
Dynamic Matrix Control
of the

Temperature Control Lab Device

Kent H. Rasmussen

January 2021 - Version 2.0

Abstract

This document provides an introduction to the theory of Dynamic Matrix Control
(DMC). The control theory is illustrated using the Temperature Control Lab device
that was developed for educational purposes.

1

1 Introduction

The Temperature Control Lab (TCLab) device has two temperature sensors and two electric
heaters. The device is relatively inexpensive ($35 on Amazon). Hedengren and Kantor [1]
describe how the device has been used in Process Control Education for Chemical Engineers
at BYU and other Universities since 2013. The device can be controlled from popular
software such as Matlab, Octave and Python.

The intent of this document is to illustrate the theory of Dynamic Matrix Control as described
in the papers by Cutler and Ramamker [2] and Cutler, Morshedi and Haydel [3]. The control
problem will be formulated using impulse response models which are closely related to step
response models. The focus is on ensuring the math is easy to follow rather than on a
computational efficient implementation.

All examples in this document are developed in Python [8]. The Python scripts can com-
municate with the TCLab device through a USB serial connection. Python has libraries for
Advanced Matrix Calculations, Optimization, Visualization of Data, as well as libraries for
MODBUS and OPC connectivity. Python is also very popular in the Data Science commu-
nity.

2 Step Testing

A Dynamic Model of the the Process is required for Control. To estimate a Dynamic Model
from Process data it is typically required to perform some kind of step testing to ensure the
data has sufficient information content. During the step testing the heat input to each of
the two heaters are varied independently. The data from a step test is shown in figure 1.

• The temperatures T1 and T2 respond well to changes in heat input Q1 and Q2.

• The data shows Heater-1 has more power than Heater-2.

• Heater-1 affect both T1 and T2, and that the effect on T1 is stronger as expected.

• Heater-2 affect both T1 and T2, but the effect on T1 is relatively small.

• Heater-1 strongly affects T2, almost as much as Heater-2.

2

0 25 50 75 100 125 150 175 200
20

40

60

80 T1
T2

0 25 50 75 100 125 150 175 200
Time (minutes)

0

20

40

60

80

100 Q1
Q2

Figure 1: The upper part of the plot shows the response from the two temperature sensors. The
lower part of the plot shows the heat input to the two heaters.

3 Model development

In this section it will be shown how to devvelop models for the TCLab device. First a steady
model will be developed from the step test data, then a dynamic model suitable for control
will be estimated.

3.1 Steady State Model

During the initial part of the step test each heater was turned on to 100 percent one at a
time and the temperatures were allowed to settle. The table below shows the temperature
data at select times after the temperatures have stabilized. These data points are marked
with green dots in figure 1.

Time T1 T2 Q1 Q2

12 19.29 19.62 0.0 0.0
25 29.93 48.95 0.0 100.0
44 79.56 45.72 100.0 0.0
58 86.33 69.90 100.0 100.0

3

From the data in the table, an estimate of the steady state gain matrix relating changes in
heat input to changes in temperature, can be derived. The gain matrix shows a one percent
change in Q1 will cause a 0.593 °C increase in T1.

[
∆T1
∆T2

]
=

1

100

[
79.56− 19.29 29.93− 19.29
45.72− 19.62 48.95− 19.62

] [
∆Q1

∆Q2

]
=

[
0.5930 0.0967
0.2546 0.2869

] [
∆Q1

∆Q2

]

The gain matrix can be used to estimate the temperatures when both heaters are fully turned
on. The estimated temperatures are slightly higher than the observed temperatures listed in
the last row of the data table. The temperature response may not be exactly linear as the
heat loss increases when the temperatures increase.[

T1
T2

]
=

[
19.29
19.62

]
+

[
0.5930 0.0967
0.2546 0.2869

] [
100
100

]
=

[
89.23
74.41

]
≈
[

86.33
69.90

]

3.2 Dynamic Model

The model type that will be used to represent dynamics is the Finite Impulse Response
Model (FIR). The FIR model describes changes in a dependent variables (temperature) at
the current time as a function of changes in the independent variables (heat inputs) at past
times.

The change in temperature for the two temperature sensors at the time t depends on the
current and past heat input levels.

y1(t) = h011u1(t) + h111u1(t− 1) + · · ·+ hN11u1(t−N)

+ h012u2(t) + h112u2(t− 1) + · · ·+ hN12u2(t−N)

y2(t) = h021u1(t) + h121u1(t− 1) + · · ·+ hN21u1(t−N)

+ h022u2(t) + h122u2(t− 1) + · · ·+ hN22u2(t−N)

The time t − 1 indicates the time one sample period prior to time t. And the variables
yi and ui indicate changes from some initial point where y1(t) = ∆T1(t) = T1(t) − T1(0),
y2(t) = ∆T2(t) = T2(t) − T2(0), u1(t) = ∆Q1(t) = Q1(t) − Q1(0) and u2(t) = ∆Q2(t) =
Q2(t)−Q2(0).

