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Dr. Hedengren, 

 

 

My project focuses on a creation of a model predictive controller for thermal energy storage 

systems coupled to nuclear reactors. The scope includes a creation of a RELAP5-3D simulation 

of a small lab-scale thermal energy storage unit. That RELAP5-3D model was then used to 

create a reduced order model that will be used in MPC. This work will become significant as 

thermal energy storage technology moves forward as we will need reliable control systems to 

control the charging and discharging of the thermal storage units. RELAP5-3D is reliable at 

modeling the data needed however, being restricted access and difficult to learn, it is not ideal for 

preforming MPC, thus, the creation of a reduced order model will allow the generation of an 

MPC system much more simple and easier to manipulate. 

 

I reached out to all the members of the team and heard back from most of them but could not get 

them to participate past that so the project is of my own doing. Much of my time went into the 

creation of the RELAP5-3D model so I did not put as much time into the MPC as I would have 

liked. My future plans are to continue this project to create an MPC system that will actually 

control our lab-scale thermal storage system when we start running the experiments. 

 

 

Respectfully, 

 

 

 

Jaron Wallace 



 

 

 

Project Highlights 

• Utilizing GEKKO to create a reduced order model of RELAP5-3D output data 

• Creating an MPC that will control input for a small-scale thermal energy storge unit 

• Comparison of a first-order, second-order, and ARX representations of TES data 

• Development of technology that can eventually be used to control grid scale TES units 
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Abstract 
 

With the increase in renewable energy penetration into the grid, nuclear energy must be 

paired with an energy storage solution to remain viable. Thermal energy storage (TES) allows a 

nuclear power plant to operate constantly at full capacity while delivering the fluctuation the grid 

demands. Using RELAP5-3D a small-scale simulation was completed for a TES system. These 

simulation results were used to create a model of the system and that model was then used to 

create a Model Predictive Controller (MPC) to control the charging and discharging of the unit. 

This technique was proven throughout these experiments and can be used to develop MPC 

systems for nuclear power plants with integrated thermal energy storage. The MPC would take 

grid demand and control the TES to allow for optimum charge and discharge of the TES unit. 

Introduction 
 

Today, renewable energy sources such as wind and solar power are widely used 

throughout the world and are continuing to increase in usage [1]. Denholm et al. explain that 

with the deployment of more wind and solar power plants, the electricity supply in the middle of 

the day will eventually overcome the demand causing overproduction [2]. They explain that this 

is due to renewables handling upwards of 65% of the electricity load while other energy sources 

are still generating the baseload power. Denholm et al. also state that overgeneration can cause 

generators and motors to be damaged because of an overage of electricity. This potential for 

overgeneration can be seen in the California Independent System Operator (CAISO) “Duck 

Curve”. Figure 1 shows a plot of the electricity demand needed from sources other than wind and 

solar power in California versus time of day. It illustrates that solar generation during the day 

lowers the demand from other electricity sources. It shows that as the years progress, the demand 

for non-renewable electricity generation is continuing to decrease. This decrease is explained by 



the growing amount of electricity that is being provided by renewable energy sources, namely 

solar and wind. In the last eight years, the demand for non-renewable electricity generation at 

1:00 PM has dropped from around 19,000 MW to about 12,000 MW. On the other hand, the non-

renewable electricity demand has been increasing from 25,000 MW to 26,500 MW around 8:00 

PM. In 2020, the total addition of renewable energy resources caused a ramp rate of 13,000MW 

in just 3 hours by the non-renewables.  

 

Figure 1. The California Duck Curve [3] 

To solve the potential over-generation and the inability to  facilitate these large ramp 

rates, one proposed example is to use nuclear power combined with molten-salt thermal energy 

storage (TES) [4, 5]. As the technology progresses, these thermal storage systems will eventually 

be integrated into the grid and will require some control system to operate them efficiently. 

 One method to control these systems is to utilize Model Predictive Control (MPC) in 

which a model of the system can be used to predict through timesteps in the future and to control 

the inputs and outputs to the thermal energy storage unit to match demand. The details of this 

process will be discussed further in later sections. To properly make use of MPC, a detailed an 

accurate model of the system must be created. 



 RELAP5-3D is a thermohydraulic simulation software developed by Idaho National 

Laboratories (INL) for modeling reactor systems and monitoring the temperature and pressure 

transients under different specified conditions. The main goal of the software is to analyze 

accident cases and transients of nuclear power plants; however, it has shown to be useful to 

perform design analysis as well [6]. RELAP5-3D is one of the most accurate nuclear modeling 

codes and its brother RELAP5 mod3 is the only code that the Nuclear Regulatory Commission 

(NRC) allows a nuclear power plant to be licensed with. While RELAP5-3D is incredibly 

accurate, it is a difficult code to learn and is restricted access. A solution around this would be to 

utilize RELAP5-3D to generate data for a specific setup and then use that data to create some 

reduced order model to describe the system that can then be used for MPC. 

