subtract this value from the constraint right hand sides, as in 
(8.5), the new constraint boundaries are shown as 1*, 2*, and 3* in the figure. The decrease 
in the feasible region caused by including variation is shaded.   
 
The final step is to drive to the robust optimum, given by the shaded circle in the figure.  The 
optimal value of the objective has increased from 15.8 to 18.0 pounds. 
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Fig. 8.3 Decrease in feasible region caused by including worst-case 
tolerances. 
 

2.5.4 A Numerical Example: The Two-barTruss 

To illustrate how this method might be implemented “by hand,” we will determine the effect 
on the optimum of the Two-bar Truss problem caused by just two tolerances.  For the 
nominal optimization we have design variables height, diameter, and thickness. We wish to 
see the effect on the optimum of adding tolerances on the load and the width, 
 
 load =  2 kips 
 width =  1 inch 
 
The first step is to drive to the nominal optimum.  The optimum occurs with height = 30, 
diameter = 2.204, thickness = 0.067, and an optimal weight of 11.88 lbs, with stress and 
buckling as binding constraints. Next we obtain the derivatives at the optimum using the 
Gradients window (note that we evaluate un-scaled gradients of all functions with respect to 
all variables): 
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The next step is to calculate the transmitted variation to the stress, buckling, and deflection 
constraints. 
 

 

       
       
       

0.833 1 1.514 2 3.861

2.500 1 1.514 2 5.528

0.005 1 0.00303 2 0.01106

stress

buckling

deflection

     

     

     

 

 
The third step requires that the constraint right hand sides be adjusted.  For this problem, 
 

 

stress 100 3.861 96.139 ksi

buckling 0 5.528 5.528

deflection 0.25 0.01106 0.23894 in

  
   
  

 

 
When we re-optimize in accordance with these new constraints, the new optimum is, height 
= 29.95, diameter = 2.22, thickness = 0.070, with a weight of 12.36 pounds, and with stress 
and buckling, again, as binding constraints. 

2.6 Verifying the Robust Design: Monte Carlo Simulation 

We have discussed a method to develop a robust design.  How can we tell if the design is 
really robust, i.e., how can we be sure that any design within the tolerance bounds will 
remain feasible? One approach is Monte Carlo simulation, which refers to using a computer 
to simulate variation in a design. The computer introduces variation within the bounds of the 
tolerances for each variable. It then calculates the functions. We do this many times--in 
effect, we have the computer build thousands of designs--and we keep track of how many 
designs violate the constraints. For a worst-case analysis, the number of infeasible designs 
should be zero. 
 
Since these are worst-case tolerances, we will assign load and width to have uniform 
distributions.  For a uniform distribution, the ends of the range have the same probability of 
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occurring as the middle. So, for example, the load would be assumed to be uniformly 
distributed with a lower bound of 64 and an upper bound of 68. 
 

6864 load

f(load)

0.25

 
Fig. 8.5 Uniform distribution for load. 

 
The width has a similar distribution, only the lower bound is 59 and the upper bound is 61.  
We then have the computer generate many designs where load and width are uniformly 
distributed between their tolerances, and we count the infeasible designs. 
 
The output from running a Monte Carlo simulation (100,000 trials) on the robust design is 
shown below, 
 
no. of trials= 100000 
 mean values, variables given 
  29.952      60.000      2.2203      .69680E-01  .30000 
  30000.      66.000 
 mean values, variables calc 
  29.951      60.002      2.2203      .69680E-01  .30000 
  30000.      66.002 
 standard deviations, variables given 
  .00000E+00  .57735      .00000E+00  .00000E+00  .00000E+00 
  .00000E+00  1.1547 
 standard deviations, variables calc 
  .49268E-04  .57735      .37418E-05  .15760E-06  .63290E-06 
  .00000E+00  1.1517 
 mean values, functions 
  96.103     -5.5265      .19223 
 std devs, functions 
  1.7410      2.2150      .43622E-02 
 
 infeasible designs for function 1 =  0 
 infeasible designs for function 2 =  0 
 infeasible designs for function 3 =  0 
 
 total number of infeasible designs =  0 
 
Out of 100,000 simulations, there are no infeasible designs. 
 