The FIR model describes changes in temperatures based upon changes in heat inputs from
a starting point at time t = 0. The hkij coefficients are the impulse response coefficients that
represent the dynamic response. In the rest of this document the static part at time t = 0
will be omitted, and so will the ∆ symbol indicating change. All models used will be based
upon changes from some starting point.

4

FIR example
A very simple impulse response model written in vector format is:

y(t) =
[

0 0.7 0.2 0.1 0.0
] [

u(t) u(t− 1) u(t− 2) u(t− 3) u(t− 4)
]T

Assume the process is steady (y(t) = u(t) = 0 for t < 0) and that there is a step change in the
input at time zero (u(t) = 1 for t ≥ 0), then the output at different time intervals will be:

y(0) =
[

0 0.7 0.2 0.1 0.0
] [

1 0 0 0 0
]T

= 0

y(1) =
[

0 0.7 0.2 0.1 0.0
] [

1 1 0 0 0
]T

= 0 + 0.7 = 0.7

y(2) =
[

0 0.7 0.2 0.1 0.0
] [

1 1 1 0 0
]T

= 0 + 0.7 + 0.2 = 0.9

y(3) =
[

0 0.7 0.2 0.1 0.0
] [

1 1 1 1 0
]T

= 0 + 0.7 + 0.2 + 0.1 = 1.0

y(4) =
[

0 0.7 0.2 0.1 0.0
] [

1 1 1 1 1
]T

= 0 + 0.7 + 0.2 + 0.1 + 0 = 1.0

...

y(k) =
[

0 0.7 0.2 0.1 0.0
] [

1 1 1 1 1
]T

= 1.0

If there are no further changes in the input, the output from the model will be constant into the
future (y(k) = 1 for k ≥ 4) and we call the observed output sequence the step response. Assume
the impulse response model represents changes in temperature for changes in heat input and that
the process is steady with a heat input of 50 and a temperature of 30. When the heat input is
changed to 51 at time t = 0 the fist 5 steps of the dynamic temperaure response will be:[

T (0) T (1) T (2) T (3) T (4)
]

=
[

30 30.7 30.9 31 31
]

3.3 Model Identifcation

The impulse response coefficients can be estimated from the data collected from the step
test. The step test data set is of length M = 2340 (195 minutes at 5 second sample interval).
The first data point in the step test data gets the time stamp t = 0 and the last data point
gets the time stamp t = 2339. The time stamps reflect the sample interval number and not
the actual time in seconds.

We want to estimate a FIR model with N + 1 coefficients from each of the heaters to the
observed temperatures. Based upon the (unknown) FIR model, the predicted temperature

5

at time k (k ≥ N) for each temperature sensor can be written as:

y1(k) = h011u1(k) + h111u1(k − 1) + · · ·+ hN11u1(k −N)

+ h012u2(k) + h112u2(k − 1) + · · ·+ hN12u2(k −N)

y2(k) = h021u1(k) + h121u1(k − 1) + · · ·+ hN21u1(k −N)

+ h022u2(k) + h122u2(k − 1) + · · ·+ hN22u2(k −N)

Note that the equation cannot be used to describe y(k) for k < N unless we make the
assumption that u1(k) = u1(0) for k < 0 - i.e. the process is steady before the start of the
plant test. This equation can be repeated for each data point until the last data point. This
allows for writing the predicted time series for each temperature in a compact format as:

Y1 = U1H11 + U2H12 = UH1

Y2 = U1H21 + U2H22 = UH2

where

Y1 =

y1(N)

...
y1(M − 1)

 Y2 =

y2(N)

...
y2(M − 1)

U1 =

u1(N) · · · u1(0)

...
...

u1(M − 1) · · · u1(M − 1−N)

U2 =

u2(N) · · · u2(0)

...
...

u2(M − 1) · · · u2(M − 1−N)

U =
[
U1 U2

]
H1 =

[
H11 H12

]
H2 =

[
H21 H22

]
Hij =

[
h0ij h1ij · · · hNij

]T
The goal of the model parameter estimation is to minimze the difference between the observed
temperature y∗i (k) and the predicted temperature yi(k) at time k. The observed temperatures
can be aranged in vector format similar to the predicted temperatures.

Y ∗1 =

y∗1(N)

...
y∗1(M − 1)

 Y ∗2 =

y∗2(N)

...
y∗2(M − 1)

6

The parameter estimation can be formulated as an optimization problem where the sum of
the squared error (a scalar) is mimized by adjusting the impulse response coefficients for
each temperature sensor. A small error represents close agreement between the temperature
response and the predicted temperature response. The sum of the squared error can be
formulated as a vector product which can be expressed in short format as a vector norm
(squared).

