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CHAPTER 8 
CONSTRAINED OPTIMIZATION 2: SEQUENTIAL QUADRATIC 

PROGRAMMING, INTERIOR POINT AND GENERALIZED REDUCED 
GRADIENT METHODS 

8.1 Introduction 
In the previous chapter we examined the necessary and sufficient conditions for a constrained 
optimum. We did not, however, discuss any algorithms for constrained optimization. That is 
the purpose of this chapter.   
 
The three algorithms we will study are three of the most common. Sequential Quadratic 
Programming (SQP) is a very popular algorithm because of its fast convergence properties. It 
is available in MATLAB and is widely used. The Interior Point (IP) algorithm has grown in 
popularity the past 15 years and recently became the default algorithm in MATLAB. It is 
particularly useful for solving large-scale problems. The Generalized Reduced Gradient 
method (GRG) has been shown to be effective on highly nonlinear engineering problems and 
is the algorithm used in Excel. 
 
SQP and IP share a common background. Both of these algorithms apply the Newton-
Raphson (NR) technique for solving nonlinear equations to the KKT equations for a 
modified version of the problem. Thus we will begin with a review of the NR method. 

8.2 The Newton-Raphson Method for Solving Nonlinear Equations 
Before we get to the algorithms, there is some background we need to cover first. This 
includes reviewing the Newton-Raphson (NR) method for solving sets of nonlinear 
equations. 

8.2.1 One equation with One Unknown 
The NR method is used to find the solution to sets of nonlinear equations. For example, 
suppose we wish to find the solution to the equation: 
 
 2 xx e+ =  
 
We cannot solve for x directly. The NR method solves the equation in an iterative fashion 
based on results derived from the Taylor expansion. 
 
First, the equation is rewritten in the form, 
 
 2 0xx e+ - =  (8.1) 
 
We then provide a starting estimate of the value of x that solves the equation. This point 
becomes the point of expansion for a Taylor series:  
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fNR ≈ fNR

0 +
dfNR

0

dx
x − x0( )  (8.2) 

 
where we use the subscript “NR” to distinguish between a function where we are applying 
the NR method and the objective function of an optimization problem. We would like to 
drive the value of the function to zero: 
 

 
  
0 = fNR

0 +
dfNR

0

dx
x - x0( )   (8.3) 

 
If we denote  Δx0 = x − x0 , and solve for xD  in (8.3): 
 

 
  
Δx0 =

− fNR
0

dfNR
0 / dx

 (8.4)  

 
We then add xD to 0x  to obtain a new guess for the value of x that satisfies the equation, 
obtain the derivative there, get the new function value, and iterate until the function value or 
residual, goes to zero. The process is illustrated in Fig. 8.1 for the example given in (8.1) 
with a starting guess 2.0x = . 
 

1 2 3 x

Second trial, x  = 1.469

First trial, x  = 2

dy /dx
4

2

y 0

- 2

- 4  
 
  Fig. 8.1 Newton-Raphson method on (8.1) 
 
Numerical results are: 
 

k x f(x) df/dx 
1 2 –3.389056 –6.389056 
2 1.469553 –0.877738 –3.347291 
3 1.20732948 –0.13721157 –2.34454106 
4 1.14880563 –0.00561748 –2.15442311 
5 1.146198212 –0.000010714 –2.146208926 
6 1.1461932206 –0.00000000004 –2.1461932254 
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For simple roots, NR has second order convergence. This means that the number of 
significant figures in the solution roughly doubles at each iteration. We can see this in the 
above table where the value of x at iteration 2 has one significant figure (1); at iteration 3 it 
has one (1); at iteration 4 it has three (1.14); at iteration 5 it has six (1.14619), and so on. We 
also see that the error in the residual, as indicated by the number of zeros after the decimal 
point, also decreases in this fashion, i.e., the number of zeros roughly doubles at each 
iteration. 

8.2.2 Multiple Equations with Multiple Unknowns 
The NR method is easily extended to solve n equation in n unknowns. Writing the Taylor 
series for the equations in vector form: 
 

 

    

0 = f1NR
0 + ∇f1NR

0( )
T
Δx

0 = f2 NR
0 + ∇f2 NR

0( )
T
Δx

… …

0 = fnNR
0 + ∇fnNR

0( )
T
Δx

 

 
We can rewrite these relationships as: 
 

 

    

∇f1NR
0( )

T

∇f2 NR
0( )

T

     !

∇fnNR
0( )

T

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

Δx =

− f1NR
0

− f2 NR
0

!
− fnNR

0

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

 (8.5) 

 
For 2 X 2 System, 
 

 

  

∂ f1NR

∂x1

∂ f1NR

∂x2

∂ f2 NR

∂x1

∂ f2 NR

∂x2

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

Δx1

Δx2

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
=

− f1NR

− f2 NR

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
 (8.6)  

 
In (8.5) we will denote the vector of residuals at the starting point as   fNR

0 . We will denote the 
matrix of coefficients as G. Equation (8.5) can then be written, 
 
    GΔx0  = −fNR

0  (8.7) 
 
The solution is obviously 
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Δx0 = − G-1( )fNR

0  (8.8) 

8.2.3 Using the NR method to Solve the Necessary Conditions 
In this section we will make a very important connection—we will apply NR to solve the 
necessary conditions. Consider for example, a very simple case—an unconstrained problem 
in two variables with objective function, f. We know the necessary conditions are, 
 

 1

2

0

0

f
x
f
x

¶
=

¶
¶

=
¶

  (8.9) 

Now suppose we wish to solve these equations using NR, that is we wish to find the value x* 
that drives the partial derivatives to zero. In terms of notation and discussion this gets a little 
tricky because the NR method involves taking derivatives of the equations to be solved, and 
the equations we wish to solve are composed of derivatives. So when we substitute (8.9) into 
the NR method, we end up with second derivatives. 
 

For example, if we set
  
f1NR =

∂ f
∂x1

and f2 NR =
∂ f
∂x2

, then we can write (8.6) as,  

 

 

  

∂
∂x1

∂ f
∂x1

⎛

⎝
⎜

⎞

⎠
⎟

∂
∂x2

∂ f
∂x1

⎛

⎝
⎜

⎞

⎠
⎟

∂
∂x1

∂ f
∂x2

⎛

⎝
⎜

⎞

⎠
⎟

∂
∂x2

∂ f
∂x2

⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

Δx1

Δx2

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
=

−
∂ f
∂x1

⎛

⎝
⎜

⎞

⎠
⎟

−
∂ f
∂x2

⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

 (8.10) 

 
or, 
 

 

2 2

2
1 2 1 11
2 2

2
2

21 2 2

f f f
x x x xx

x ff f
xx x x

é ù¶ ¶ ¶é ù-ê ú ê ú¶ ¶ ¶ ¶Dé ùê ú ê ú=ê úê ú D ¶ê ú¶ ¶ ë û -ê ú ê ú¶¶ ¶ ¶ ë ûë û

 (8.11) 

 
which should be familiar from Chapter 3, because (8.11) can be written in vector form as, 
 
 fD = -ÑH x  (8.12) 
 
and the solution is, 
 
 ( )1 f-D = - Ñx H  (8.13) 
 



   Chapter 8: Constrained Optimization 2 

  5 

We recognize (8.13) as Newton’s method for solving for an unconstrained optimum. Thus 
we have the important result that Newton’s method is the same as applying NR on the 
necessary conditions for an unconstrained problem. From the properties of the NR method, 
we know that if Newton’s method converges (and recall that it doesn’t always converge), it 
will do so with second order convergence. 
 
Both SQP and IP methods extend these ideas to constrained problems. 

8.3 The Sequential Quadratic Programming (SQP) Algorithm 

8.3.1 Introduction and Problem Definition 
The SQP algorithm was developed in the early 1980’s primarily by M. J. D. Powell, a 
mathematician at Cambridge University [23, 24]. SQP works by solving for where the KKT 
equations are satisfied. SQP is a very efficient algorithm in terms of the number of function 
calls needed to get to the optimum. It converges to the optimum by simultaneously 
improving the objective and tightening feasibility of the constraints. Only the optimal design 
is guaranteed to be feasible; intermediate designs may be infeasible. It requires that we have 
some means of estimating the active constraints at each step of the algorithm. 
 
We will start with a problem which only has equality constraints. We recall that when we 
only have equality constraints, we do not have to worry about complementary slackness, 
which makes thing simpler. So the problem we will focus on at this point is, 
 
 Min    f (x)  (8.14) 
 s.t.    gi(x) = 0 i−1,...,m   (8.15) 

8.3.2 The SQP Approximation 
As we have previously mentioned in Chapter 7, a problem with a quadratic objective and 
linear constraints is known as a quadratic programming problem. These problems have a 
special name because the KKT equations are linear (except for complementary slackness) 
and are easily solved. We will make a quadratic programming approximation at the point   x k  
to the problem (8.14)-(8.15) given by, 
 

 
   
fa = f k + ∇f k( )

T
Δx+ 1

2
ΔxT∇x

2LkΔx  (8.16) 

 
    
gi,a = gi

k + ∇gi
k( )

T
Δx = 0 i =1,…,m   (8.17) 

 
where the subscript a indicates the approximation. Close examination of (8.16) shows 
something unexpected. Instead of 2 fÑ as we would normally have if we were doing a Taylor 
approximation of the objective, we have 2

xLÑ , the Hessian of the Lagrangian function with 
respect to x. Why is this the case? It is directly tied to applying NR on the KKT, as we will 
presently show. For now we will just accept that the objective uses the Hessian of the 
Lagrangian instead of the Hessian of the objective. 
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We will solve the QP approximation, (8.16)-(8.17), by solving the KKT equations for this 
problem, which, as mentioned, are linear. These equations are given by, 
 

 ,
1

m

a i i a
i

f gl
=

Ñ - Ñ =å 0  (8.18) 

 
   
gi,a = 0 for i =1,…,m  (8.19) 

 
Since, for example, from (8.16), 
 
    ∇fa =∇f k +∇x

2LkΔx  
 
we can also write these equations in terms of the original problem, 
 

 
   
∇f k +∇x

2LkΔx − λi∇gi
k = 0

i=1

m

∑  (8.20) 

 
    
gi

k + ∇gi
k( )

T
Δx= 0 for i =1,…,m  (8.21) 

 
These are a linear set of equations we can readily solve, as shown in the example in the next 
section. We will want to write these equations even more concisely. If we define the 
following matrices and vectors, 
 

 

    

J k =

∇g1
k( )

T

!