It is instructive to compare these results to the non-robust design. If we run the same 
simulation, with the same tolerances, for the nominal optimum, we get, 
 
 no. of trials= 100000 
 mean values, variables given 
  30.000      60.000      2.2044      .67404E-01  .30000 
  30000.      66.000 
 mean values, variables calc 
  30.000      60.002      2.2044      .67404E-01  .30000 
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  30000.      66.002 
 standard deviations, variables given 
  .00000E+00  .57735      .00000E+00  .00000E+00  .00000E+00 
  .00000E+00  1.1547 
 standard deviations, variables calc 
  .00000E+00  .57735      .43317E-05  .13389E-06  .63290E-06 
  .00000E+00  1.1517 
 mean values, functions 
  99.982     -.32641E-01  .19999 
 std devs, functions 
  1.8111      2.2673      .45353E-02 
 
 infeasible designs for function 1 =  49812 
 infeasible designs for function 2 =  49213 
 infeasible designs for function 3 =  0 
 
 total number of infeasible designs =  56366 
 
Out of 100,000 simulations, 56,366 designs had at least one infeasible constraint. 

3 Statistical Tolerances 

3.1 Introduction 

Worst-case analysis is almost always overly conservative.  There are some conditions, such 
as thermal expansion, which must be treated as worst-case.  Often, however, it is reasonable 
to assume that fluctuations are independent random variables.  When this is the case, it is 
very unlikely they will simultaneously occur in the worst possible combination.  With a 
statistical tolerance analysis, the low probability of a worst-case combination can be taken 
into account.  By allowing a small number of rejects--infeasible designs--the designer can 
use larger tolerances, or, as will be shown, back away from the optimum design a smaller 
amount than for a worst-case analysis. 

3.2 Background 

For this situation, variables with tolerances will be treated as random variables.  Typically a 
random variable is described by a distribution type and distribution characteristics such as 
the mean and variance (or standard deviation, which is the square root of variance). We will 
consider all of the variables which have tolerances to be random variables described by 
normal distributions, with a mean at the nominal value and specified standard deviation. 

3.3 Calculating Transmitted Variation: Linear Statistical Analysis 

Just as with worst-case tolerances, we will transmit the variation of the variables into the 
constraints.  Once again, we will rely on a first-order Taylor series, only this time we will 
find the mean and variance of the series.  The mean of a first-order Taylor series is just the 
nominal value; the variance is given by: 
 

 

2 2

2

1 1
i j j

n l
i i

g x p
j jj j

g g

x p
  

 

    
           
   (8.7)  

 
 2 2 2

i ii b g     (8.8) 
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We will refer to 2

i as the “total constraint variance.” 

Thus we will consider that randomness in the variables induces randomness in the functions. 
The constraint boundaries are no longer described by a sharp boundary but rather by a 
distribution, with the mean at the nominal value, and with one tail inside the feasible region 
and one tail outside the feasible region. This is illustrated in Fig. 8.6a. 
 
 

Binding  
Constraint 
Function 

Allowable Value Binding 
Constraint
Function

Allowable Value 

k

Constraint  
Distribution Shift 
= 

rejects with  
no shift rejects   

with  
shift 

 
(a) (b) 
Fig. 8.6 The distribution of a constraint function. (a) The distribution with no shift. (b) The 
distribution with a shift to reduce the number of rejects. 
 
We note that the distributions shown in Fig. 8.6 are normal. This is an assumption of this 
method. An important theorem in statistics, the Central Limit Theorem, states that sums and 
differences of random variables, regardless of their distributions, will tend to be normal. 
With engineering models, variables combine not only as sums and differences but as 
products, quotients, powers, etc. This means the assumption that the functions are normally 
distributed will only be approximately satisfied. 

3.4 Developing a Robust Optimal Design with Statistical Tolerances 

3.4.1 Compensating for Statistical Variation 

As with worst-case tolerances, we will modify the constraints to take into account the 
transmitted variation.  Thus each constraint becomes, 
 
 i i ig k b   (8.9) 

 
Alternatively, we can consider that the variation has reduced the right hand side, 
 
 i i ig b k   (8.10) 

 
where k is the number of standard deviations we decide to shift.  Unlike the worst-case 
approach where we wanted to be feasible 100% of the time, with the statistical approach we 
set the level of feasibility we desire.  For a normal distribution, 
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Table 2.   
Relation of k to Constraint Feasibility 
Value of k (number of 
standard deviations) 

Percentage of Designs 
that will be Feasible 
(Normal Distribution) 

1 84.13 
2 97.725 
3 99.865 
4 99.9968 

 
Shifting a constraint to control the number of rejects is illustrated in the Fig. 8.6b. 
 