J1 =
M−1∑
k=N

(y∗1(k)− y1(k))2 = (Y ∗1 − UH1)
T (Y ∗1 − UH1) =

∥∥∥Y1 − UH1

∥∥∥2
2

J2 =
M−1∑
k=N

(y∗2(k)− y2(k))2 = (Y ∗2 − UH2)
T (Y ∗2 − UH2) =

∥∥∥Y2 − UH2

∥∥∥2
2

The solution that minimizes the objective functions is the normal Least Squares regression
for an overdetermined problem (M > N). The estimate of the impulse response coefficients
is:

H1 = [UTU]−1UTY 1

H2 = [UTU]−1UTY 2

The same matrix UTU has to be inverted to determine the coefficients for each of the
temperatures. This matrix will be singular (non invertable) if there is no movement in one
of the inputs, or if the inputs are correlated.

Linear Regression example
The estimation of the impulse response coefficients is very similar to how the slope of a line going
through the origin is estimated. If there is only one data point (x1, y1) = (1, 2), then the best fit
for the slope is clearly α = 2. If we have a second data point (x2, y2) = (2, 5) the best estimate can
be found using linear regression. The data can be aranged in vectors:

UT =
[
x1 x2

]T
=
[

1 2
]T

Y T =
[
y1 y2

]T
=
[

2 5
]T

When only one parameter is estimated, the matrices UTU and UTY both become scalars:

UTU =
[

1 2
] [

1 2
]T

= 5 UTY =
[

1 2
] [

2 5
]T

= 12

The estimate of the slope then becomes:

α = [UTU]−1UTY =
1

5
× 12 = 2

2

5

7

3.3.1 Detrending

The data is filtered before the identification to make it have zero mean and remove drift.
This is necessary because the FIR model used can only represent dynamics and not the
steady state information. For FIR model estimation it is common to use differenced data (a
high pass filter):

∆ui(t) = ui(t)− ui(t− 1)

∆yi(t) = yi(t)− yi(t− 1)

The difference filter does emphasize the high frequency content in the data. Sometimes
additional filtering such as central average filtering is used to emphasize the lower frequency
information in the data to get a better estimate of the gains.

3.3.2 Smoothening

The estimated impulse response model can be erractic. Dayal and MacGregor [4] describe
various techniques to smooth the estimated impulse response.

• Penalize the difference between two adjecent impulse response coefficients.

• Use additional penality on the later coefficients assuming the response is becomming
steady as time goes on.

The difference between adjacent coefficients can be written as a vector.

∆Hij =
[
h0ij − 0 h1ij − h0ij · · · hNij − hN−1ij

]

Minimizing the vector product ∆HT
ij∆Hij (sum of squared differences) as part of the esti-

mation problem will penalize movement between the impulse response coefficients. Weights
can be used to add additional penality on movement between impulse response coefficents
that represent past data. This has the effect of forcing the model to reach steady state. A
simple method is to have the weights increase linearly.

[
1× (h0ij − 0) 2× (h1ij − h0ij) · · · (N + 1)× (hNij − hN−1ij)

]
The weighted sum of the squared differences can be written in matrix form as:

[∆Hij]
T L∆Hij = [HijA]T LHijA = HT

ij

[
ATLA

]
Hij

8

The weight matrix L is a diagonal matrix with increasing elements and A is a matrix that
is used to calculate the differences between the impulse response coefficeints:

A =

1 0 0 · · · 0 0
−1 1 0 · · · 0 0

0 −1 1 · · · 0 0
...

...
0 0 0 · · · −1 1

L =

1 0 · · · 0
0 2 · · · 0
...

...
0 0 · · · N + 1

Instead of simply minimizing the sum of the squared errors between the predicted tempera-
tures and the actual observed temperatures the objective function will be modified to include
an additional term that penalizes differences between the impulse response coefficients.

J∗1 =
M−1∑
k=N

(y∗1(k)− y1(k))2 = (Y ∗1 − UH1)
T (Y ∗1 − UH1) + κHT

1 WH1

J∗2 =
M−1∑
k=N

(y∗2(k)− y2(k))2 = (Y ∗2 − UH2)
T (Y ∗2 − UH2) + κHT

2 WH2

where κ is a factor that determines the amount of smoothening. If all impulse response
coefficients are zero, the last term in the objective function will be zero. The matrix W is a
block diagonal matrix (one block for each of the inputs):

W =

[
A 0
0 A

]T [
L 0
0 L

] [
A 0
0 A

]

The smoothened impulse response coefficients h∗ijk are found as the optimal solution that
minimizes the objective functions J∗1 and J∗2 .