∇gm
k( )

T

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

J k( )
T
= ∇g1

k , ", ∇gm
k⎡

⎣⎢
⎤
⎦⎥
 

 

 

    

gk =

g1
k

!
gm

k

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

∇x
2Lk =∇2 f k − λi

i=1

m

∑ ∇2gi
k  

 
We can write (8.20)-(8.21) as, 
 

 
   
∇x

2LkΔx+ −J k( )
T
λ = −∇f k  (8.22) 

   J
kΔx = −gk  (8.23) 

 
Again, to emphasize, this set of equations represents the solution to (8.18)-(8.19). 
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8.3.3 Example 1: Solving the SQP Approximation 
Suppose we have as our approximation the following, 
 

 
[ ] [ ]

[ ]

1 1
1 2

2 2

1

2

1 013 3 2
0 12

5 1 3 0

a

a

x x
f x x

x x

x
g

x

D Dé ù é ùé ù
= + + D Dê ú ê úê úD Dë ûë û ë û

Dé ù
= + =ê úDë û

 (8.24) 

 
We can write out the KKT equations for this approximation as, 
  

 

   

∇fa − λi∇gi
k = 0

i=1

m

∑ = 3
2

⎡

⎣
⎢

⎤

⎦
⎥ +

1 0
0 1

⎡

⎣
⎢

⎤

⎦
⎥

Δx1

Δx2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
− λ 1

3
⎡

⎣
⎢

⎤

⎦
⎥ = 0

ga = 5+ 1 3⎡
⎣

⎤
⎦

Δx1

Δx2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= 0

 (8.25) 

We can write these equations in matrix form as, 
 

 
1

2

1 0 1 3
0 1 3 2
1 3 0 5

x
x
l

- D -é ù é ù é ù
ê ú ê ú ê ú- D = -ê ú ê ú ê ú
ê ú ê ú ê ú-ë û ë û ë û

 (8.26) 

 
The solution is, 
 

 
1

2

2.6
0.8
0.4

x
x
l

D -é ù é ù
ê ú ê úD = -ê ú ê ú
ê ú ê úë û ë û

  (8.27) 

 
Observations: This calculation represents the main step in an iteration of the SQP algorithm 
which solves a sequence of quadratic programs. If we wanted to continue, we would add 
Dx to our current x, update the Lagrangian Hessian, make a new approximation, solve for 
that solution, and continue iterating in this fashion. 
 
If we ever reach a point where Dx goes to zero as we solve for the optimum of the 
approximation, the original KKT equations are satisfied. We can see this by examining 
(8.20)-(8.21). If Dx is zero, we have, 
 

 

    

∇f +∇x
2LΔx
=0

!"#
− λi

*∇gi = 0
i=1

m

∑  (8.28) 
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gi + ∇gi( )T
Δx

=0
! "# $#

= 0 for i =1,…,m  (8.29) 

 
which then match (8.18)-(8.19). 

8.3.4 NR on the KKT Equations for Problems with Equality Constraints 
In this section we wish to look at applying the NR method to the original KKT equations. 
The KKT equations for a problem with equality constraints only are, 
 

 
1

m

i i
i

f gl
=

Ñ - Ñ =å 0  (8.30) 

    gi = 0 i =1,…,m  (8.31) 
 
Now suppose we wish to solve these equations using the NR method. The coefficient matrix 
for NR will be composed of the derivatives of (8.30)-(8.31). For example, the first row of the 
coefficient matrix would be, 
 

 

   

∇x f1NR( )T
∇λ f1NR( )T⎡

⎣
⎢

⎤

⎦
⎥

Δx
Δλ

⎡

⎣
⎢

⎤

⎦
⎥= −

f1NR

f2 NR

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
 (8.32) 

where function   f1NR   given by, 

 
  
f1NR =

∂ f
∂x1

− λi

∂gi

∂x1i=1

m

∑   (8.33) 

 
If we substitute (8.33) into (8.32), the first row becomes, 
 

   

∂2 f
∂x1

2 − λi

∂2 gi

∂x1
2

i=1

m

∑
⎡

⎣
⎢

⎤

⎦
⎥, ∂2 f

∂x2 ∂x1

− λi

∂2 gi

∂x2 ∂x1i=1

m

∑
⎡

⎣
⎢

⎤

⎦
⎥,…, ∂2 f

∂xn ∂x1

− λi

∂2 gi

∂xn ∂x1i=1

m

∑
⎡

⎣
⎢

⎤

⎦
⎥, −

∂g1

∂x1

⎡

⎣
⎢

⎤

⎦
⎥, −

∂g2

∂x1

⎡

⎣
⎢

⎤

⎦
⎥,…, −

∂gm

∂x1

⎡

⎣
⎢

⎤

⎦
⎥

 
Recalling, 

 2 2 2

1

m

x i i
i

L f gl
=

Ñ =Ñ - Ñå  

 
And using the matrices, 
 

 

    

J k =

∇g1
k( )

T

!

∇gm
k( )

T

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

J k( )
T
= ∇g1

k , ", ∇gm
k⎡

⎣⎢
⎤
⎦⎥
 

 



   Chapter 8: Constrained Optimization 2 

  9 

 

    

gk =

g1
k

!
gm

k

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

∇x
2Lk =∇2 f k − λi

i=1

m

∑ ∇2gi
k  

 
we can write the NR equations in matrix form as, 
 

 

   

∇x
2Lk −J k( )

T

J k 0

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

x −x k

λ −λ k

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=

−∇f k + J k( )
T
λ k

−(gk )

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
 (8.34) 

 
If we do the matrix multiplications we have 
 

 
   
∇x

2LkΔx+ −J k( )
T

(λ −λ k ) = −∇f k + J k( )
T
λ k  (8.35) 

 
  
J kΔx = − gk( )  

 
and collecting terms, 
 

 
   
∇x

2LkΔx+ −J k( )
T
λ = −∇f k  (8.36)  

 
  
J kΔx = − gk( )  

 
which equations are the same as (8.22)-(8.23)). Thus we see that solving for the optimum of 
the QP approximation is the same as doing a NR iteration on the KKT equations. This is the 
reason we use the Hessian of the Lagrangian function rather than the Hessian of the objective 
in the approximation. 

8.3.5 SQP: Inequality and Equality Constraints 
In the previous section we considered equality constraints only. We need to extend these 
results to the general case. We will state this problem as 
 
 Min ( )f x   

 s.t. 
    
gi x( ) ≥ 0 i =1,…,k  (8.37)  

 
    
gi x( ) = 0 i = k +1,…,m   

 
The quadratic approximation at point xk is: 
 

 Min  
   
fa = f k + ∇f k( )

T
Δx+ 1

2
Δx( )T

∇x
2LkΔx   

 s.t.  , :i ag    
gi

k + ∇gi
k( )

T
Δx ≥ 0 i =1,2,...,k  (8.38)  
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gi

k + ∇gi
k( )

T
Δx = 0 i = k +1,...,m  

 
Notice that the approximations are a function only of ∆x. All gradients and the Lagrangian 
hessian in (7.40) are evaluated at the point of expansion and so represent known quantities. 
 
In the article where Powell [24] describes this algorithm he makes a significant statement at 
this point. Quoting, “The extension of the Newton iteration to take account of inequality 
constraints on the variables arises from the fact that the value of Dx  that solves (8.36) can 
also be found by solving a quadratic programming problem. Specifically, Dx  is the value 
that makes the quadratic function in (8.38) stationary.” 
 
Further, the value of l for the KKT conditions is equal to the vector of Lagrange multipliers 
of the quadratic programming problem. Thus solving the quadratic objective and linear 
constraints in (8.38) is the same as solving the NR iteration on the original KKT equations. 
 
The main difficulty in extending SQP to the general problem has to do the with the 
complementary slackness condition. This equation is nonlinear, and so makes the QP 
problem nonlinear. We recall that complementary slackness basically enforces that either a 
constraint is binding or the associated Lagrange multiplier is zero. Thus we can incorporate 
this condition if we can develop a method to determine which inequality constraints are 
binding at the optimum. An example of such a solution technique is given by Goldfarb and 
Idnani [25]. This algorithm starts out by solving for the unconstrained optimum to the 
problem and evaluating which constraints are violated. It then moves to add in these 
constraints until it is at the optimum. Thus it tends to drive to the optimum from infeasible 
space. 
 
There are other important details to develop a realistic, efficient SQP algorithm. For example, 
the QP approximation involves the Lagrangian hessian matrix, which involves second 
derivatives. As you might expect, we don't evaluate the Hessian directly but approximate it 
using a quasi-Newton update, such as the BFGS update. 
 
Recall that updates use differences in x and differences in gradients to estimate second 
derivatives. To estimate 2LxÑ  we will need to use differences in the gradient of the 
Lagrangian function, 
 

  
1

L
m

x i i
i

f gl
=

Ñ =Ñ - Ñå  

 
Note that to evaluate this gradient we need values for li. We will get these from our solution 
to the QP problem. Since our update stays positive definite, we don’t have to worry about the 
method diverging like Newton’s method does for unconstrained problems. 

8.3.6 Comments on the SQP Algorithm 
The SQP algorithm has the following characteristics, 

• The algorithm is usually very fast.  
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• Because it does not rely on a traditional line search, it is often more accurate in 
identifying an optimum.  

• The efficiency of the algorithm is partly because it does not enforce feasibility of the 
constraints at each step. Rather it gradually enforces feasibility as part of the KKT 
conditions. It is only guaranteed to be feasible at the optimum. 

 
Relative to engineering problems, there are some drawbacks:  

• Because it can go infeasible during optimization—sometimes by relatively large 
amounts—it can crash engineering models. 

