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Abstract— Recent grid energy problems in California and
Texas highlight the need for optimized grid design and op-
eration. The complexity of the electric grid presents difficult
control problems that require powerful solvers and efficient
formulations for tractable solutions. The Gekko Optimization
Suite is a machine learning and optimization package in Python
for optimal control with differential algebraic equations and is
capable of solving complex grid design and control problems.
A series of non-dimensional benchmark cases are proposed for
grid energy production. These include (I) load following, (II)
cogeneration, (III) tri-generation, and energy storage with (IV)
constant production, (V) load following, and (VI) cogeneration.
Individual case studies include ramp rate constraints, power
production, and energy storage operation as design variables.
The tutorials demonstrate methods to solve control problems
with sequential and simultaneous solutions of the objective
and dynamic constraints. While these tutorials are specific to
grid energy system optimization, the tutorials also demonstrate
how to efficiently solve large-scale nonlinear dynamic systems
with a trade-off analysis between sequential and simultaneous
methods.

I. BACKGROUND

A. Literature Review

Modern society depends heavily on access to vast quan-
tities of electrical energy. In 2020, the U.S. consumed more
than 4 TWh of electricity [1]. There is strong interest
in providing that energy in affordable, reliable, clean and
sustainable ways. As a result of cost declines and policy
support, power generation from renewable energy sources
(such as wind and solar) has increased dramatically in recent
years [2]. These intermittent renewable energy sources can
pose increased challenges to the stability of the power grid
[3].

Modern solutions to operating power grids with a grow-
ing share of renewable energy generation require optimal
control of dispatchable generators to respond to increased
uncertainty and continuously provide stable and reliable elec-
tricity. Because of this, flexibility is increasingly becoming a
valued characteristic for generators, consumers, and storage
applications. Due to the complexity of optimal grid energy
management, it is useful to consider benchmark problems
for optimal control of dispatchable generators in the power
grid. However, many existing benchmarks and models in the
energy modeling literature lack flexibility and are too specific
to certain applications and systems to be generally applicable
[4].
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Energy storage systems are a potential solution to the
problems imposed by intermittent renewable energy sources.
Cost declines in lithium-ion batteries will likely lead to more
widespread adoption of these storage methods.According to
the U.S. Department of Energy, energy storage markets are
estimated to grow to three-to-five times the current size
by 2030 [5]. Optimizing these storage systems (including
Li-ion battery storage, pumped-storage hydropower, thermal
energy storage, and others) requires charging and dispatch
optimization to fulfill financial and energy benefit metrics.
Classic control and optimization for energy storage utilizes
Kalman filters and the Linear Quadratic Regulator for state
estimation and to optimize operation [6]. Other more robust
modeling suites like REopt from the National Renewable
Energy Laboratory (NREL) utilize large-scale solvers such
as Xpress, CBC, and CPLEX to solve mixed-integer linear
programs (MILP) associated with energy storage [7].

Benchmarks are used in optimization to show solver
capabilities without the difficulties introduced with high
problem complexity. Multi-objective optimization problems
have long been a challenge to solve but can be simplified by
scalable and customizable benchmarks problems [8]. Bench-
mark problems are a simple standard to judge capabilities
of solvers and algorithms to optimize real world problems.
For example, the IEEE Congress on Evolutionary Com-
putation (CEC) regularly holds competition on large-scale
global optimization where participants test their optimization
algorithms on fifteen established benchmark functions [9].
In energy modeling, many studies create benchmarks to
simplify complex systems such as whole-building energy
simulation or sector-coupled energy systems [4], [10].

The focus of this work is to propose benchmark problems
for grid energy management and demonstrate solutions with
the Gekko Optimization Suite [11], [12]. These benchmark
problems for optimal control of dispatchable generators are
simple by design to show the progressive capabilities of
Gekko in modeling energy systems. More complex grid
energy management case studies are available to demonstrate
performance on realistic design and dispatch optimization
scenarios [13], [14], [15], [16].

B. Python Gekko

Gekko [12] is a Python package which interfaces with the
APMonitor modeling language [17] and is capable of solv-
ing large-scale dynamic optimization problems with mixed-
integer and differential algebraic equations. It is open-source
and provides easy access to solvers such as IPOPT [18], and
can also be used with commercial solvers. Gekko through
APMonitor performs automatic differentiation to provide



exact gradients and has several different solve modes for both
steady-state and dynamic simulation, estimation, and control
[12]. It discretizes the model equations in time according to
the provided time horizon, and uses direct transcription to
convert the differential equations into a system of algebraic
equations, using orthogonal collocation on finite elements
the solution between the requested time points in the hori-
zon. This allows efficient large-scale nonlinear optimizer to
solve dynamic optimization problems, which are notoriously
difficult to solve due to the high-dimensionality caused by
the time-dependence [19].