H∗1 = [UTU + κ ∗W]−1UTY 1

H∗2 = [UTU + κ ∗W]−1UTY 2

Figure 2 shows the estimated impulse response coefficients with and without smoothening
for the model between the heat input Q1 to the first heater and the temperature sensor T1.

9

0 2 4 6 8 10 12 14
Time (min)

0.0025

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

T1 / Q1

Impulse Response

Figure 2: The plot shows 180 estimated impulse response coefficients, with smoothening (orange)
and without smoothening (blue), for the relationship between temperature sensor number one T1
and heater number one Q1.

3.3.3 Step Response

The step response model can be derived from the impulse response model. Each of the N+1
step response coefficients sijk are calculated as a sum of the impulse response coefficients.

s0ij = h0ij

s1ij = h0ij + h1ij = s0ij + h1ij

s2ij = h0ij + h1ij + h2ij = s1ij + h2ij
...

sNij =
N∑
k=0

hkij = sN−1ij + hNij

The estimated model gain is the last step response coefficient sNij . Figure 3 shows the step
response model between the two heater and the two temperature sensors. The estimated
model gains are very close to what was observed during the step test when the temperatures
were allowed to settle out at maximum power to each heater. The step response will settle
out if the sequence of estimated impulse responses approach zero.

10

0.0 2.5 5.0 7.5 10.0 12.5 15.0
0.0
0.1
0.2
0.3
0.4
0.5
0.6

T1 / Q1
Gain 0.5770

0.0 2.5 5.0 7.5 10.0 12.5 15.0
0.0
0.1
0.2
0.3
0.4
0.5
0.6

T1 / Q2
Gain 0.0778

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Time (min)

0.0
0.1
0.2
0.3
0.4
0.5
0.6

T2 / Q1
Gain 0.2203

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Time (min)

0.0
0.1
0.2
0.3
0.4
0.5
0.6

T2 / Q2
Gain 0.2733

Figure 3: Step response model for the TCLab device. The estimate is shown with smoothening
(orange) and without smoothening (blue). Note that the gains calculated from the step response
model are slightly different from the steady state model obtained from the step testing.

0 25 50 75 100 125 150 175 200
0

20

40

60

80

100

Temperature sensor #1

Actual
Prediction

0 25 50 75 100 125 150 175 200
Time (minutes)

0

20

40

60

80

100

Temperature sensor #2

Actual
Prediction

Figure 4: Prediction of the temperature data from the step test using the identified model.

11

3.3.4 Prediction

Once the impulse response coefficients have been identified, the temperatures can be pre-
dicted. The predicted temperatures are calculated from the changes in heat input over time.
Figure 4 shows the actual temperatures and the predicted temperatures. The model is able
to predict the dynamic response of the temperatures well.

Y1 = U1H11 + U2H12 = UH1

Y2 = U1H21 + U2H22 = UH2

The matrix U is built from the heat inputs where the initial point is subtracted ui(t) =
Qi(t) − Qi(0). Note that for the prediction, the matrix U is not built from differenced
(detrended) data which was used for the model identification.

4 Control

The goal is to have the outputs (temperatures) follow a target yri (t) by adjusting the inputs
(heaters). If both temperatures are to be controlled, then the control problem becomes
a multivariable optimization problem where the squared error between both temperatures
and their targets are minimized into the future by adjusting a sequence of P future inputs

UP
i =

[
ui(t+ 1) ui(t+ 2) · · · ui(t+ P)

]T
for each of the two heat inputs. The input

will be held constant into the future after the last move ui(t + P). The objective function
to be minimized has the form shown below where the relative importance between the
temperatures are weighted with the coefficients wi

JC =
∞∑
k=1

w2
1(y

r
1(t+ k)− y1(t+ k))2 + w2

2(y
r
2(t+ k)− y2(t+ k))2

In this section the individual pieces needed for the Dynamic Matrix Control algorithm will
be discussed.

• The first part is to predict where the outputs (temperatures) will move in the future
based upon past changes in heat input.

• The second part is to calculate the correction to the heat input that brings the tem-
peratures from the predicted future values to the desired target.

12

4.1 Future Prediction with Control

The number of future moves P is typically less than the number of coefficients N + 1. At
the time t+P +N there will be no further change in the output as the last N + 1 inputs to
the model are all identical and equal to the last move ui(t + P). In practice, the objective
function Jc is not evaluated into infinty, but over a finite control horizon of length Nc. Since
the outputs are no longer changing after the time t+ P +N it makes sense to at least have
Nc ≥ P +N to allow the effect of the last input change to settle. The sequence of future heat

inputs needed for predicting into the future UC
i =

[
ui(t+ 1) ui(t+ 2) · · · ui(t+Nc)

]T
can be derived from the sequence of future moves.

UC
i =MUP

i

where

M =

1 0 · · · 0
0 1 · · · 0

...
. . .

0 0 · · · 1
0 0 · · · 1

...
...