• It is more sensitive to numerical noise and/or error in derivatives than GRG. 
• If we terminate the optimization process before the optimum is reached, SQP does not 

guarantee that we will have in-hand a better design than we started with. 

8.3.7 Summary of Steps for SQP Algorithm 
1.   Make a QP approximation to the original problem. For the first iteration, use a 

Lagrangian Hessian equal to the identity matrix. 
 

2. Solve for the optimum to the QP problem. As part of this solution, values for the 
Lagrange multipliers are obtained.   

 
3. Execute a simple line search by first stepping to the optimum of the QP problem. So the 

initial step is ∆x, and new old= +Dx x x. See if at this point a penalty function, composed of 
the values of the objective and violated constraints, is reduced. If not, cut back the step 
size until the penalty function is reduced. The penalty function is given 

by
1

vio

i i
i

P f gl
=

= +å  where the summation is done over the set of violated constraints, and 

the absolute values of the constraints are taken. The Lagrange multipliers act as scaling or 
weighting factors between the objective and violated constraints. 
 

4. Evaluate the Lagrangian gradient at the new point. Calculate the difference in x and in the 
Lagrangian gradient, g. Update the Lagrangian Hessian using the BFGS update. 

 
5. Return to Step 1 until ∆x is sufficiently small. When ∆x approaches zero, the KKT 

conditions for the original problem are satisfied. 

8.3.8 Example of SQP Algorithm 
Find the optimum to the problem, 
 
 Min ( ) 4 2 2 2

1 2 1 2 1 12 2 5f x x x x x x= - + + - +x  

 s.t. ( ) ( )21 20.25 0.75 0g x x= - + + ³x  
 
starting from the point [ ]-1,4 . A contour plot of the problem is shown in Fig. 8.2. This is 
similar to Rosenbrock’s function with a constraint. The problem is interesting for several 
reasons: the objective is quite eccentric at the optimum, the algorithm starts at a point where 
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the search direction is pointing away from the optimum, and the constraint boundary at the 
starting point has a slope opposite to that at the optimum. 
 
 

 
Fig. 8.2. Contour plot of example problem for SQP algorithm. 

 
Iteration 1  
We calculate the gradients, etc. at the beginning point. The Lagrangian Hessian is initialized 
to the identity matrix. 

 At ( ) [ ] ( ) [ ]T0 0 0 2 0 1   0
-1,4 , 17, 8,6 ,  L

0   1
T

f f é ù
= = Ñ = Ñ = ê ú

ë û
x  

 ( ) [ ]0 02.4375,  1.5,  0.75
T

g g= Ñ =  
 
Based on these values, we create the first approximation, 
 

 [ ] [ ]1 1
1 2

2 2

1 0117.0 8 6
0 12a

x x
f x x

x x
D Dé ù é ùé ù

= + + D Dê ú ê úê úD Dë ûë û ë û
 

 

 [ ] 1

2

2.4375 1.5 0.75 0a

x
g

x
Dé ù

= + ³ê úDë û
 

 
We will assume the constraint is binding. Then the KKT conditions for the optimum of the 
approximation are given by the following equations: 
 
 0a af glÑ - Ñ =  
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 0ag =  
 
These equations can be written as, 
 
 ( )18 1.5 0x l+D - =  

 ( )26 0.75 0x l+D - =  
 1 22.4375 1.5 0.75 0x x+ D + D =  
 
The solution to this set of equations is 1 20.5,  2.25,  5.00x x lD = - D = - =  
 

The proposed step is, 1 0 1 0.5 1.5
 

4 2.25 1.75
- - -é ù é ù é ù

= +D = + =ê ú ê ú ê ú-ë û ë û ë û
x x x  

 
Before we accept this step, however, we need to check the penalty function, 
 

 
1

vio

i i
i

P f gl
=

= +å  

 
to make sure it decreased with the step. At the starting point, the constraint is satisfied, so the 
penalty function is just the value of the objective, 17P = . At the proposed point the objective 
value is 10.5f = and the constraint is slightly violated with 0.25g = - . The penalty function 
is therefore, 10.5 5.0* 0.25 11.75P = + - = . Since this is less than 17, we accept the full step. 
Contours of the first approximation and the path of the first step are shown in Fig. 8.3. 
 

 
Fig. 8.3 The first SQP approximation and step. 
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Iteration 2  
At ( ) [ ] ( ) [ ]T1 1 11.5 1.75 ,  10.5, 8.0 1.0 ,

T
f f= - = Ñ = - -x  

( ) [ ]1 10.25, 2.5 0.75
T

g g= - Ñ =  
 
We now need to update the Hessian of the Lagrangian. To do this we need the Lagrangian 
gradient at x0 and x1. (Note that we use the same Lagrange multiplier, 1l , for both 
gradients.) 
 

 ( ) ( )0 1 8.0 1.5 0.5
L , 5.0

6.0 0.75 2.25
é ù é ù é ù

Ñ = - =ê ú ê ú ê ú
ë û ë û ë û

x λ  

 

 ( ) ( )1 1 8.0 2.5 20.5
L , 5.0

1.0 0.75 4.75
- -é ù é ù é ù

Ñ = - =ê ú ê ú ê ú- -ë û ë û ë û
x λ   

 

 ( ) ( )0 1 1 0 1 21.0
L , L ,

7.0
-é ù

=Ñ -Ñ = ê ú-ë û
γ x λ x λ  

 0 1.5 1.0 0.5
1.75 4.0 2.25
- - -é ù é ù é ù

D = - =ê ú ê ú ê ú-ë û ë û ë û
x  

 
From Chapter 3, we will use the BFGS Hessian update, 
 

 
( )

( )
( )

( )

T T

1
T T

k k k k k k
k k

k k k k k

+
D D

= + -
D D D

γ γ H x x H
H H

γ x x H x
 

 
Substituting: 
 

 
[ ]

[ ]

[ ]

[ ]
2 1

21.0 1. 0. 0.5 1. 0.
21.0 7.0 0.5 2.25

1. 0. 7.0 0. 1. 2.25 0. 1.
L

0.5 1. 0. 0.50. 1.
21.0 7.0 0.5 2.25

2.25 0. 1. 2.25

- -é ù é ù é ù é ù
- - - -ê ú ê ú ê ú ê ú- -é ù ë û ë û ë û ë ûÑ = + -ê ú - -é ù é ù é ùë û - - - -ê ú ê ú ê ú- -ë û ë û ë û

 

 
2 1 1. 0. 16.8000 5.6000 0.0471 0.2118
L

0. 1. 5.6000 1.8667 0.2118 0.9529
é ù é ù é ù

Ñ = + -ê ú ê ú ê ú
ë û ë û ë û

 

 
2 1 17.7529  5.3882
L

5.3882   1.9137
é ù

Ñ = ê ú
ë û
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The second approximation is therefore, 
 

 [ ] [ ]1 1
1 2

2 2

17.753  5.3882110.5 8.0 1.0
5.3882   1.91372a

x x
f x x

x x
D Dé ù é ùé ù

= + - - + D Dê ú ê úê úD Dë ûë û ë û
 

 

 [ ] 1

2

0.25 2.5 0.75 0a

x
g

x
Dé ù

= - + ³ê úDë û
 

 
 
As we did before, we will assume the constraint is binding. The KKT equations are, 
 
 ( )1 28 17.753 5.3882 2.5 0x x l- + D + D - =  

 ( )1 21 5.3882 1.9137 0.75 0x x l- + D + D - =  
  1 20.25 2.5 0.75 0x x- + D + D =  
 
The solution to this set of equations is 1 21.6145,  5.048,  2.615x x lD = D = - = - . Because  l is 
negative, we need to drop the constraint from the picture. (We can see in Fig. 8.4 below that 
the constraint is not binding at the optimum.) With the constraint dropped, the solution 
is, 1 22.007, 5.131, 0.x x lD = D = - =  This gives a new x of, 
 

 2 1 1.5 2.007 0.507
 

1.75 5.131 3.381
-é ù é ù é ù

= +D = + =ê ú ê ú ê ú- -ë û ë û ë û
x x x  

 
However, when we try to step this far, we find the penalty function has increased from 11.75 
to 17.48 (this is the value of the objective only—the violated constraint does not enter in to 
the penalty function because the Lagrange multiplier is zero). We cut the step back. How 
much to cut back is somewhat arbitrary. We will make the step 0.5 times the original. The 
new value of x becomes, 
 

 2 1 1.5 2.007 0.4965
0.5  

1.75 5.131 0.8155
- -é ù é ù é ù

= +D = + =ê ú ê ú ê ú- -ë û ë û ë û
x x x   

 
At which point the penalty function is 7.37. So we accept this step. Contours of the second 
approximation are shown in Fig. 8.4, along with the step taken. 
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Fig. 8.4 The second approximation and step. 

  
Iteration 3 
At ( ) [ ] ( ) [ ]T2 2 20.4965 0.8155 ,  7.367, 5.102 2.124 ,

T
f f= - - = Ñ = - -x  

( ) [ ]2 20.6724, 0.493 0.75
T

g g= - Ñ =  
 

 ( ) ( )1 2 8.0 2.5 8.0
L , 0

1.0 0.75 1.0
- -é ù é ù é ù

Ñ = - =ê ú ê ú ê ú- -ë û ë û ë û
x λ  

 

 ( ) ( )2 2 5.102 0.493 5.102
L , 0

2.124 0.75 2.124
- -é ù é ù é ù

Ñ = - =ê ú ê ú ê ú- -ë û ë û ë û
x λ  

 

 ( ) ( )1 2 2 1 2 2.898
L , L ,

1.124
é ù

=Ñ -Ñ = ê ú-ë û
γ x λ x λ  

 1 0.4965 1.5 1.004
0.8155 1.75 2.5655
- -é ù é ù é ù

D = - =ê ú ê ú ê ú- -ë û ë û ë û
x  

 
Based on these vectors, the new Lagrangian Hessian is, 
 

 2 2 17.7529  5.3882 1.4497 0.5623 5.8551 0.7320
L

5.3882   1.9137 0.5623 0.2181 0.7320 0.0915
-é ù é ù é ù

Ñ = + -ê ú ê ú ê ú-ë û ë û ë û
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∇2L2 =

13.3475  4.0939
4.0939   2.0403
⎡

⎣
⎢

⎤

⎦
⎥  

 
So our next approximation is, 

 [ ] [ ]1 1
1 2

2 2

13.3475  4.093917.367 5.102 2.124
4.0939   2.04032a

x x
f x x

x x
D Dé ù é ùé ù

= + - - + D Dê ú ê úê úD Dë ûë û ë û
 

 

 [ ] 1

2

0.6724 0.493 0.75 0a

x
g

x
Dé ù

= - + ³ê úDë û
 

 
The KKT equations, assuming the constraint is binding, are, 
 
 ( )1 25.102 13.3475 4.0939 0.493 0x x l- + D + D - =  

 ( )1 22.124 4.0939 2.0403 0.75 0x x l- + D + D - =  
  1 20.6724 0.493 0.75 0x x- + D + D =  
 
The solution to this set of equations is 1 20.1399,  0.8046,  0.1205x x lD = D = = .  
 