C. Dynamic Solve Modes

For dynamic optimization problems, Gekko has simulta-
neous and sequential solve modes [19]. In the simultaneous
mode, the solver attempts to converge both the objective
function and the model equations together. The simultane-
ous solution is enabled by orthogonal collocation on finite
elements to convert the differential equations into algebraic
expressions. It iterates until convergence within the specified
tolerance using the chosen norm, typically either the 1-
norm or 2-norm. Because the solver is able to optimize the
entire time horizon, it can respond to complicated changes
in the dynamics and predict the quadratic effect of variable
changes on time points into the future with gradient and
Hessian information. This approach is thus well equipped to
handle problems with a large number of degrees of freedom
(decision variables in excess of the number of equations).
Once the problem converges, the solution is a local optimal
solution, but until then the solution is meaningless (i.e.
infeasible).

The second solution method is the sequential solve mode
(shooting method). In this method, the objective function and
the model equations are solved separately in a sequential
fashion. In each major iteration, the parameter estimates
(degrees of freedom) are held constant, and the equations
are evaluated in a simulation mode. A series of minor
iterations then take place, in which the objective function
is evaluated and exact first and second derivatives of the
objective function with respect to the parameter estimates are
computed. These are used to find a new search direction and
obtain new parameter estimates. This minor iteration process
repeats as the solver seeks to converge the objective function
to within the specified tolerance using the chosen norm. If it
is unsuccessful, a new major iteration occurs, and the process
continues. The sequential solve mode typically does well in
problems with a large number of states (i.e. model equations)
and a low number of degrees of freedom. One of the benefits
of this mode is that if the optimization process is terminated
early, the solution is still feasible, though sub-optimal.

II. BENCHMARK MODELS

The benchmark problems have intuitive solutions and
serve to illustrate the optimization principles. They provide
insight that can be leveraged to solve more challenging
dynamic optimization problems when the solution is not intu-
itive and the process to achieve a reliable converged solution

is lengthy and difficult. They also provide a convenient way
to exhibit and compare the capabilities of different solution
methods and algorithms.

The benchmark problems considered here have been cho-
sen to represent unique features of grid energy systems.
They are convex, non-dimensionalized for simplicity, and
have features that are common to other grid energy systems.
They capture trade-offs in coordinating dispatch and control,
including perfect forecasting, ramp-rate-constrained decision
making, generating multiple products, and energy storage.
While the solutions are relatively straightforward and the
forecasts have no uncertainty, the problems provide a frame-
work for understanding the varying characteristics of grid
energy management problems and investigating trade-offs
between different solution methods. The first three bench-
marks deal with ramp constraints, and the last three with
energy storage. Symbols used in the benchmark problems
are defined in Table I.

TABLE I
SYMBOLS USED IN THE BENCHMARK CASES

Symbol Description

J objective function
d demand
g generation
r ramp rate
e storage inventory

qin, qout energy stored, recovered
R renewable source

sout, sin slack variables for storage switching
η storage efficiency
n number of generating units
( )i subscript indicates product i

A. Benchmark I: Load Following

The first benchmark problem represents load following, a
common scenario in grid systems. The optimizer seeks to
match demand and supply with fluctuating demand dynam-
ics. A single generator with ramping constraints attempts
to respond to a single load. In this and all other problem
formulations, it is assumed that future demand is perfectly
known. The generation and demand match initially, but the
generator must ramp in order to ensure this throughout the
horizon while minimizing overproduction. The formulation
is shown in Eq. 1:

min
r

J =

∫ 1

t=0

[1000 max(0, d− g) + max(0, g − d)] dt

(1a)

s.t.
dg

dt
= r (1b)

d = cos (2πt) + 3 (1c)
− 1 ≤ r ≤ 1 (1d)
g(0) = 4 (d(0) = 4) (1e)

As noted previously the values are dimensionless for sim-
plicity and generality. The electricity demand for the system



is a sinusoidal fall and rise (1c). The first term in the objective
function, max(0, d − g), represents the under-production of
electricity (i.e. dropped load) and is given a cost of 1,000.
The second term in the objective function, max(0, g − d),
represents the overproduction of electricity and is given a
cost of 1. This difference in cost reflects the difference
in severity between underproduction and overproduction of
electricity. As is typical for steam-cycle power generators,
there is a ramp rate r that constrains load following, which
in this case limits the generation rate of change to between
−1 and 1 (1d). The specific values in this case study
have no direct relation to an actual physical system, but
they highlight a common type of objective function and
constraint associated with grid dispatch optimization. This
is the simplest benchmark case with a single producer and
electrical-only demand.