0 0 · · · 1

(Nc × P)

If we assume the system is steady with yi(t) = 0 and ui(t) = 0 at time t, then the first N + 1
future prediction with the control moves are.

yi(t+ 1) = h0i1u1(t+ 1)

+ h0i2u2(t+ 1)

yi(t+ 2) = h1i1u1(t+ 1) + h0i1u1(t+ 2)

+ h1i2u2(t+ 1) + h0i2u2(t+ 2)

yi(t+ 3) = h2i1u1(t+ 1) + h1i1u1(t+ 2) + h0i1u1(t+ 3)

+ h2i2u2(t+ 1) + h1i2u2(t+ 2) + h0i2u2(t+ 3)
...

yi(t+N + 1) = hNi1u1(t+ 1) + hN−1i1 u1(t+ 2) + · · ·+ h0i1u1(t+N + 1)

+ hNi2u2(t+ 1) + hN−1i2 u2(t+ 2) + · · ·+ h0i2u2(t+N + 1)

The future predictions after the first N+1 follow a similar pattern, but the coefficients hN+k
ij

are zero for k > 0.

yi(t+N + 1 + k) = hN+k
i1 u1(t+ 1) + hN+k−1

i1 u1(t+ 2) + · · ·+ h0i1u1(t+N + 1 + k)

+ hN+k
i2 u2(t+ 1) + hN+k−1

i2 u2(t+ 2) + · · ·+ h0i2u2(t+N + 1 + k)

13

In summary, the future prediction for each temperature output can be calculated from the
two sequences of future heat inputs.

Y C
i = Hi1U

C
1 +Hi2U

C
2 = Hi1MUP

1 +Hi2MUP
2

where Hij consists of a triangular matrix constructed from the impulse response coefficients.
The matix Hij is called the Dynamic Matrix.

Hij =

h0ij 0 0 · · · 0
h1ij h0ij 0 · · · 0
h2ij h1ij h0ij · · · 0

...
. . .

hNC−1
ij hNC−2

ij hNC−3
ij · · · h0ij

 (Nc ×Nc)

Note that the coefficients hN+k
ij are zero for k > 0.

4.2 Calculating the Future Moves

The objective function will be minimized over a finite future horizon NC . The objective
function is simply the sum of the squared control error over time. The objective function for
finding the future moves is very similar to the objective function for the model identification.
The optimimal vector UP minmizes the objective function, which can be expressed as a vector
norm.

JC =
NC∑
k=1

w2
1(y

r
1(t+ k)− y1(t+ k))2 + w2

2(y
r
2(t+ k)− y2(t+ k))2

= w1

[
Y r
1 − Y C

1

]T [
Y r
1 − Y C

1

]
+ w2

[
Y r
2 − Y C

2

]T [
Y r
2 − Y C

2

]
= w1

[
Y r
1 −H11MUP

1 −H12MUP
2

]T [
Y r
1 −H11MUP

1 −H12MUP
2

]
+ w2

[
Y r
2 −H21MUP

1 −H22MUP
2

]T [
Y r
2 −H21MUP

1 −H22MUP
2

]
=

[
WCY

R −WCHCMCUP

]T [
WCY

R −WCHCMCUP

]
= [BC − ACUP]T [BC − ACUP]

=
∥∥∥BC − ACUP

∥∥∥2
2

14

where

HC =

[
H11 H12

H21 H22

]
(2NC × 2NC)

MC =

[
M 0
0 M

]
(2NC × 2P)

WC is a diagonal matrix

WC =

w1 · · · 0
. . .

0 · · · w1

0

0
w2 · · · 0

. . .

0 · · · w2

(2NC × 2NC)

Yr =

[
Y r
1

Y r
2

]
(2NC × 1)

UP =

[
UP
1

UP
2

]
(2P × 1)

BC = WCY
R (2NC × 1)

AC = WCHCMC (2NC × 2P)

4.2.1 Dynamic Matrix Control Solution

Provided the inverse exist, the future moves UP that minimizes the norm
∥∥∥BC − ACUP

∥∥∥2
2

is

found as the normal Least Squares Solution.

UP =
[
AT

CAC

]−1
AT

CBC

15

Control Example - One Future Move
The very simple impulse response model with N + 1 = 5 will be used again.

h =
[

0 0.7 0.2 0.1 0.0
]

The system is steady at y(t) = u(t) = 0 for t ≤ 0. The control target yr(t) will be changed from zero
to one at time t = 1. If only one future move is allowed (P = 1), then the solution u(t) = 1 ensures
the target is met and the infinite horizon objective function is minimized. The solution Up = 1
results in the objective function Jc = 1.1. To find the optimal solution for the finite objective
function, the following vectors and matrices are needed for NC = 5.