Our new proposed point is,  3 2 0.4965 0.1399 0.3566
 

0.8155 0.8046 0.0109
- -é ù é ù é ù

= +D = + =ê ú ê ú ê ú- -ë û ë û ë û
x x x   

 
At this point the penalty function has decreased from 7.37 to 5.85. We accept the full step. A 
contour plot of the third approximation is shown in Fig. 8.5. 
 

 
Fig. 8.5 The third approximation and step. 
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Iteration 4 
At ( ) [ ] ( ) [ ]3 3 30.3566 0.0109 ,  5.859, 2.9101 0.2761 ,

T T
f f= - - = Ñ = - -x  

( ) [ ]3 30.01954, 0.2132 0.75
T

g g= - Ñ =  
 

 ( ) ( )2 3 5.102 0.493 5.161
L , 0.1205

2.124 0.75 2.214
- -é ù é ù é ù

Ñ = - =ê ú ê ú ê ú- -ë û ë û ë û
x λ  

 

 ( ) ( )3 3 2.910 0.2132 2.936
L , 0.1205

0.2761 0.75 0.3665
- -é ù é ù é ù

Ñ = - =ê ú ê ú ê ú- -ë û ë û ë û
x λ  

 

 ( ) ( )2 3 3 2 3 2.225
L , L ,

1.8475
é ù

=Ñ -Ñ = ê ú
ë û

γ x λ x λ  

 

 2 0.3566 0.4965 0.1399
0.0109 0.8155 0.8046
- -é ù é ù é ù

D = - =ê ú ê ú ê ú- -ë û ë û ë û
x  

 
Based on these vectors, the new Lagrangian Hessian is, 
 

 2 3 13.3475  4.0939 2.7537 2.2865 10.6397 4.5647
L

4.0939   2.0403 2.2865 1.8986 4.5647 1.9584
é ù é ù é ù

Ñ = + -ê ú ê ú ê ú
ë û ë û ë û

 

 

 2 3 5.4616  1.8157
L

1.8157   1.9805
é ù

Ñ = ê ú
ë û

 

 
Our new approximation is, 

 [ ] [ ]1 1
1 2

2 2

5.4616  1.815715.859 2.910 0.2761
1.8157   1.98052a

x x
f x x

x x
D Dé ù é ùé ù

= + - - + D Dê ú ê úê úD Dë ûë û ë û
 

 

 [ ] 1

2

0.0195 0.2132 0.75 0a

x
g

x
Dé ù

= - + ³ê úDë û
 

 
The KKT equations, assuming the constraint is binding, are, 
 
 1 22.910 5.4616 1.8157 (0.2132) 0x x l- + D + D - =  
 ( )1 20.2761 1.8157 1.9805 0.75 0x x l- + D + D - =  
  1 20.0195 0.2132 0.75 0x x- + D + D =  
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The solution to this problem is, 1 20.6099,  0.1474,  0.7192x x lD = D = - = . Since l is 
positive, our assumption about the constraint was correct. Our new proposed point is, 
 

  4 3 0.3566 0.6099 0.2533
 

0.0109 0.1474 0.1583
-é ù é ù é ù

= +D = + =ê ú ê ú ê ú- - -ë û ë û ë û
x x x   

 
At this point the penalty function is 4.87, a decrease from 5.85, so we take the full step. The 
contour plot is given in Fig. 8.6. The fifth step is shown in Fig. 8.7. 

 
Fig. 8.6 The fourth approximation and step. 

 

 
Fig. 8.7 The fifth approximation and step. 
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We would continue in this fashion until  Dx goes to zero. We would then know the original 
KKT equations were satisfied. The solution to this problem occurs at, 
 

 
   
x*( )

T
= 0.500 0.750⎡
⎣⎢

⎤
⎦⎥,  f * = 4.50  

 
A summary of five steps is overlaid on the original problem in Fig. 8.8. 
 
 

 
Fig. 8.8 The path of the SQP algorithm. 
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8.4 The Interior Point (IP) Algorithm 

8.4.1 Problem Definition 
In general, for the primal-dual method given here, there are two approaches to developing 
the equations for the IP method: putting slack variables into their own vector, and 
incorporating slack variables as part of the design variables x. Both methods can be found in 
the literature. We have opted for the former, because the development is somewhat more 
straightforward. It is also the approach used in MATLAB. The development of the latter is 
given in a later optional section. 
 
For simplicity, we will start with a problem that only has inequality constraints. 
 
 Min ( )f x  (8.39) 

 s.t. 
    
gi x( ) ≥ 0 i =1,…,m  (8.40) 

 
We will add in slack variables to turn the inequalities into equalities: 
 
 Min ( )f x  (8.41) 

 s.t. 
    
gi x( )− si = 0 i =1,…,m  (8.42) 

    si ≥ 0 i =1,...,m   (8.43) 
 
Slack variables are so named because they take up the “slack” between the constraint value 
and the right hand side. For an inequality constraint to be feasible, si must be ≥ 0. If (8.42) is 
satisfied and si = 0, then the original inequality is binding. 
 
The IP algorithm eliminates the lower bounds on s by incorporating a barrier function as part 
of the objective: 

 Min 
   
fµ = f x( )−µ ln(si

i=1

m

∑ )  (8.44) 

 s.t. 
    
gi x( )− si = 0 i =1,…,m  (8.45) 

 
We note that as si approaches zero (from a positive value, i.e. from feasible space), the 
negative barrier term goes to infinity. This obviously penalizes the objective and forces the 
algorithm to keep s positive. The IP algorithm solves a sequence of these problems for a 
decreasing set of barrier parametersµ . Asµ approaches zero, the barrier becomes steeper and 
sharper. This is illustrated in Fig. 8.9. 
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Fig. 8.9 Barrier function   −µ ln(x)  for µ =20, 10 and 1. 

 
We can define the Lagrangian function for this problem as, 
  

 
   
L(x,s,λ) = f (x)−µ ln(si )−

i=1

m

∑ λi(gi(x)− si
i=1

m

∑ )   (8.46) 

 
Taking the gradient of this function with respect to   x, s, λ , and setting it equal to zero gives 
us the KKT conditions for (8.44)–(8.45), 
 

 
   
∇x L =∇f (x)− λi∇gi(x)

i=1

m

∑ = 0  (8.47) 

   ∇sL = siλi −µ = 0     i =1,…,m  (8.48) 
    ∇λL = −(gi(x)− si ) = 0     i =1,…,m  (8.49) 
 
If we define e as the vector of 1’s of m dimension and, 
 

 

    

S =
s1 0
!

0 sm

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

Λ =

λ1 0
!

0 λm

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

  

 
we can replace (8.48) above with (8.51) below,   
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∇f (x)− λi∇gi(x)

i=1

m

∑ = 0  (8.50) 

  SΛe−µe = 0  (8.51) 
     gi(x)− si = 0 i =1,…,m  (8.52) 
 
It is worth noting that as µ→ 0 , the above equations (along with   λ,s ≥ 0 ) represent the KKT 
conditions for the original problem (8.39)-(8.40). Notice that with  µ = 0 , (8.51) (perhaps 
more easily seen in (8.48)) expresses complementary slackness for the slack variable bounds, 
i.e. either  λi = 0 or   si = 0 . 

8.4.2 Problem Solution 
We will use the NR method to solve the set of equations represented by (8.50)-(8.52). The 
coefficient matrix (see 8.5) will be the first derivatives of these equations. We note that we 
have n equations from (8.50), m equations from (8.51) and m equations from (8.52). 
Similarly, these equations are functions of n variables x, m variables l, and m variables s. 
 
The coefficient matrix for NR can be represented as, 
   

 

    

∇x f1NR( )T
∇s f1NR( )T

∇λ f1NR( )T

! ! !

∇x f(n+2m) NR( )
T

∇s f(n+2m) NR( )
T

∇λ f(n+2m) NR( )
T

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

Δx
Δs
Δλ

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
= −

r1
r2
r3

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
  (8.53) 

 
where  f1NR  (the first NR equation) is given by, 

 
  
f1NR =

∂ f
∂x1

− λi

∂gi

∂x1i=1

m

∑   (8.54) 

 
and r1, r2 and r3 represent the residuals for (8.50)–(8.52). If we substitute (8.54) into the first 
row of (8.53), the first row of the coefficient matrix becomes, 
 

 

   

∂2 f
∂x1

2 − λi

∂2 gi

∂x1
2

i=1

m

∑
⎡

⎣
⎢

⎤

⎦
⎥,…, ∂2 f

∂xn ∂x1

− λi

∂2 gi

∂xn ∂x1i=1

m

∑
⎡

⎣
⎢

⎤

⎦
⎥

∇x f T
! "######## $########

, 0⎡⎣ ⎤⎦,…, 0⎡⎣ ⎤⎦
∇s f T

! "# $#
, −

∂g1

∂x1

⎡

⎣
⎢

⎤

⎦
⎥,..., −

∂gm

∂x1

⎡

⎣
⎢

⎤

⎦
⎥

∇λ f T
! "### $###

 

 
Recalling, 

 
  
∇x

2 L =∇2 f − λi∇
2gi

i=1

m

∑  (8.55) 

and 
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J k =

∇g1
k( )

T

!