To obtain a robust optimum based on a statistical analysis, we follow essentially the same 
steps as with the worst-case approach, 
 
1. Drive to the nominal optimum. 
2. Calculate the transmitted variance. 
3. Reduce the allowable value for a constraint by the amount of k times the standard 

deviation for a less than constraint; increase it for a greater than constraint. This has the 
effect of shifting the constraint distribution into the feasible region, as shown in Fig. 8.6b. 

4. Assuming the transmitted variation is a constant, re-optimize to find the robust optimum. 
5. Estimate the overall estimated feasibility as the product of the feasibilities for the binding 

constraints.  
 
The assumptions of this approach include, 
 

 Variables are independent and normally distributed. 
 The robust optimum is close to the nominal optimum. 
 Derivatives are constant, i.e., second derivatives are equal to zero. This assumption is 

consistent with assuming a linear Taylor expansion, (8.7), for the transmitted 
variation. 

 Constraints are normally distributed.  
 Constraints are not correlated. This means that for a random perturbation, the 

probability of one constraint being violated is independent of other constraints. This 
allows us to multiply the probability of each constraint together (step 5 above) to get 
the overall feasibility. 

 
These assumptions are not always completely met, so we consider this method as a means of 
estimating the order of magnitude of the number of rejects. This means we will determine 
whether the per cent rejects will be 10%, 1%, 0.1%, etc. This level of accuracy is usually on 
a par with the accuracy of tolerance data available during the design stage. 

3.4.2 An Example: The Two-bar Truss 

In this section we will apply the method to the Two-bar truss. The tolerances are given in 
Table 3 below. For comparison to a worst-case tolerance analysis, the standard deviations are 
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made to be one third the worst-case tolerances given in the previous section. This means a 
worst-case tolerance band would be 3 . 
 

Table 3 Statistical Tolerance Data for the Two-bar Truss 
Description Nominal 

Value
Standard 
Deviation 

Height, H Design 
Variable 

1.67 in 

Width, B 60 in 0.167 in 
Diameter, d Design 

Variable 
0.033 in 

Thickness, t 0.15 in 0.0033 in 
Modulus 30000 ksi 500 ksi 
Density 0.3 lb/in3 0.0033 lb/in3 
Load, P 66 kips 1 kips 
Yield Strength   
Right Hand Side 

100 ksi 1.67 ksi 

Buckling   
Right Hand Side 

0.0 0.0 

Deflection   
Right Hand Side 

0.25 in 0.0 

 
We desire each constraint to be feasible 99.865% of the time. To effect this, we calculate the 
variance for each constraint using (8.7). In the case of stress, which has a tolerance on the 
right hand side, we add in that variance using (8.9). We then subtract 3 from the constraint 
right hand sides, as shown in  Eq (8.10).  
 
Fig. 8.7 is a contour plot showing the design space for this problem. The shaded area shows 
the decrease in the feasible region caused by the tolerances. The new constraint boundaries 
are shown as 1*, 2* and 3*. Comparing to Fig. 8.3, we see that the decrease is smaller than 
for worst-case tolerances. The optimal value of the objective has increased from 15.8 to 16.8 
pounds. 
 
We have two binding constraints that should each be feasible 99.865% of the time.  The 
predicted overall feasibility is computed to be 0.99865 0.99865 0.9973   or 99.73%.  
Monte Carlo simulation of the robust optimum gives a feasibility of 99.8%. 
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Fig. 8.7 Effect of statistical tolerances on optimum for Two-bar Truss problem.  
Shaded area is decrease in feasible region caused by including statistical tolerances.  
Compare to Fig. 8.3. 

3.4.3 A Numerical Example: The Two-barTruss 

As we did for worst-case tolerances, we will show how to implement this method by hand.  
For this problem we have as design variables height, diameter, and thickness.  The optimum 
occurs with height = 30, diameter = 2.2044, thickness = 0.06740, and an optimal weight of 
11.88 lbs, with stress and buckling as binding constraints. 
 