Yr =
[

1 1 1 1 1
]T

(5× 1)

WC =

 1 · · · 0
. . .

0 · · · 1

 (5× 5)

MC =
[

1 1 1 1 1
]T

(5× 1)

HC =

0. 0. 0. 0. 0.
0.7 0. 0. 0. 0.
0.2 0.7 0. 0. 0.
0.1 0.2 0.7 0. 0.
0. 0.1 0.2 0.7 0.

 (5× 5)

The optimal solution is found to be UP = [1.091] which results in an objective function of Jc = 1.072.
Figure 5 shows the response of the output. The output sequence does not approach the value of
one because the horizon is finite. It is possible to force the solution towards one by extending the
horizon. The same result can be achieved by increasing the weight on the last diagonal element in
WC because the output does not change if the horizon is extened past t = 5. If WC(5, 5) = 10, 000
the solution approaches one at t = 5.

4.3 Move Penalty

It is often necessary to slow down the movement in the independent variables to achieve
robustness against model error. This can be achieved by penalizing changes in the indepen-
dent variables between to adjacent time intervals. The sequence of input changes can be
formulated as:

∆UC
i =

∆ui(t+ 1)

...
∆ui(t+NC)

 =

ui(t+ 1)− ui(t+ 0)

...
ui(t+NC)− u(t+NC − 1)

 = QUC
i (1)

16

where ui(t + 0) is the input at time zero which is assumed to be zero and thus not part of
the sequence. The matrix Q has the form:

Q =

1 0 0 · · · 0 0
−1 1 0 · · · 0 0

0 −1 1 · · · 0 0
...

0 0 0 · · · −1 1

 (NC ×NC)

To make the control less aggressive a term, JU
C that penalizes large changes in the input, will

be added to the objective function, where mi penalizes movement in input i.

JU
C =

NC∑
k=1

m2
1 [u1(t+ k)− u1(t+ k − 1)]2 +m2

2 [u2(t+ k)− u2(t+ k − 1)]2

=
NC∑
k=1

m2
1 [∆u1(t+ k)]2 +m2

2 [∆u2(t+ k)]2

=
[
m1∆U

C
1

]T [
m1∆U

C
1

]
+
[
m2∆U

C
2

]T [
m2∆U

C
2

]
=

∥∥∥m1QU
C
1

∥∥∥2
2

+
∥∥∥m2QU

C
2

∥∥∥2
2

=
∥∥∥m1QMUP

1

∥∥∥2
2

+
∥∥∥m2QMUP

2

∥∥∥2
2

=
∥∥∥QCMCUP

∥∥∥2
2

Where

QC =

[
m1Q 0

0 m2Q

]
(2NC × 2NC)

The term JU
C will be zero if all future inputs do not change. The combined objective function

that minimizes the control error and penalizes movement can be written as:

JC =
∥∥∥BC − ACUP

∥∥∥2
2

+
∥∥∥QCMCUP

∥∥∥2
2

=

∥∥∥∥∥
[
BC

O

]
−
[

AC

−QCMC

]
UP

∥∥∥∥∥
2

2

=
∥∥∥B − AUP

∥∥∥2
2

The solution to the Dynamic Matrix Control problem is the vector UP that minimizes the
combined objective function and can be solved as a Least Squares problem.

UP =
[
ATA

]−1
ATB

The control problem assumed the system was steady with zero input in the beginning. In
practice the future move plan will be calculated from the difference between the future

17

prediction and the desired target, i.e. the difference between where the prediction shows the
process is moving and where the process is desired to be. The calculated future moves will
be additive to the current heater inputs.

Control Example - Four Future Moves with Move Penalty
The very simple impulse response model with N + 1 = 5 will be used again. This time four future
moves will be used (P = 4). We will use Nc = 8 in this example. The matrix WC is a unity matrix
of dimension (8× 8). The matrix MC takes the form:

MC =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 1
0 0 0 1
0 0 0 1
0 0 0 1

(8× 4)

The matrix Q has dimension (8× 8). The optimal solution will be found for two different values of
the move penalty.

• Solution 1: m = 0.2 which give JC = 1.08 and UP =
[

1.2993 1.0638 0.9534 1.0013
]T

• Solution 2: m = 1.0 which give JC = 1.85 and UP =
[

0.6679 0.9108 0.9789 0.9976
]T

The input and outputs are shown in figure 6 for the two solutions. The second solution is clearly
slower and more damped. The last variable in both input sequences is close to one which would be
the solution if the horizon was infinite.

4.4 Open Loop Control

The identified model can be used to generate a control signal that increases the temperature
of the two heaters by 20 °C each. The four identified models have N + 1 = 180 coefficients
each. The plan is to implement the move plan on the TCLab device without feedback (Open
Loop Control) to see how close the observed temperatures follow what is predicted by the
model.