∇gm
k( )

T

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

J k( )
T
= ∇g1

k , " ∇gm
k⎡

⎣⎢
⎤
⎦⎥

 

 
we can write the NR iteration equations at step k as, 
 

 

   

∇x
2Lk 0 −J k( )

T

0 Λ k Sk

J k −I 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

Δx k

Δsk

Δλ k

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

= −

∇f k (x)− λi
k∇gi

k (x)
i=1

m

∑

SkΛ ke−µ ke

gi
k (x)− si

k

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

 (8.56) 

 
At this point, we could solve this system of equations to obtain Dxk, Dsk, and Dlk. However, 
for large problems we can gain efficiency by simplifying this expression. If we look at row 2 
above, 
   Λ

kΔsk +SkΔλ k = −SkΛ ke+µe  (8.57) 
 
We would like to solve (8.57) for Dsk. Rearranging terms and pre-multiplying both sides by 

  
Λ k( )

−1
 gives, 

 
   
Δsk = − Λ k( )

−1
SkΛe+µΛ−1e−Λ−1SkΔx k  (8.58) 

 
For diagonal matrices, the order of matrix multiplication does not matter, so the first term on 
the right hand side simplifies to give, 
 
    Δsk = −Ske+µΛ−1e−Λ−1SkΔx k  (8.59) 
 
Examining the first and second terms on the right hand side, we note that, 
  

 

    

−Ske = −
s1

k 0
!

0 sn
k

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

1
"
1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
= −sk µ(Λ k )−1e =

µ
λ1

k 0
!

0 µ
λm

k

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

1
"
1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
= sk  

Equation (8.59) becomes, 
 



   Chapter 8: Constrained Optimization 2 

  25 

 
   

Δsk = −sk + sk − (Λ k )−1SkΔx k

= −(Λ k )−1SkΔx k
 (8.60) 

 
We define Ω  to be, 
 
    Ω

k = (Λ k )−1Sk  (8.61) 
 
so that we have,  
 
   Δsk = −ΩkΔλ k  (8.62) 
  
We can then write (8.56) as a reduced set of equations: 
 

 

   

−∇x
2Lk J k( )

T

J k Ωk

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

Δx k

Δλ k

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= −

−∇f (x)+ λi∇gi(x)
i=1

m

∑

gi(x)− si

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

 (8.63) 

 
This matrix represents a linear symmetric system of equations (symmetric because the off-
diagonal elements are the transpose of one another), of lower dimension than (8.56) and is 
more efficiently solved. Once we have solved for  Δλ k , we can use (8.62) to get   Δsk .  

8.4.3 The Line Search 
It is sometimes said, “the devil is in the details.” That is certainly true for the line search for 
the IP method. Modern algorithms employ a number of line search techniques, including 
merit functions, trust regions and filter methods [26, 27, 28]. They include techniques to 
handle non-positive-definite hessians or otherwise poorly conditioned problems, or to regain 
feasibility. Sometimes a different step length is used for the primal variables (x, s) and the 
dual variables (l). We will adopt that strategy here as well.  
 
We can consider   Δx, Δs, Δλ,  as the search directions for x, s, and l. We then need to 
determine the step size (between 0-1) in these directions, 
  
    x k+1 = x k +α kΔx k    (8.64) 
   λ k+1 = λ k +α kΔλ k  (8.65) 
    s

k+1 = sk +α kΔsk  (8.66) 
 
Similar to SQP, a straightforward method is to accept a if it results in a decrease in a merit 
function that combines the objective with a sum of the violated constraints, i.e., 
 

  
  
P = f k +ν gi

i=1

viol

∑  
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where n is a constant. We will also reduce the step length if necessary to keep a slack 
variable or a Lagrange multiplier positive. 

8.4.4 Example 1: Two Variables, One Constraint 
We will apply the IP method to the same example given for SQP in Section 8.3.8, namely, 
 
 Min ( ) 4 2 2 2

1 2 1 2 1 12 2 5f x x x x x x= - + + - +x  

 s.t. ( ) ( )21 20.25 0.75 0g x x= - + + ³x  
 
We reformulate the problem using a slack variable, s1, for the constraint: 
 
 Min ( ) 4 2 2 2

1 2 1 2 1 12 2 5f x x x x x x= - + + - +x  

 s.t. 
   

g x( ) = − x1+0.25( )2
+0.75x2 − s1 = 0

s1 ≥ 0
 

 
We eliminate the lower bound for s1 by adding a barrier term, 
 
 Min 

   
fµ x( ) = f (x)−µ ln(s1)  

 s.t. 
   
g x( ) = − x1+0.25( )2

+0.75x2 − s1 = 0  
 
At the starting point we have, 
 

  
   
x0( )

T
= -1,4⎡⎣ ⎤⎦, f 0 =17, ∇f 0( )

T
= 8,6⎡⎣ ⎤⎦,    

g0 = 2.4375,  ∇g0( )
T
= 1.5, 0.75⎡⎣ ⎤⎦  

 
We will assume we do not have second derivatives available, so we will begin with the 

Hessian set to 
 
∇2L0 =

1   0
0   1

⎡

⎣
⎢

⎤

⎦
⎥ .   J

0 = [1.5, 0.75] . We will also set  µ
0 = 5 ,   s1

0 = 2.4375 , λ1
0 = 2 . 

This value of l was picked to approximately satisfy (8.51), i.e.   λ
0s0 −µ0 = 0 . 

 
If the merit function increases for a proposed step, we will cut the step in half and continue 
doing so several times. 

8.4.4.1 First Iteration 
Based on the data above, the coefficient matrix (refer back to (8.56)) for the first step is, 
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1 0 0 −1.5
0 1 0 −0.75
0 0 2 2.4375

1.5 0.75 −1 0

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

  

 
For the residual vector, we have, 
 

 
   
∇f k (x)− λi

k∇gi
k (x) =

i=1

m

∑ 8
6

⎡

⎣
⎢

⎤

⎦
⎥−2 1.5

0.75

⎡

⎣
⎢

⎤

⎦
⎥= 5

4.5

⎡

⎣
⎢

⎤

⎦
⎥   

  
 

   
SkΛ ke−µ ke = 2.4375⎡⎣ ⎤⎦ 2⎡⎣ ⎤⎦− 5⎡⎣ ⎤⎦= −0.125⎡⎣ ⎤⎦   

 
 

   
gi

k (x)− si
k = 2.4375⎡⎣ ⎤⎦− 2.4375⎡⎣ ⎤⎦= 0⎡⎣ ⎤⎦    

 
Thus the set of equations for our first step becomes, 
 

 

  

1 0 0 −1.5
0 1 0 −0.75
0 0 2 2.4375

1.5 0.75 −1 0

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

Δx0

Δs0

Δλ 0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
= −

5
4.5

−0.125
0

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

    

 
The solution is    ΔxT = [−0.930, −2.465], Δs = −3.244, Δλ = 2.713   
Because the full step would make the slack negative, we set the step length for x and s to be 
0.748 to keep the slack slightly positive. We accept the full step for l. At this trial point the 
objective has decreased to 11.78 but the constraint is violated at –0.471. However the merit 
function has decreased from 17 to 14.00 and we accept the step. Our new point is 

   x
T = [−1.695, 2.157], s = 0.012, λ = 4.713 .  

8.4.4.2 Second Iteration 

At 
   
x1( )

T
= [−1.695, 2.157],  f 1 =11.78, ∇f 1( )

T
= [−10.256 −1.435]  

  
g1 = −0.4714, ∇g1( )

T
= [2.891 0.75]  

 
We start this step by updating the Hessian of the Lagrangian. To do so, we evaluate the 
Lagrangian gradient at   x0  and   x1 . We then calculate the g and Dx vectors. (As we did for 
SQP, we use the same Lagrange multiplier, 1l , for both gradients.) 
 

 
  
∇L x0 ,λ1( ) = 8.0

6.0

⎡

⎣
⎢

⎤

⎦
⎥− 4.713( ) 1.5

0.75

⎡

⎣
⎢

⎤

⎦
⎥= 0.930

2.465

⎡

⎣
⎢

⎤

⎦
⎥  



 Chapter 8: Constrained Optimization 2 
 

 28 

 

 
  
∇L x1,λ1( ) = −10.256

−1.435

⎡

⎣
⎢

⎤

⎦
⎥− 4.713( ) 2.891

0.75

⎡

⎣
⎢

⎤

⎦
⎥= −23.881

−4.967

⎡

⎣
⎢

⎤

⎦
⎥   

 

 
  
γ 0 =∇L x1,λ1( )−∇L x0 ,λ1( ) = −24.811

−7.435

⎡

⎣
⎢

⎤

⎦
⎥  

 
  
Δx0 = −1.695

2.157

⎡

⎣
⎢

⎤

⎦
⎥− −1.0

4.0

⎡

⎣
⎢

⎤

⎦
⎥= −0.695

−1.843

⎡

⎣
⎢

⎤

⎦
⎥  

 
We use this data to obtain the new estimate of the Lagrangian Hessian using BFGS Hessian 
update, as we did for SQP (see the SQP example for details). The new Hessian is,  

 

 
∇2L1 =

20.762  5.629
5.629   1.910

⎡

⎣
⎢

⎤

⎦
⎥  

 
After evaluating the residuals, our next set of equations becomes, 
 

  

20.762 5.629 0 −2.891
5.629 1.910 0 −0.75

0 0 4.713 0.012
2.891 0.75 −1 0

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

Δx1

Δs1

Δλ1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
= −

−23.881
−4.970
−0.943
−0.484

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

 

 
The solution gives:   ΔxT = [1.104, −3.319], Δs = 0.218, Δλ = −6.797 . For l we only take 
0.693 of the step to keep l ≥ 0. With the full step for x and s, our merit function decreases 
from 14.0 to 10.8. Our new point is, 
 