We wish to see the effect on the optimum of adding tolerances on the load and the width, 
 

 

0.6667 

0.3333 
load

width

kips

inch





  

 
The first step is to drive to the nominal optimum, which we have already done. 
The second step is to calculate the transmitted variation using (8.7) with derivatives at the 
optimum: 
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We estimate the variance of the functions as: 

 

   
   
   

2 22

2 22

2 22

0.833 0.333 1.514 0.667 1.094

2.500 0.333 1.514 0.667 1.713

0.005 0.333 0.00303 0.667 0.000006857

stress

buckling

deflection







    

    

    
 

 
We will shift the constraints by 3.  These amounts are, 
 

 

3 3.138

3 3.926

3 0.007856

stress

buckling

deflection











 

  
We subtract these amounts from the right hand sides, as in (8.10), 
 

 

stress 100 3.138 96.862 ksi

buckling 0 3.926 3.926

deflection 0.25 0.007856 0.24214 in

  
   
    

 
When we re-optimize the new optimum is, height = 29.98, diameter = 2.21, thickness = 
0.0694, with a weight of 12.27 pounds, and with stress and buckling as binding constraints. 

3.5 Verifying the Robust Design with Monte Carlo Simulation 

We verify these values using a Monte Carlo simulation similar to the one describe for worst-
case tolerances, only the independent variables are given normal distributions instead of 
uniform distributions. 
 
The output from running this program is given below, 
 
 no. of trials= 100000 
 mean values, variables given 
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  29.980      60.000      2.2122      .69350E-01  .30000 
  30000.      66.000 
 mean values, variables calc 
  29.980      60.000      2.2122      .69350E-01  .30000 
  30000.      65.997 
 standard deviations, variables given 
  .00000E+00  .33330      .00000E+00  .00000E+00  .00000E+00 
  .00000E+00  .66670 
 standard deviations, variables calc 
  .38388E-04  .33262      .52221E-05  .47925E-07  .63290E-06 
  .00000E+00  .66709 
 mean values, functions 
  96.860     -3.9271      .19373 
 std devs, functions 
  1.0160      1.2838      .25398E-02 
 
 infeasible designs for function 1 =  118 
 infeasible designs for function 2 =  118 
 infeasible designs for function 3 =  0 
 
 total number of infeasible designs =  183 
 
We have 0.183% infeasible designs. We predicted,  
 
 1 (0.99865 0.99865) 0.00270 0.27%     
 
This is well within our desired order of magnitude accuracy. 

4 Minimizing Variance: Sensitivity Robustness 

4.1 Introduction 

Up to this point we have considered only feasibility robustness: we wanted to develop 
designs that could tolerate variation and still work.  We developed a method based on a 
linear approximation of transmitted variation. 
 
For worst-case analysis, we estimate transmitted variation by, 
 

 
1 1

n m
i i

i j j
j jj j

g g
g x p

x p 

 
    

    

 
For a statistical analysis, we estimate transmitted variation by, 
 

 

2 2

2

1 1
i j j

n l
i i

g x p
j jj j

g g

x p
  

 

    
           
   

 
Besides feasibility robustness, we might also be interested in sensitivity robustness, which 
refers to reducing the sensitivity of the design to variation. This can be achieved by 
minimizing the transmitted variation as an objective in our optimization problem, either as 
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the sole objective in the problem or in combination with other objectives related to 
performance.  The transmitted variation might also be a constraint. 
 
The idea here is to find a region in the design space where the derivatives of the function are 
small. Thus we can reduce the effect of the tolerances without reducing the tolerances 
themselves. This idea is very similar to the central concept of Taguchi methods. Taguchi 
showed that it was possible to reduce variation in a product without reducing tolerances 
(which usually costs money) by moving to a different spot in the design space, where the 
design was less sensitive to the tolerances. In contrast to the computer models we are using, 
Taguchi based his method on using Design of Experiments to obtain models experimentally. 
 
Minimizing variance can be computationally expensive, since we are minimizing a function 
which is composed of derivatives. To obtain a search direction, we will need to take second 
derivatives. 

4.2 Example of Minimizing Variation 

We will illustrate the concept of reducing transmitted variation by considering the design of a 
check valve—a device made to restrict flow to one direction only. 
 
A diagram of a check valve is shown in Fig. 8.8.  The purpose of the valve is to allow fluid 
flow in only one direction.  Fluid can flow through the valve from left to right when the 
pressure of the flow overcomes the force exerted on the ball by the spring.  The pressure 
required to unseat the ball is called the “cracking pressure.”  It is desirable to minimize 
cracking pressure to reduce pressure drop across the valve; however, cracking pressure must 
be sufficient to prevent backflow. Design variables, parameters and tolerances for this 
problem are given in Table 4. 
 

dw

db



do dc

lv

Flow

 
Fig. 8.8 Diagram of a check valve. 