The number of future moves for each of the two heaters will be P = 100. The horizon will
be NC = P +N = 100+179 = 279. The following tuning parameters will be used: w1 = 1.0,

18

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0
Yc

Yr

Figure 5: Optimal solution for one future move example. The target is increased to one at t = 1.
The output does not reach the target because the horizon is final.

0 1 2 3 4 5 6 7 8
0.0

0.2

0.4

0.6

0.8

1.0

Y - solution #1
Y - solution #2

0 1 2 3 4 5 6 7 8
0.00

0.25

0.50

0.75

1.00

1.25

U - solution #1
U - solution #2

Figure 6: Example of four future moves on simple impulse response model example. Solution 1
uses a move penalty of m = 0.2, and solution 2 uses a move penalty of m = 1.0. Solution 2 provides
a less aggressive response with no overshoot in the input.

19

w2 = 1.0, m1 = 2.1 and m2 = 2.1. The matrices used in the optimization problem will have
the following dimensions.

HC (558× 558) WC (558× 558)
QC (558× 558) MC (558× 200)
A (1116× 200) B (1116× 1)

Thus, to find the 2× 100 future moves the matrix ATA of dimension 200× 200 will have to
be inverted. The plot in figure 7 shows the input to the two heaters found as the optimal
solution. There is overshoot in each of the two heat inputs which helps bring the tempera-
tures to the target faster. The observed temperatures matches the predicted temperatures
fairly well for the two heaters, but the model gains are not quite correct as the observed
temperatures increase a little more than predicted.

4.4.1 Blocking

It is possible to use fewer future moves by spacing them out over the control horizon, this
is called blocking. Doing so will reduce the size of the matrix that has to be inverted. This
is acomplished by holding the output constant between moves. If the plan is to use seven
(P = 7) future moves at the time intervals: 1, 3, 7, 15, 27, 51 and 81, then the vector UP

i

becomes:

UP
i =

[
ui(t+ 1) ui(t+ 3) ui(t+ 7) · · · ui(t+ 51) ui(t+ 81)

]T

The matrix M that maps the actual move sequence UC
i to UP

i will take the form:

M =

1 0 0 · · · 0 0
1 0 0 · · · 0 0
0 1 0 · · · 0 0
0 1 0 · · · 0 0
0 1 0 · · · 0 0
0 1 0 · · · 0 0
0 0 1 · · · 0 0

...
...

0 0 · · · 1 0
0 0 · · · 1 0
0 0 · · · 0 1
0 0 · · · 0 1

...
...

0 0 · · · 0 1

← 1

← 3

← 7

← 79
← 80
← 81
← 82

← 260

(NC × P)

20

With the last move at t + 81, the horizon is NC = N + 81 = 260. The following tuning
paramters will be used: w1 = 1.0, w2 = 1.0, m1 = 1.0 and m2 = 1.0. The matrices used in
the optimization problem will have the following dimensions.

HC (520× 520) WC (520× 520)
QC (520× 520) MC (520× 14)
A (1040× 14) B (1040× 1)

Thus, to find the 2 × 7 future moves the matrix ATA of dimension 14 × 14 will have to be
inverted. The plot in figure 8 shows the heater inputs and the predicted temperatures. The
future moves are spaced out over the horizon.

4.4.2 Constraints

It is possible to have constraints on the future moves. The future input may be limited (heat
input is limited in range 0% to 100%).

ulowi ≤ ui(k) ≤ uhighi

It is also possible to limit the size of each of the future moves.

|∆ui(k)| = |ui(k)− ui(k − 1)| ≤ umove
i

where umove
i is the maximum allowable change in the input. When constraints are applied to

the inputs the optimization problem that minimizes the objective function and satisfies the
constraints becomes a Quadratic Program (QP) instead of a simple Least Squares problem.

4.5 Future Prediction without Control

As seen in the modelling section, the predicted temperature measurement for each of the two
sensors at the current time t is a function of the last N + 1 (including current) heat inputs.

y1(t) = h011u1(t) + h111u1(t− 1) + · · ·+ hN11u1(t−N)

+ h012u2(t) + h112u2(t− 1) + · · ·+ hN12u2(t−N)

y2(t) = h021u1(t) + h121u1(t− 1) + · · ·+ hN21u1(t−N)

+ h022u2(t) + h122u2(t− 1) + · · ·+ hN22u2(t−N)

4.5.1 Prediction Error

The prediction error at time t is defined as the difference between the observed temperature
y∗i and the predicted temperature yi.

ei(t) = y∗i (t)− yi(t)

21

0 5 10 15 20
20

25

30

35

40

45

T1 expected
T1 measured

0 5 10 15 20
20

25

30

35

40

45

T2 expected
T2 measured

0 5 10 15 20
Time (minutes)

0

20

40

60

80

100

q1

0 5 10 15 20
Time (minutes)

0

20

40

60

80

100

q2

Figure 7: Open loop control example for TCLab device. The heater input for each of the two
heaters are changed as shown on the plot (green trace). The observed output (orange) from the
temperature sensors follows the predicted temperatures (blue) well.