 
   
x2( )

T
= [−0.592, −1.162], s = 0.230, λ = 0, f = 8.820, g = −0.988  

 
Subsequent steps proceed in a similar manner. The progress of the algorithm to the optimum, 
with our relatively unsophisticated line search, is shown in Fig. 8.10 below. The algorithm 
reaches the optimum in about nine steps. At every iteration we reduce µ according to the 

equation 
  
µ k+1 =

µ k

5
. For comparison purposes, the progress of the Interior Point method in 

fmincon on this problem is shown in Fig. 8.11. 
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Example of Interior Point Method
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Fig 8.10. The progress of the IP algorithm on Example 1. 
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Fig. 8.11 Path of fmincon IP algorithm on Example 1. 
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8.4.5 Example 2: One Variable, Two Constraints 
In this example problem the functions are very simple, but the setup for the constraints is 
more involved than the previous example. We will show how the problem changes when we 
have two slack variables. 
 Min   f = x1

2   
 s.t.   −2x1+9 ≥ 0   
    x1 ≥1 
 
We will change the inequality and the bound to equality constraints by means of slack 
variables so that we have, 
 
 Min   f = x1

2   
 s.t.   −2x1+9− s1 = 0  
    x1 −1− s2 = 0   
    s1, s2 ≥ 0  
 
We remove the bounds on the slacks by adding barrier terms,  
 

 Min 
  
fµ = x1

2 −µ ln(si
i=1

2

∑ )   

 s.t.   −2x1+9− s1 = 0  
    x1 −1− s2 = 0   
 
By inspection, the solution to the problem is   x1 =1, s1 = 7, s2 = 0; f =1.  

8.4.5.1 First Iteration 

At our starting point 
   
x1 = 3, s0( )

T
= [3,2], f 0 = 9, g1

0 = 0, g2
0 = 0   

We also have,   ∇f 0 = [6], ∇2 f = [2], ∇g1 = [−2], ∇g2 = [1], ∇2g1 = [0], ∇2g2 = [0]   

We will use  µ
0 = 2, α 0 = 0.5, (λ 0 )T = [1,1] . Thus, 

 

 
  
S0 = 3 0

0 2

⎡

⎣
⎢

⎤

⎦
⎥ Λ0 = 1 0

0 1

⎡

⎣
⎢

⎤

⎦
⎥ J0 = −2

1

⎡

⎣
⎢

⎤

⎦
⎥   

 
Because we only have one variable, the Hessian of the Lagrangian is just a 1x1 matrix (we 
use the actual second derivative here for simplicity): 
 
   ∇x

2 L =∇2 f −λ1∇
2g1 −λ2∇

2g2 = [2]− (1)[0]− (1)[0]= [2]   
 
With this information we can then build our coefficient matrix, 
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∇x
2Lk 0 −J k( )

T

0 Λ k Sk

J k −I 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

=

2 0 0 2 −1
0 1 0 3 0
0 0 1 0 2
−2 −1 0 0 0
1 0 −1 0 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

 

The vector of residuals is, 

 
   
∇f k (x)− λi

k∇gi
k (x) =

i=1

m

∑ [6]− (1)[−2]− (1)[1]= 7   

  

 
   
SkΛke − µ ke = 3 0

0 2
⎡

⎣
⎢

⎤

⎦
⎥

1 0
0 1

⎡

⎣
⎢

⎤

⎦
⎥

1
1

⎡

⎣
⎢

⎤

⎦
⎥ − 2.0 1

1
⎡

⎣
⎢

⎤

⎦
⎥ =

1
0

⎡

⎣
⎢

⎤

⎦
⎥   

 

 
   
gi

k (x)− si
k = 0

0

⎡

⎣
⎢

⎤

⎦
⎥               

 
 
We can then solve for our new point as (recall alpha = 0.5), 

   
x1

1 = 2.174, s1( )
T
= [4.652,1.174], λ1( )

T
= [0.283,1.413]  at which point f = 4.73, and 

  g1
1 = 0, g2

1 = 0 . 
 

8.4.6 *An Alternate Development of the Newton Iteration Equations 
*This section is optional. 
 
As mentioned at the start of the section on IP algorithms, there are two approaches to 
developing the NR equations: separating out the slack variables in their own vector, and 
including the slacks as part of the x vector. Previously we kept the slacks separate. Now we 
will combine them with x. This development follows the work by Wachter and Biegler [29, 
14].  
 
For simplicity, we will start with a problem which only has equality constraints. We will, 
however, include a lower bound on the variables: 
 
 Min ( )f x  (8.67) 

 s.t. 
    
gi x( ) = 0 i =1,…,m  (8.68) 

    x ≥ 0  (8.69) 
 
As before, we eliminate the lower bounds by including them in the objective function with a 
barrier function: 
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 Min 
   
fµ = f x( )−µ ln(xi

i=1

n

∑ )  (8.70) 

 s.t. 
    
gi x( ) = 0 i =1,…,m  (8.71) 

 
We now consider the necessary conditions for a solution to the barrier problem represented 
by (8.70)-(8.71). We first define, 
 

 
 
zi =

µ
xi

 (8.72) 

 
We can write the KKT conditions as, 
 

 
   
∇f (x)− λi∇gi(x)

i=1

m

∑ − z = 0  (8.73) 

    gi(x) = 0     i =1,…,m  (8.74) 
   xizi −µ = 0     i =1,…,n  (8.75) 
 
If we define e as the vector of 1’s of n dimension and, 
 

 

    

X =

x1 0
!

0 xn

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

Z =

z1 0
!

0 zn

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

  

 
we can replace (8.75) above with (8.78) below,   
 

 
   
∇f (x)− λi∇gi(x)

i=1

m

∑ − z = 0  (8.76) 

     gi(x) = 0 i =1,…,m  (8.77) 
   XZe−µe = 0  (8.78) 
 
As µ→ 0 , the above equations (along with  z ≥ 0 ) represent the KKT conditions for the 
original problem. The variables z can be viewed as the Lagrange multipliers for the bound 
constraints. Notice that with  µ = 0 , (8.78) expresses complementary slackness for the bound 
constraints, i.e. either  xi = 0 or   zi = 0 . 

8.4.7 Problem Solution 
We will now construct the coefficient matrix for the Newton iteration. We note that we have 
n equations from (8.73), m equations from (8.77) and n equations from (8.75). Similarly, 
these equations are functions of n variables x, m variables l, and n variables z. 
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For example, the first row of the coefficient matrix for NR could be represented as, 
   

 

   

∇x f1NR( )T
∇λ f1NR( )T

∇z f1NR( )T⎡

⎣
⎢

⎤

⎦
⎥

Δx
Δλ
Δz

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
= − r1⎡

⎣⎢
⎤
⎦⎥   (8.79) 

where  f1NR  is given by, 

 
  
f1NR =

∂ f
∂x1

− λi

∂gi

∂x1i=1

m

∑ − z1   (8.80) 

 
and r1 represents the residuals for (8.76). If we substitute (8.80) into matrix (8.79), the first 
row of the coefficient matrix is, 
 

   

∂2 f
∂x1

2 − λi

∂2 gi

∂x1
2 −

∂z1

∂x1i=1

m

∑
⎡

⎣
⎢

⎤

⎦
⎥,…, ∂2 f

∂xn ∂x1

− λi

∂2 gi

∂xn ∂x1

−
∂z1

∂xni=1

m

∑
⎡

⎣
⎢

⎤

⎦
⎥

∇x f T
! "########### $###########

, −
∂g1

∂x1

⎡

⎣
⎢

⎤

⎦
⎥,…, −

∂gm

∂x1

⎡

⎣
⎢

⎤

⎦
⎥

∇λ f T
! "### $###

, −1⎡⎣ ⎤⎦,..., 0⎡⎣ ⎤⎦
∇z f T

! "# $#
 

 
Defining, 

 
   
∇x

2 L =∇2 f − λi∇
2gi

i=1

m

∑ +µX−2  (8.81) 

 
we can write the NR iteration equations at step k as, 
 

 

   

∇x
2Lk −J k( )

T
−I

J k 0 0
Zk 0 Xk

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

Δx k

Δλ k

Δzk

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

= −
r1
r2
r3

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
 (8.82) 

 
The reader might wish to compare this with (8.56). As before, we could solve this system of 
equations to obtain Dxk, Dlk, and Dzk. However, we can simplify this expression. We will 
start by looking at the third set of equations in (8.56) above, 
 
    Z

kΔx k +0+XkΔzk = −XkZke+µe  (8.83) 
 
where we have substituted in the actual residual value for r3, i.e., 
 
    −r3= −XkZke+µe  
 
We would like to solve (8.83) for Dzk. Rearranging terms gives, 
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   X
kΔzk = −XkZke+µe−ZkΔx k  (8.84) 

 
If we pre-multiply both sides by (Xk)-1 we have, 
 
    Δzk = −Zke+µ(Xk )−1e− (Xk )−1ZkΔx k  (8.85) 
 
Examining the first and second terms on the right hand side, we note that, 
  

 

    

−Zke = −
z1

k 0
!

0 zn
k

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

1
"
1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
= −zk µ(Xk )−1e =

µ
x1

k 0
!

0 µ
xn

k

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

1
"
1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
= zk  

Equation (8.85) becomes, 
 

 
   

Δzk = −zk + zk − (Xk )−1ZkΔx k

= −(Xk )−1ZkΔx k
 (8.86) 

 
We define S to be, 
 
    S

k = (Xk )−1Zk  (8.87) 
 
so that we have,  
 
   Δzk = −SkΔx k  (8.88) 
  
Now we will examine the first two rows of (8.82). These represent equations, 
 

 
   
∇x

2 LkΔx k + −J k( )
T
Δλ k +−IΔzk = −r1  (8.89) 

    J
kΔx k = −r2    (8.90) 

 
We see that   Δzk only appears in (8.89). If we substitute (8.88) for  Δzk and gather terms, 
(8.89) becomes, 
 

 
   
∇x

2 Lk +Sk⎡
⎣

⎤
⎦Δx k + −J k( )

T
Δλ k = −r1  (8.91) 

 
or in matrix form, 
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∇x
2Lk +S −J k( )

T

J k 0

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

Δx k

Δλ k

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= − r1

r2

⎡

⎣
⎢

⎤

⎦
⎥  (8.92) 

 
Once we have solved for   Δx k , we can use (8.88) to get   Δzk . 