 
The design problem is to choose values for the variables to improve the sensitivity robustness 
of cracking pressure (i.e. reduce its sensitivity to variation), subject to constraints on 
cracking pressure, stress at full deflection, ball travel (spring compression) and various 
diameter ratios.  
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Table 4.  Variables, Parameters and Tolerances for Check Valve 
 
Design Variables 

 
Tolerance

Standard  
Deviation  

Seat angle,  (degrees) ±1.0 0.3333 
Ball diameter , db (cm) ± 0.025 0.008333 

Spring coil diameter, dc (cm) ± 0.05 0.016667 

Spring wire diameter, dw (cm) ± 0.005 0.0016667 

Spring length unloaded  (cm) ± 0.1 0.03333 
Spring number of coils ±0.5 0.16667 
 
Parameters 
Length of valve, lv (cm) ±0.1 0.03333 

Diameter of orifice, dv (cm) ± 0.025 0.008333 

Shear modulus (kPa/m2) ± 7.e5 2.333e5 

 
We will need to combine sensitivity robustness with feasibility robustness to insure that 
cracking pressure is at least 15 kPa (about 2.2 psi) for 99% of all valves.  This can be 
accomplished in two steps, where we first minimize variance and then add constraint shifts 
and re-optimize to achieve feasibility robustness.  The starting design is given in the first 
column of Table 5. 
 
After determining the minimum variance design, the next step was to shift it to obtain 
feasibility robustness.  Constraint shifts based on a linear estimate of variance were 
inadequate for this problem so variance was calculated using a second order model.  The 
shifted design is given in column 2 of Table 5. 
 
Also shown in Table 5 is a comparison design.  In order to determine the effect of 
minimizing variance we wanted to compare it to some sort of baseline design.  We chose as a 
comparison design the design that results from maximizing ball travel as the objective, 
ignoring variance, and with all other constraints the same.  The comparison design was then 
shifted to obtain feasibility robustness. 

 
Table 5. Starting, Minimum Variance and Comparison Designs 

 
 
Design Variables 

 
Starting Design

Shifted Min 
Variance Design 

 
Comparison 
Design* 

Seat angle,  (degrees) 45. 34.9 43.5 
Ball diameter , db (cm) 1.25 1.47 0.720 

Spring coil diameter, dc (cm) 1.0 1.13 0.535 

Spring wire diameter, dw (cm) 0.075 0.0755 0.0379 

Spring length unloaded  (cm) 3.0 2.00 2.77 
Spring number of coils 10 8 12 
 
Parameters 
Length of valve, lv (cm) 2.5 2.5 2.5 

Diameter of orifice, dv (cm) 0.635 0.635 0.635 

Shear modulus (kPa/m2) 8.3e7 8.3e7 8.3e7 

 
Objective 
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Variance of cracking pressure (kPa) 8.70 2.46 5.63 
 
Constraints 
Cracking pressure ≥ 15 (kPa) 77 20.02 (b) 25.37 (b) 
0.5 ≤ Ball diam/coil diam ≤ 0.8 0.8 (b) 0.77 (b) 0.74 (b) 
4 ≤ Coil diam/wire diam ≤ 16 13.3 15.03 (b) 14.1 (b) 
Ball travel ≥ 0.5 (cm) 0.8 0.60 (b) 1.63 
Stress ≤ 900000 (kPa) 494000 295000 746600 (b) 
Predicted Feasibility N/A 96.06% 96.06% 
Actual Feasibility N/A 96.42% 96.59% 

The symbol “(b)” indicates a binding constraint 
*the objective for the comparison design was to maximize ball travel. 

 
Monte Carlo simulation was used to verify robustness, and the results are shown in the last 
two rows of the table.  During the simulation, pressure values were recorded so that the 
distributions could be graphed.  These are shown in Fig. 8.9.  The improvement of the 
minimum variance design over the comparison design is clearly evident. 
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Fig. 8.9    Minimum variance and comparison design distributions for cracking pressure 

5 References 

A. Parkinson, C. Sorensen, and N. Pourhassan, “A General Approach for Robust Optimal 
Design,” ASME J. of Mechanical Design, Vol. 115, March 1993, pg. 74 
 
 A. Parkinson, “Robust Mechanical Design Using Engineering Models,” invited paper for 
special 50th anniversary issue of J. of Mechanical Design, vol. 117, p. 48-54, June 1995. 
 
M. Phadke, Quality Engineering Using Robust Design, PTR Prentice Hall, 1989. 