Theory 
 

Before a large scale plant system can be modeled, a smaller scale model should be 

created that can be validated with lab-scale experiments. The purpose of this research is to create 

a small scale MPC system that will control a small shell and tube heat exchanger that will act as 

a a thermal energy storage unit. Figure 2 shows a setup of the shell and tube heat exchanger 

complete with heating rods and a cooling loop. 

 



 

Figure 2. Lab-scale unit with variables labeled 

 The variables that can be controlled are the pump speed, expressed as a percentage of 

total pump capacity, and the heating rods, also expressed as a percentage of total heating power. 

The actual experimental setup is still undergoing safety alterations and actual data will not be 

able to be obtained for the MPC. Due to this inconvenience, RELAP5-3D was used to generate 

the data needed to create the model.  

 For the purposes of this experiment, pressurized water was used to simulate the heating 

rods to mimic how the system might work when hooked up to a Pressurized Water Reactor 

(PWR). The input deck allows for control of temperature and flow rate of the fluid. The 

temperature range that was used in this experiment was 5448K-588K. This range was chosen as 

the this is the operating temperature range of a PWR with 588K being the temperature coming 

out of the reactor and 548K being the temperature entering the reactor. The cooling pump was 

modeled as a pump with maximum capacity of 320 GPH. Both the heating rod power and 

cooling pump power were scaled between 0 and 1, 1 being max heating rod temperature and max 

cooling pump power. This scaling allows for a more accurate model to be generated. The 



RELAP5-3D input deck was run for 86400 seconds and consisted of changes to the heater power 

and cooling pump speed. Through the use of RELAP5-3D user defined functions, the 

temperature difference inside the tank was calculated and a total energy stored calculation could 

be completed using Equation 1. 

 • 𝐸𝑛𝑒𝑟𝑔𝑦 𝑆𝑡𝑜𝑟𝑒𝑑 = 𝐶𝑝 ∗ 𝜌 ∗ ∆𝑇𝑎𝑣𝑔 (1) 

Once the energy stored has been calculated, RELAP5-3D uses another user defined function to 

calculate a percent charged based on a maximum capacity of the unit of 2.238 kWh. This 

charged percent is expressed as a percentage between 0.0 and 1.0, 1.0 being fully charged. 

Simulation Results 
 

The RELAP5-3D input deck was run without any errors and produced realistic results. The 

heating rods were modeled using pressurized water and the thermal storage tank was modeled as 

being full of solar salt with a composition of 60% NaNO3 40% KNO3. The fluid file for molten 

salt was custom created utilizing provided data for this particular molten salt [7]. Figure 3 shows 

the results from the 86400 second RELAP5-3D simulation. 

 

Figure 3. Initial RELAP5-3D simulation 



The upper plot shows the manipulated variables of heater power and cooling pump speed. The 

run starts off with simple, spaced changes, while the later end of the experiment has more 

complex, quick changes to test the response of the system. Looking at the first 400 seconds it is 

found that the results match with what would be expected. For the first 30 minutes, both the 

heating rods and cooling pump are off which translates to no change in the charge of the thermal 

storage tank. At 30 minutes, the heating rods are switched to full power and the charged 

percentage starts to increase. As higher charged percentage values are reached the rate of charge 

slows down as the temperature difference between the heating rods and the tank becomes smaller 

and smaller. At 225 minutes the heating rods are shut off and the charged percent remains level. 

This is due to RELAP5-3D assuming that the tank is completely insulated. This should be 

adjusted in the future to give more accurate storage data. At 345 minutes the cooling pump is 

turned to full power and the charge percent begins to decrease, this simulates discharge of the 

thermal storage unit and behaves as expected. 

 The next step is to take the results from the RELAP simulation and create a reduced order 

model that can accurately represent the system. Three deferent regression methods were used to 

create an arcuate model of the system, first order, second order, and ARX. Each of these models 

will be discussed in the following section. In order to fit these models, a more simplistic 

RELAP5-3D simulation was used and then progressed to the more complex simulation. The 

simulation to be used for initial estimation is shown in Figure 4. 

 



 

Figure 4. Simplistic RELAP5-3D simulation 

Estimation and Dynamic Optimization Results 
 

 

The first attempted estimation was done with a first order model. The following equation defines 

the first order system that was used. 

 

 
𝜏𝑝 ∗

𝑑𝑦(𝑡)

𝑑𝑡
+ 𝑦(𝑡) = 𝐾1 ∗ 𝑢1 + 𝐾2 ∗ 𝑢2 

(2) 

 

where τp is the time constant, y is the charged percent, u1 is the heating rod power, u2 is cooling 

pump power, and K1 and K2 are gain parameters. GEKKO was to optimize these parameters and 

obtained the following result: 
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Figure 5. First Order Model 

As seen from this plot, the model attempts to accurately represent the test data; however, the 

spikes at 50 min and 350 min are not accurately represented. The parameter guess values, 

collocation nodes, and bounds were manually adjusted, and the above plot was the best model 

representation. From here a second order model was created using the following equation: 