8.4.8 Example 1: Solving the IP Equations 
We will illustrate this approach on a similar example problem used earlier: 
 
 Min   f = x1

2   
 s.t.   −2x1+9 ≥ 0   
    x1 ≥ 0  
 
We will change the inequality constraint to an equality constraint by means of a slack 
variable, x2, so that we have, 
 
 Min   f = x1

2   
 s.t.   −2x1+9− x2 = 0   
    x1,x2 ≥ 0  
 
We will eliminate the lower bounds by using a barrier formulation: 
 

 Min 
  
fµ = x1

2 −µ ln(xi )
i=1

2

∑   

 s.t.   −2x1 − x2 +9 = 0   
 
starting from    (x

0 )T = [3, 3] . At this point,  f
0 = 9, (∇f 0 )T = [6,0] ;   g

0 = 0, (∇g0 )T = [−2,−1] . 

We will set  µ =10  and  λ =1. This then gives, 
  
z1 =

µ
x1

= 3.333  and 
  
z2 =

µ
x2

= 3.333 Noting, 

 

 
   
∇x

2 L =∇2 f − λi∇
2gi

i=1

m

∑ +µX−2 = 2 0
0 0

⎡

⎣
⎢

⎤

⎦
⎥− (1) 0 0

0 0

⎡

⎣
⎢

⎤

⎦
⎥+ 1.111 0

0 1.111

⎡

⎣
⎢

⎤

⎦
⎥  

 
    J

k = [−2,−1]   
 
We can write the coefficient matrix, 
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∇x
2Lk −J k( )

T
−I

J k 0 0
Zk 0 Xk

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

=

3.111 0 2 −1 0
0 1.111 1 0 −1
−2 −1 0 0 0

3.333 0 0 3 0
0 3.333 0 0 3

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

 

 
By evaluating (8.76) through (8.78) we find the vector of residuals to be, 
 

 

  

−
r1
r2
r3

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
= −

4.667
−2.333

0
0
0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

  

Solving this set of equations, gives 
  
Δx = -0.712

1.424

⎡

⎣
⎢

⎤

⎦
⎥, Δλ = −0.831, Δz = 0.791

-1.582

⎡

⎣
⎢

⎤

⎦
⎥   

 
If we take the full step by adding these delta values to our beginning values, we have 
 

 
  
x1 = 2.288

4.424

⎡

⎣
⎢

⎤

⎦
⎥, λ1 = 0.169, z1 = 4.124

1.805

⎡

⎣
⎢

⎤

⎦
⎥  

 
At this new point the constraint is satisfied (  g

1 = 0 ) and the objective has decreased from 9 to 
5.235. 

8.5 The Generalized Reduced Gradient (GRG) Algorithm 

8.5.1 Introduction 
GRG works quite differently than the SQP or IP methods. If started inside feasible space, 
GRG goes downhill until it runs into fences—constraints—and then corrects the search 
direction such that it follows the fences downhill. At every step it enforces feasibility. The 
strategy of GRG in following fences works well for engineering problems because most 
engineering optimums are constrained. For information beyond what is given here consult 
Lasdon et al. [30] and Gabriele and Ragsdell [31]. 

8.5.2 Explicit vs. Implicit Elimination 
Suppose we have the following optimization problem, 
 
 Min ( ) 2 2

1 23f x x= +x  (8.93) 
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 s.t. ( ) 1 22 6 0g x x= + - =x  (8.94) 
 
A contour plot is given in Fig. 8.9a.  
 
From previous discussions about modeling in Chapter 2, we know there are two approaches 
to this problem—we can solve it as a problem in two variables with one equality constraint, 
or we can use the equality constraint to eliminate a variable and the constraint. We will use 
the second approach. Using (8.94) to solve for 2x , 
 
 2 16 2x x= -  
 
Substituting into the objective function, (8.93), we have, 
 
 Min ( ) 2 2

1 13(6 2 )f x x= + -x  (8.95) 
 
Mathematically, solving the problem given by (8.93)-(8.94) is the same as solving the 
problem in (8.95). We have used the constraint to explicitly eliminate a variable and a 
constraint. Once we solve for the optimal value of 1x , we will obviously have to back 
substitute to get the value of 2x  using (8.94). The solution in 1x  is illustrated in Fig. 8.9b, 
where the sensitivity plot for (8.95) is given (because we only have one variable, we can’t 

show a contour plot). The derivative 
1

df
dx

of (8.95) would be considered to be the reduced 

gradient relative to the original problem. 
 
Usually we cannot make an explicit substitution as we did in this example. So we eliminate 
variables implicitly. We show how this can be done in the next section. 
 

  
Fig. 8.9 a) Contour plot in 1 2,x x with equality 
constraint. The optimum is at 

[ ]2.7693 0.4613T =x . 
 

Fig. 8.9 b) Sensitivity plot for Eq. 8.95. The 
optimum is at 1 2.7693x =  
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8.5.3 Implicit Elimination 
In this section we will look at how we can eliminate variables implicitly. We do this by 
considering differential changes in the objective and constraints. We will start by considering 
a simple problem of two variables with one equality constraint, 
  
 Min ( ) [ ]1 2

Tf x x=x x   

 s.t. 
   
g x( ) = 0  

 
Suppose we are at a feasible point.  Thus the equality constraint is satisfied. We wish to 
move to improve the objective function. The differential change is given by, 
 

 1 2
1 2

f fdf dx dx
x x
¶ ¶

= +
¶ ¶

 (8.96) 

 
to keep the constraint satisfied the differential change must be zero: 
     

 1 2
1 2

0g gdg dx dx
x x
¶ ¶

= + =
¶ ¶

 (8.97) 

 
Solving for 2dx  in (7.47) gives:  
 

 1
2 1

2

g xdx dx
g x

-¶ ¶
=
¶ ¶

 

 
substituting into  (7.46) gives, 
 

 1
1

1 2 2

f f g xdf dx
x x g x

é ùæ ö¶ ¶ ¶ ¶= -ê úç ÷¶ ¶ ¶ ¶è øë û
 (8.98) 

 
where the term in brackets is the reduced gradient. 
 

i.e., 1

1 1 2 2

Rdf f f g x
dx x x g x

é ùæ ö¶ ¶ ¶ ¶= -ê úç ÷¶ ¶ ¶ ¶è øë û
 (8.99) 

 
If we substitute Dx for dx , then the equations are only approximate. We are stepping tangent 
to the constraint in a direction that improves the objective function. 

8.5.4 GRG Algorithm with Equality Constraints Only   
We can extend the concepts of the previous section to the general problem which we 
represent in vector notation. Suppose now we consider the general problem with equality 
constraints, 
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 Min ( )f x  

 s.t. 
    
gi x( ) = 0 i =1,…,m  

 
We have n design variables and m equality constraints. We begin by partitioning the design 
variables into (n-m) independent variables, z, and m dependent variables y. The independent 
variables will be used to improve the objective function, and the dependent variables will be 
used to satisfy the binding constraints. If we partition the gradient vectors as well we have, 
 

 

    

∇f z( )T
=

∂ f x( )
∂z1

∂ f x( )
∂z2

…
∂ f x( )
∂zn−m

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 

 

    

∇f y( )T
=

∂ f x( )
∂y1

∂ f x( )
∂y1

…
∂ f x( )
∂ym

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

 

 
We will also define independent and dependent matrices of the partial derivatives of the 
constraints: 
 

 

    

∂ψ
∂z

=

∂g1

∂z1

∂g1

∂z2

…
∂g1

∂zn−m

∂gm

∂z1

∂gm

∂z2

…
∂gm

∂zn−m

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

 

1 1

1 2

1 2

m

m

m m m

m

gg g
y y y
g g g
y y y

y
¶¶ ¶é ù…ê ú¶ ¶ ¶¶ ê ú=

ê¶ ¶ ¶ ú¶
…ê ú¶ ¶ ¶ë û

y
 

 
We can write the differential changes in the objective and constraints in vector form as: 
 

    df = ∇f z( )T
dz +∇f y( )T

dy  (8.100) 

 d d dy yy ¶ ¶
= + =
¶ ¶

z y 0
z y

 (8.101) 

 

Noting that y¶
¶y

 is a square matrix, and solving (8.101) for dy,  

 

 
1

d dy y-¶ ¶
= -

¶ ¶
y z

y z
 (8.102) 

 
substituting (8.102) into (8.100), 
 

   ( ) ( )
1

T T  df f d f dy y-¶ ¶
=Ñ -Ñ

¶ ¶
z z y z

y z
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or  ( ) ( )
1

T TT
Rf f f y y-¶ ¶

Ñ =Ñ -Ñ
¶ ¶

z y
y z

 (8.103) 

 
where T

RfÑ is the reduced gradient. The reduced gradient is the direction of steepest ascent 
that stays tangent to the binding constraints. 

8.5.5 GRG Example 1: One Equality Constraint 
We will illustrate the theory of the previous section with the following example. For this 
example we will have three variables and one equality constraint. We state the problem as, 
 
 Min 2 2 2

1 2 34 3f x x x= + +  
  
 s.t. 1 2 32 4 10g x x x= + - =  
 
Step 1: Evaluate the objective and constraints at the starting point. 
The starting point will be [ ]2 2 2T =x , at which point 32 and 10f g= = . So the 
constraint is satisfied. 
 