The optimal solution to Benchmark I is shown in Fig. 1.
The generator immediately ramps down at its maximum rate,
seeking to minimize overproduction until t = 0.5, when
it ramps back up to meet the demand at t = 1. There is
overproduction throughout the horizon except at the very
beginning and ending, when the optimizer is able to meet the
demand exactly. Even though overproduction is the highest at
t = 0.5, the optimizer increases the generation then in order
to meet the future demand constraint at t = 1 and avoid any
dropped load. This amount of overproduction would very
likely not occur in a physical system, but this problem serves
to illustrate the dynamics of load following.

B. Benchmark II: Cogeneration

In the second benchmark problem, one producer seeks
to meet two objectives that are constraining at different
times. Benchmark II enhances Benchmark I by replacing the
generator with a cogeneration system (n = 2) that produces
(1) electricity and (2) heat in response to electricity demand
and a new heat demand profile. Both products are included
in the objective function summation as shown in Eq. 2.

min
r

J =

n∑
i=1

∫ 1

t=0

[
1000 max(0, di − gi) (2a)

+ max(0, gi − di)

]
dt

Fig. 1. Optimal solution to Benchmark I: Load Following with ramping
constraints, a single producer and a demand profile. The example product
is electricity.

s.t.
dg1
dt

= r, g2 = 2g1 (2b)

d1 = cos (2πt) + 3 (2c)
d2 = 1.5 sin (2πt) + 7 (2d)
− 1 ≤ r ≤ 1 (2e)
g1(0) = 4 (d1(0) = 4) (2f)
g2(0) = 8 (d2(0) = 7) (2g)

Here, (1) and (2) are generated simultaneously, with twice
as much (2) generated as (1) (Eq. 2b). The same over- and
under-generation penalties as before are applied now to both
products. The heat (2) demand profile (Eq. 2d) is offset by a
quarter cycle from the electricity (1) demand profile (Eq. 2c)
to represent the situation where both electric power and heat
alternate as the driving force for load following.

The optimal solution to Benchmark II is shown in Fig. 2.
At t = 0, the electricity demand is met exactly and the
waste heat exceeds the requirement. Although the electricity
demand then decreases, the increasing heat demand in the
future drives the system to increase production at its maxi-
mum rate. At t = 0.25 the production decreases, responding
to the lower heat demand, but at t = 0.75 production
ramps up again in order to meet the increasing electricity
demand at t = 1. As before, the optimal solution avoids
any underproduction, though with an increased amount of
overproduction. The ramp rate constraint (2e) plays a key
role in determining the system dynamics, driving not only
how well the system meets the overall objective but which
part of the objective is the driving force at which times.

C. Benchmark III: Tri-generation

The third benchmark problem enhances the previous prob-
lems further still, creating a tri-generation system (n =
3) with two producers, three products, and three demand
profiles. The primary producer is the same as the prior
benchmark and is ramp-rate constrained to produce the two
primary products (e.g., electricity and heat). An additional
producer (e.g., a solid oxide electrolysis cell) uses these

Fig. 2. Optimal solution to Benchmark II: Cogeneration with ramping
constraints, two demand profiles, and one cogeneration producer of products
1 and 2. The example products are electricity (1) and heat (2).



first two products to make a third product (e.g., hydrogen),
thereby utilizing any excess system capacity and maximizing
its production while avoiding supply shortages for products
one and two. A mathematical statement of the third bench-
mark problem is given by Eq. 3:

min
r1,r3

J =

n∑
i=1

∫ 1

t=0

[
1000 max(0, di − gi) (3a)

+ max(0, gi − di)