 

 
𝜏𝑠

2 ∗
𝑑2𝑦

𝑑𝑡2
+ 2𝜁𝜏𝑠

𝑑𝑦

𝑑𝑡
+ 𝑦(𝑡) = 𝐾1𝑢1 + 𝐾2𝑢2  

(3) 

 

where the parameters are the same and ζ is the damping factor. After much adjustment, the 

following model was obtained: 

 



 

Figure 6. Second Order Model 

This model does not show a much better fit than the first order model so another method was 

employed in an attempt to create a better model fit, ARX. An ARX model that uses 1 previous 

time point was used to create the following model: 

 

 

Figure 7. ARX Model with 1 input coefficient 



This model is a much better fit compared to the second order model; however, it is still not 

accurate on the spike near 350 seconds. In order to address this issue, the number of input 

coefficients was adjusted until there was a perfect match between the model and simulation 

results. This occurred with 8 input coefficients and the plot of this ARX model is shown in 

Figure 8. 

 

 

Figure 8. ARM Model with 8 input coefficients 

 

It was determined that an ARX model was the best choice for creating a reduced order model of 

the RELAP5-3D results and this technique was used to create an ARX model from the complex 

RELAP5-3D run. The best model fit occurred at 32 input coefficients and is shown in Figure 9. 

 

 



 

Figure 9. Complex ARX model with 32 input coefficients 

Once the ARX model was defined it was used to create an MPC system with the ARX model as 

a steady state model and the first order equation to mimic the measured results. In the future, the 

experimental results would be used as the measured values but as the experimental setup is not 

complete, the first order model will be used. The following plot was obtained from running the 

MPC. 

 

Figure 10. MPC Results 



From the top graph the set points are shown in between the black lines, the black lines showing a 

dead band of ±0.01. The red dots show the actual values as calculated by the first order equation. 

The bottom plot shows the response of the heating rod power and cooling pump power in order 

to drive the charged percent to the target values. As shown above, the controller is able to drive 

the charged percent to the desired values except for when the target charged value is 1.0. This is 

due to the fact that as a higher charge is obtained the temperature difference between the heating 

rods and the tank becomes smaller and smaller which results in a lower charge derivative. The 

other set points are all reached but do have a small amount of overshoot. If the setpoint is 

extended, such as the setpoint at 600 min, the controller will overshoot but then stabilize inside 

the dead band. 

Discussion 
 

The first main issue that was discovered was that no model fit very well. It was not much 

surprise that the first-order model did not fit as it is not expected that a complex system such as 

this would behave in a linear fashion. When the second-order model was created it acted just as 

the first-order model did. This was an interesting result and even with manual changing of the 

parameters a better solution could not be found. This eventually led to the creation of the ARX 

model. The ARX model with 1 input coefficient was much more accurate than the previous 2 

models but still not completely accurate. It was found that by adjusting the number of input 

parameters, the fit would get better. Finally landing on 32 input coefficients the plan was to use 

that model for the MPC. Unfortunately, even with tuning, GEKKO could not find a solution to 

the MPC with 32 input coefficients. In order to have GEKKO find a solution, 2 input coefficients 

has to be used. 



 The use of 2 input coefficients leads to inaccuracies in the model, the use of the first-

order model to obtain the measured values also leads to inaccuracies. However, this experiment 

allowed for a proof of concept to show the ability of GEKKO to handle MPC of a model created 

by RELAP5-3D data for control of a thermal energy storage system. 

 Future work with this technology would include further development of the MPC to 

allow the system to take in grid-scale electricity demand as well as what the output ability of the 

nuclear reactor is. Using a well-defined model, the MPC could then change the amount of energy 

that is redirected to the TES unit for charging. It would also be able to predict how to turn valves 

and direct flow to discharge the TES unit when higher demand is experienced. 

Conclusions 
 

 The purpose of the work was to utilize RELAP5-3D to create a simulation of a lab-scale 

thermal energy storage unit and use those simulation results to create an MPC capable of 

controlling the system. The work was successful and an ARX model of the RELAP5-3D 

simulation was regressed and matches the simulation results quite well. This ARX model was 

then used to generate an MPC system which fairly accurately controlled the charging and 

discharging of the system to meet a target charge value. 

 While issues were uncovered throughout the process, these issues will be focused on in 

future work to make the system more reliable. These issues include the MPC being unable to 

accept the more accurate ARX model and only being able to find a solution to the simplistic 

ARX model that is less accurate. Another issue that will addressed is the overshoot during the 

MPC. While this is not a large issue it should be addressed it this is to be used on a grid-scale. 

As part of future work a machine learning model will be explored for its accuracy and 

determining its competitiveness against the ARX model when paired with MPC. 



 Once an accurate small-scale method is finalized a full grid-scale model will be created 

allowing to take in current demand as an input and be able to control the TES system 

automatically. This will allow for the most efficient usage of a TES combined with a nuclear 

power plant and will eventually lead to a balancing of the grid with the increase of renewable 

penetration. 
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