Step 2: Partition the variables. 
We have one binding constraint so we will need one dependent variable. We will arbitrarily 
choose 1x as the dependent variable, so [ ]1x=y . The independent variables will therefore be 

[ ]2 3
T x x=z . Thus,  

 

[ ] ( ) ( ) [ ] [ ]22 2
1 1 @2

3 3 1@2,2

3

2 4
8 16

6 12

f
xx x fx f f x

x xf x
x

¶é ù
ê ú¶ é ùé ù é ù é ù ¶ê ú= = Ñ = = = Ñ = = =ê úê ú ê ú ê ú¶ê ú ¶ë ûë û ë û ë û
ê ú¶ë û

z y z y  

 

[ ] [ ]
2 3 1

4 1 2g g g
z x x y x
y yé ù é ù¶ ¶ ¶ ¶ ¶
= = - = =ê ú ê ú¶ ¶ ¶ ¶ ¶ë ûë û

 

 
Step 3: Compute the reduced gradient. 
We now have the information we need to compute the reduced gradient: 
 

 ( ) ( )
1

T TT
Rf f f y y-¶ ¶

Ñ =Ñ -Ñ
¶ ¶

z y
y z

 

 
[ ] [ ] [ ]

[ ]

T 14 12 16 4 1
2

28 20

Rf
é ùÑ = - -ê úë û

= -
 

 
Step 4: Compute the direction of search. 
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We will step in the direction of steepest descent, i.e., the negative reduced gradient direction, 
which is the direction of steepest descent which stays tangent to the constraint.  
 

 
28
20

é ù
= ê ú-ë û
s  or, normalized, 

0.8137
0.5812

é ù
= ê ú-ë û
s  

 
Step 5: Do a line search in the independent variables 
We will use our regular formula, 
 
 new old a= +z z s 
 
We will arbitrarily pick a starting step length 0.5a =  
 

 2

3

2 0.8137 2.4068
0.5

2 0.5812 1.7094

new

new

x
x
é ù é ù é ù é ù

= + =ê ú ê ú ê ú ê ú-ë û ë û ë ûë û
 

 
Step 6: Solve for the value of the dependent variable. 
We do this using (7.52) above, only we will substitute fory dyD : 
 

 
1y y-¶ ¶

D = - D
¶ ¶

y z
y z

 

 

[ ]

[ ]

1
2

1
3

0.40691 4 1
0.29062

0.9590

x
x

x
y y- Dé ù¶ ¶

D = - ê úD¶ ¶ ë û
é ùé ù= - - ê úê ú -ë û ë û

= -

y z

 

 
So the new value of 1x is, 
 

 
1 1

2 0.9590
1.041

new oldx x x= + D
= -
=

 

 
Our new point is [ ]1.041 2.4069 1.7094T =x at which point 18.9 and 10f g= = . We 
observe that the objective has decreased from 32 to 18.9 and the constraint is still satisfied. 
This only represents one step in the line search. We would continue the line search until we 
reach a minimum. 

8.5.6 GRG Algorithm with Equality and Inequality Constraints   
In this section we will consider the general problem with both inequality and equality 
constraints, 
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 Min ( )f x  

 s.t. 
    
gi x( ) ≤ 0 i =1,…,k  

  
    
gi x( ) = 0 i = k +1,…,m  

 
The extension of the GRG algorithm to include inequality constraints involves some 
additional complexity, because the derivation of GRG is based on equality constraints. We 
therefore convert inequalities into equalities by adding slack variables. 
  
The GRG algorithm described here is an active constraint algorithm—only the binding 
inequality constraints are used to determine the search direction. The non-binding constraints 
enter into the problem only if they become binding or violated. 

8.5.7 Steps of the GRG Algorithm for the General Problem   
 
1. Evaluate the objective function and all constraints at the current point. 
 
2. For any binding inequality constraints, add a slack variable, si  
 
3. Partition the variables into independent variables and dependent variables. We will 

need one dependent variable for each binding constraint. Any variable at either its 
upper or lower limit should become an independent variable. 

 
4. Compute the reduced gradient using (8.103). 
 
5. Calculate a direction of search. We can use any method to calculate the search direction 

that relies on gradients since the reduced gradient is a gradient. For example, we can 
use a quasi-Newton update. 

 
6. Do a line search in the independent variables. For each step, find the corresponding 

values in the dependent variables using (8.102) with Dz and Dy substituted for dz and 
dy.  

 
7. At each step in the line search, drive back to the constraint boundaries for any violated 

constraints using Newton-Raphson to adjust the dependent variables. If an independent 
variable hits its bound, set it equal to its bound. 

 

 The NR iteration is given by 
1

( )y -¶
D = - -

¶
y g b

y
 We note we already have the matrix 

1y -¶
¶y

 from the calculation of the reduced gradient. 

 
8. The line search may terminate either of 4 ways 
 

1) The minimum in the direction of search is found (using, for example, quadratic 
interpolation). 
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2) A dependent variable hits its upper or lower limit. 

3) A formerly non-binding constraint becomes binding. 

4) NR fails to converge. In this case we must cut back the step size until NR does 
converge. 

9. If at any point the reduced gradient in step 4 is equal to 0, the KKT conditions are 
satisfied.   

8.5.8 GRG Example 2: Two Inequality Constraints 
In this problem we have two inequality constraints and will therefore need to add in slack 
variables. 
 

 
Fig. 8.10 Example problem for GRG algorithm 
 

   Min.  ( ) 2
1 2f x x= +x  

 s.t.: ( ) 2 2
1 1 2 9 0g x x= + - £x   

  ( )2 1 2 1 0g x x= + - £x  
 
Suppose, to make things interesting, we are starting at [ ]T 2.56155, 1.56155= -x  where both 
constraints are binding. 
 
Step 1: Evaluate functions. 
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 ( ) ( ) ( )1 25.0 0.0 0.0f g g= = =x x x  

Step 2: Add in slack variables. 

We note that both constraints are binding so we will add in two slack variables. 1 2,  s s . 
 
Step 3: Partition the variables 
Since the slack variables are at their lower limits (=0) they will become the independent 
variables; x1, x2 will be the dependent variables. 
    
 [ ]T

1 2s s=z  [ ]T
1 2x x=y  

Step 4: Compute the reduced gradient  
 ( ) [ ]T 0.0 0.0fÑ =z  ( ) [ ]T 5.123 1.0fÑ =y  
 

 
1 0
0 1

y é ù¶
= ê ú¶ ë ûz

 
5.123 3.123
1.0 1.0

y -é ù¶
= ê ú¶ ë ûy

 

 

 
1 0.1213 0.3787

0.1213 0.6213
y - é ù¶

= ê ú-¶ ë ûy
 

 

thus     
1 0.1213 0.3787 1 0 0.1213 0.3787

0.1213 0.6213 0 1 0.1213 0.6213
y y- é ù é ù é ù¶ ¶

= =ê ú ê ú ê ú- -¶ ¶ ë û ë û ë ûy z
 

 

 

[ ] [ ]

[ ] [ ]
[ ]

T 0.1213 0.3787
0.0 0.0 5.123 1  

0.1213 0.6213

0.0 0.0 0.50 2.56

0.50 2.56

rf
é ù

Ñ = - ê ú-ë û
= -

= - -

 

 
Step 5: Calculate a search direction. 
We want to move in the negative gradient direction, so our search direction will be 

[ ]T 0.50 2.56=s . This is the direction for the independent variables (the slacks). When 

normalized this direction is [ ]T 0.19 0.98=s . 
 
Step 6: Conduct the line search in the independent variables 
We will start our line search, denoting the current point as 0z , 
 
  1 0 0a= +z z s  
 
Suppose we pick a = 1.0. Then 
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( )1

1

0.0 0.19
1.0

0.0 0.98

0.19
0.98

é ù é ù
= +ê ú ê ú
ë û ë û
é ù

= ê ú
ë û

z

z
 

 
Step 7: Adjust the dependent variables 
To find the change in the dependent variables, we use (7.52) 
 

 
1

1

2

x
x

y y-D é ùé ù ¶ ¶é ùD = = - Dê úê ú ê úD ¶ ¶ë ûë û ë û
y z

y z
 

 
0.1213 0.3787 0.19
0.1213 0.6213 0.98

é ù é ù
= ê ú ê ú-ë û ë û

 

 
0.394
0.586
-é ù

= ê ú-ë û
 

 

 
1
1
1
2

2.56155 0.394 2.168

1.56155 0.586 2.148

x
x
= - =

= - - = -
 

 
at which point ( ) 2.522f =x  
 
Have we violated any constraints? 
 
 ( ) ( ) ( )2 22 2

1 1 2 9 2.168 2.148 9 0.31g x x= + - = + - - =x  (violated) 
 ( )2 1 2 1 2.168 2.148 1 0.98g x x= + - = - - = -x  (satisfied) 
 
We need to drive back to where the violated constraint is satisfied. We will use NR to do this. 
Since we don't want to drive back to where both constraints are binding, we will set the 
residual for constraint 2 to zero. 
 
NR Iteration 1: 

 ( ) ( )
1

0 ( )n y -¶
= - -

¶
y y g b

y
 

  

2.168 0.1213 0.3787 0.31
2.148 0.1213 0.6213 0.0

2.130
2.110

é ù é ù é ù
= -ê ú ê ú ê ú- -ë û ë û ë û
é ù

= ê ú-ë û

 

 
 at this point   
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 ( ) ( )2 2
1

2

2.130 2.110 9 0.011
0.98

g
g
= + - = -

= -
 

 
 NR Iteration 2: 

 

2.130 0.1213 0.3787 0.011
2.110 0.1213 0.6213 0.0

2.1313
  

2.113

-é ù é ù é ù
= -ê ú ê ú ê ú- -ë û ë û ë û
é ù

= ê ú-ë û

 

 
evaluating constraints: 

 ( ) ( )2 2
1

2

2.1313 2.113 9 0
0.98

g
g
= + - - =

= -
 

 
We are now feasible again. We have taken one step in the line search! 
 

Our new point is 
2.1313

  
2.113

é ù
= ê ú-ë û
x at which point the objective is 2.43, and all constraints are 

satisfied. 
 
We would continue the line search until we run into a new constraint boundary, a dependent 
variable hits a bound, or we can no longer get back on the constraint boundaries (which is not 
an issue in this example, since the constraint is linear). 