]
dt− 0.1

∫ 1

t=0

g3 dt

s.t.
dg1
dt

= r1,
dg3
dt

= r3 (3b)

g2 = 2g1 (3c)
d1 = cos (2πt) + 3 + 2g3 (3d)
d2 = 1.5 sin (2πt) + 7 + 3g3 (3e)
d3 = max [0,−0.2 sin (2πt)] (3f)
− 1 ≤ r1 ≤ 1, −1 ≤ r3 ≤ 1 (3g)
g1(0) = 4 (d1(0) = 4) (3h)
g2(0) = 8 (d2(0) = 7) (3i)
g3(0) = 0 (d3(0) = 0) (3j)

The three example products are (1) electricity, (2) heat and
(3) hydrogen. The first producer (e.g., cogeneration system)
produces (1) and (2) and the second producer (e.g., a solid
oxide electrolysis cell) produces (3). These producers are
coupled because the products of the first are the inputs of the
second. Additionally, they both have the same ramp rate con-
straint (3g). Producing one unit of (3) requires two units of
(1) and three units of (2) (3c). The demand for (3) is given in
(3f). Any excess capacity of (1) and (2) are used to produce
additional (3) (3d, 3e). As before, over- and under-generation
penalties are applied now to all three products (3a). A term is
also added to the objective function to incentivize hydrogen
(3) production without causing overproduction of (1) and (2).

The optimal solution to Benchmark III is shown in Fig. 3.
For the first producer, the dynamics from t = 0 to t = 0.5 are
similar to Benchmark II, with load following of first (1) and
then (2) demand driving the optimal solution. In the second
half of the horizon, the demand for (3) causes increased
production beyond the needs of the final demand for (1),
leading to an overproduction of (1) and then a decrease in
production at t = 0.95 down to the final constraint at t = 1.

For the second producer, the excess supply of (1) and
(2) from t = 0 to t = 0.2 caused by the ramp-constrained
load following of producer one is used to produce (3), with
producer two ramping up and down at its maximum ramp
rate. Here, the constraints on the demand for (2) limit the
production of (3). Once again, the actual values here simply
serve to illustrate the dynamics, as this much overproduction
would not occur in a typical system.

Producer two consumes more (2) than (1), and thus it isn’t
until the peak demand for (2) at t = 0.3 is reached that
producer two can increase the production of (3), enabling it
to use more of the excess of (1) once sufficient excess of

Fig. 3. Optimal solution to Benchmark III: Tri-generation with ramping
constraints, three demand profiles, and two producers generating products
1-3. The example products are electricity (1), heat (2) and hydrogen (3).

(2) is generated. It does so at its maximum ramp rate, and
produces (3) all the way until t = 0.65, where it decreases
production at its maximum ramp rate until nearly the end of
the time horizon. By so doing, producer two is able to exactly
meet the tail end of the hydrogen demand at t = 0.9.

Again, this problem is not specific to any particular sys-
tem, but the elements are similar to those found in dispatch
optimization problems such as co-generation of electricity
and heat combined with chemical production. In addition,
many district-wide systems produce electricity, heat, and
cooling and are another example of tri-generation. In both
cases, the third product adds demand for the other products.

D. Benchmark IV: Constant Production with Energy Storage

The fourth benchmark problem models a hybrid system
with a single generator with constant production constraints
coupled with energy storage that together must meet an
oscillating electricity demand. The goal of the problem is to
minimize the required power production and use energy stor-
age to capture excess generation serve the oscillating energy
demand while keeping the generator production constant.
In order to prevent the energy storage from charging and
discharging simultaneously without requiring mixed-integer
variables, slack variables are used to control when the storage
charges and discharges, allowing it to switch modes in a way
that is both continuous and differentiable. This allows the
modeling language to use automatic differentiation to provide
exact gradients to the solver. The formulation of Benchmark
IV is shown in Eq. 4, and is adapted from [16].

min
g

g (4a)

s.t.
de

dt
= qin − qout · η (4b)

qin = g − d+ sin (4c)



qout = d− g + sout (4d)
g − d = sout − sin (4e)
sout, sin ≥ 0, qout × qin ≤ 0 (4f)
g + qout/η − qin ≥ d (4g)
e ≥ 0, η = 0.7 (4h)
d = 10 − 2 sin(2π t) (4i)
e(0) = e(1) = 0 (4j)

The optimal solution to Benchmark IV is shown in Fig. 4.
The production is higher than the initial demand because the
solver accounts for storage efficiency losses (4h) throughout
the horizon. A periodic constraint ensures that the storage
starts and ends empty (4j). The solver uses all of the stored
capacity to most effectively minimize the production level.
Though this problem is not specific to a particular system,
generators that have difficulty ramping (such as nuclear
plants) could use energy storage to meet a changing demand
profile while retaining constant production.

E. Benchmark V: Load Following with Energy Storage

The fifth benchmark combines energy storage with a load-
following problem similar to Benchmark I. The first-half of
the time horizon is nearly identical to Benchmark I, but now
the excess energy can be stored. This allows the system
to meet a higher demand in the second half of the time
horizon without needing extremes in generation. The solver
minimizes the ramping needs and operates more flexibly by
storing and then recovering the overproduction caused by the
ramping constraints. Energy storage allows this generator to
meet the load without requiring significant overproduction.

min
r

J =

n∑
i=1

∫ 1

t=0

[1000 max(0, Ψ) + max(0, −Ψ)]dt

where Ψ = d− g −R+ qout/η − qin (5a)

s.t.
de

dt
= qin − qout · η (5b)

qin = g +R− d+ sin (5c)
qout = d− g −R+ sout (5d)
g +R− d = sout − sin (5e)
sout, sin ≥ 0, qout × qin ≤ 0 (5f)
g +R+ qout/η − qin ≥ d (5g)

Fig. 4. Optimal solution to Benchmark IV: Constant Production with
Energy Storage with a constant production producer, a demand profile, and
storage. The example product is electricity.

e ≥ 0, η = 0.85 (5h)
d = 7 − 2 sin(2π t) (5i)

R =

{
3 + 3 cos(4π t) 1

4 ≤ t ≤ 3
4

0 otherwise
(5j)

dg

dt
= r, −1 ≤ r ≤ 1 (5k)

e(0) = e(1) = 0 (5l)

The formulation is a combination of Benchmarks I and
IV. The objective function is similar to that of Benchmark I
with added terms for renewable generation and storage (5a).
Renewable generation is added as a piecewise function of
time (5j). The optimal solution to Benchmark V is shown in
Fig. 5.

The addition of a renewable source drastically changes
the demand profile. The implementation of storage allows
the producer to ramp less often while meeting a more
extreme demand profile. This is evident in the ramp rate
remaining constant through the first half of the time horizon
and only changing once to meet the steep demand increase
as the renewable source drops. Only a moderate production
increase is needed because the storage dispatch eases the
ramping needs. The solver efficiently uses the storage to meet
the net demand and reduces the changes in ramping. This
benchmark is similar to storage mediating the high evening
ramp needs of the "duck curve" created by solar photovoltaic
(PV) generation during the day.

F. Benchmark VI: Cogeneration with Dual Energy Storage

The sixth benchmark problem is a combination of Bench-
marks II and V where the ramp rate of the generator is
the manipulated variable but now must meet both electrical
(1) and heat (2) demand with the use of both electrical and
thermal storage. The formulation of Benchmark VI is shown
in Eq. 6. A renewable generation source (6k) (such as solar
PV) is added to the system as an auxiliary electrical energy
source that cannot be controlled. The objective is the same as
in Benchmark IV, to minimize power production (6a), but this
time while meeting both the heat and power demands (6i, 6j).

Fig. 5. Optimal solution to Benchmark V: Load following with Energy
Storage with ramping constraints, a producer, a demand profile, a renewable
product source, and product storage. The example product is electricity.



Slack variables are used in the same way as in Benchmarks
IV and V.

min
r1

g1 (6a)

s.t.
dei
dt

= ein,i − eout,i · ηi (6b)

ein,i = gi +Ri − di + sin,i (6c)
eout,i = di − gi −Ri + sout,i (6d)
gi +Ri − di = sout,i − sin,i (6e)
sout,i, sin,i ≥ 0, eout,i × ein,i ≤ 0 (6f)
gi +Ri + eout,i/ηi − ein,i ≥ di (6g)
ei ≥ 0, η1 = 0.7, η2 = 0.8 (6h)
d1 = 10 − 2 sin(2πt) (6i)
d2 = 15 + 1.5 cos(2πt) (6j)

R1 =

{
2 + 2 cos(4πt) 1

4 ≤ t ≤ 3
4

0 otherwise
(6k)

dg1
dt

= r1, −3 ≤ r1 ≤ 3 (6l)

R2 = 0, g2 = 1.5 · g1 (6m)
e1(0) = 0, e2(0) = e2(1) = 0.5 (6n)

The optimal solution to Benchmark VI is shown in Fig. 6.
Initially, the electricity (1) production matches the demand,
and the plant ramps up to more closely match heat demand,
saving some of the stored heat (2) for t = 0.5 when the
renewable source provides abundant power. The plant then
ramps back down with perfect knowledge of the renewable
source peak. At t = 0.5 the renewable source is high and
the heat (2) demand is low, and a large portion of electricity
(1) charging takes place. The generator then ramps up at
its maximum level to meet the high electricity (1) demand
while also using some of the stored electricity. This increased
production is required to generate excess heat (2) for storage,
providing enough heat storage to meet the final heat demand
while satisfying the periodic heat storage constraint (6n). The
optimal result shows the solver’s ability to anticipate future
demand of both products and utilize both storage capacities
to minimize the overall electricity (1) production.

III. DISPATCH BENCHMARK CASE SUMMARY AND
CONCLUSIONS

The first five benchmark problems are solved in a simul-
taneous mode using an `1-norm objective over a horizon of
101 time points. The sixth benchmark is solved using an
`2-norm objective over a horizon of 73 time points. This
benchmark produced slightly different results when solved
with the `1-norm versus the `2-norm. To be consistent, the
`1-norm is used for all of the benchmark problems in the
grid refinement study.

To benchmark the performance of Python Gekko, all six
benchmark problems are solved in the simultaneous solution
mode across a time horizon of increasing resolution. The
first three benchmark models are also solved in the sequential

Fig. 6. Optimal solution to Benchmark VI: Cogeneration with Dual
Energy Storage with ramping constraints, one cogeneration producer of two
products, two demand profiles, a renewable source of product 1, and storage
for both products. The example products are electricity (1) and heat (2).

solve mode. They are solved with only two collocation nodes,
which increased the solve speed without sacrificing too much
accuracy in the solutions. These performance benchmarks are
run on a Dell R815 Server with an AMD Opteron Processor
6276, 64 CPUs, 64 GB of RAM, and RAID array 15k
RPM hard drives. The optimization results are shown in
Fig. 7. The benchmark problems are of increasing difficulty
with the exception of Benchmark IV, which has the fastest
solve time. Although Benchmark IV includes energy storage
and uses slack variables, the production decision variable
is constant across the entire horizon instead of a dynamic
decision variable.

In each case, the simultaneous solve mode performed
better than the sequential solve mode, as expected. For the
first two benchmarks, the sequential solve mode performed
comparably to the simultaneous mode in the first few time
horizons. This is because the problems are simple enough for
the solver to converge in one major iteration. As the degrees
of freedom increase with the time horizon resolution, the
sequential solve method iterates more and more to converge
the optimization problems, and the performance suffers. By
contrast, the simultaneous mode scales well as the problem
size grows, handling large numbers of degrees of freedom.
For these types of problems, the model equations do not
provide time savings in the sequential mode, and the number
of degrees of freedom from the dynamic horizon have the
greater complexity.

Benchmarks I-IV have degrees of freedom that increase
with time resolution. Benchmarks V-VI have negative de-
grees of freedom if all slack variables are at the constraints.



The slack variables cause a faster rate of solve time increase
with finer time horizon resolution. The sequential solve mode
is unable to solve the benchmarks that use energy storage
and periodic constraints. As such, timing results from the
last three benchmarks do not appear.

The IPOPT solver is used [18], which is a large-scale
gradient-based interior-point solver. As such, initialization
proved important [20]. For Benchmark IV and Benchmark
VI, initializing the amount of storage exactly at the lower
bound of zero made the problems fail to solve, but initializing
the storage amount slightly away from this bound (e.g., 0.1)
made the problems tractable. This is likely because there is
additional space on the interior of the problem solution for
the interior-point solver to search, as opposed to being right
up against the constraints (where an active-set solver would
prefer to operate).

These benchmark problems provide a test of grid energy
management problems and how to solve them using dynamic
optimization. They also demonstrate the importance of care-
fully constructing the problem objective functions, choosing
a solution method that is well-suited to the problem type, and
selecting a time horizon that includes sufficient time points to
achieve accurate results but not too large to increase solution
time for the solver.

Even though each benchmark problem is solved assuming
perfect foresight, they still had appreciable complexity, and
the optimizer found solutions that are intuitive at first glance
but non-obvious. Incorporating uncertainty in the future
predictions would better align these problems with reality,
as would incorporating operating and fuel prices, the ability
to buy and sell power to the grid, and a wider mix of
generators and grid services. Nevertheless, these benchmark
problems illustrate several important characteristics of grid
energy management problems and demonstrate methods to
solve them efficiently at high time resolutions.
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