0 5 10 15 20
0

5

10

15

20

T1

0 5 10 15 20
0

5

10

15

20

T2

0 5 10 15 20
Time (minutes)

0

20

40

60

80

100

q1

0 5 10 15 20
Time (minutes)

0

20

40

60

80

100

q2

Figure 8: Open loop control example for TCLab device with seven future moves. The future
heater input moves (green trace) are spaced out over the horizon. The predicted temperature
response (blue) for each sensor both increase by 20 °C.

22

4.5.2 Predicting into the Future

The last input ui(t) is held constant (i.e. no control) into the future ui(t + k) = ui(t) for
k ≥ 1. The future predictions for each output can be written in vector/matrix form.

Y P
i = HP

i1U
P
1 +HP

i2U
P
2

where

Y P
i =

yi(t+ 1)
yi(t+ 2)

...
yi(t+N)

yi(t+N + 1)
...

yi(t+Nc − 1)
yi(t+Nc)

UP
j =

uj(t−N + 1)
uj(t−N + 2)
uj(t−N + 3)

...
uj(t)

uj(t+ 1)
uj(t+ 2)
uj(t+ 3)

...
uj(t+Nc − 1)
uj(t+Nc)

← Past History (N)

← Future constant inputs (NC)

and

HP
ij =

hNij hN−1ij hN−2ij · · · h1ij h0ij 0 0 · · · 0 0
0 hNij hN−1ij · · · h2ij h1ij h0ij 0 · · · 0 0
0 0 hNij · · · h3ij h2ij h1ij h0ij · · · 0 0
...

...
...

0 0 0 · · · 0 hNij hN−1ij hN−2ij · · · 0 0
0 0 0 · · · 0 0 hNij hN−1ij · · · 0 0
...

...
0 0 0 · · · 0 0 0 0 · · · h0ij 0
0 0 0 · · · 0 0 0 0 · · · h1ij h0ij

NC × (N +NC)

23

Future Prediction without Control
The very simple impulse response model with N + 1 = 5 will be used again.

h =
[
h0 h1 h2 h3 h4

]
=
[

0 0.7 0.2 0.1 0.0
]

We will use NC = 5 in this example as in the one future move example. We will assume u(t) = 0
for t < 0 and that u(t) = 1 for t ≥ 0. All future inputs will be assumed constant (no control)
u(t+ k) = u(t) for k ≥ 1.

UP =
[
u(t− 3) u(t− 2) u(t− 1) u(t) u(t+ 1) u(t+ 2) u(t+ 3) u(t+ 4) u(t+ 5)

]T
=

[
0 0 0 1 1 1 1 1 1

]T
The prediction matrix HP becomes:

HP =

0 0.1 0.2 0.7 0 0 0 0 0
0 0 0.1 0.2 0.7 0 0 0 0
0 0 0 0.1 0.2 0.7 0 0 0
0 0 0 0 0.1 0.2 0.7 0 0
0 0 0 0 0 0.1 0.2 0.7 0

and the predicted future outputs are:

Y P = HPUP =
[
y(t+ 1) y(t+ 2) y(t+ 3) y(t+ 4) y(t+ 5)

]T
=

[
0.7 0.9 1 1 1

]T
As expected, the future output value settles out at the value 1.

24

4.6 The DMC Algorithm

All the necessary pieces are now in place to implment the DMC Algorithm. The following
steps are executed at each time interval:

1. Sample data (inputs and outputs)

2. Calculate current prediction error

3. Calculate future predictions based upon past inputs

4. Get desired target for outputs (may come from steady state optimizer not yet discussed)

5. Calculate the future moves that bring the outputs to the targets

6. Implement first move and repeat sequence next time interval

DMC Algorithm - Closed Loop Control
The TCLab device will be controlled with P = 100 future moves as in the Open Loop Control
example. The tuning parameters will be selected to provide a slightly slower response than the
Open Loop Control example (less overshoot). The following tuning paramters will be used:

w1 = w2 = 0.5

m1 = m2 = 4.0

The closed loop DMC control is shown in figure 9. The future input target (last move in the future
move sequence) at each time interval is shown together with the actual input. If there are no
unmeasured disturbances or model error, the input target will be constant if the set-point for the
output is constant.

The data is sampled at each interval and the control calculations are performed. Once the control
calculations are complete the calculated heat inputs are sent to the device. The control calculations
and communication with the device is complete in slightly less than one second with most of the
time spent on the communication as the calculations for a small problem are very fast. The control
calculations are repeated every 5 seconds.

Figure 10 illustrates the control calculation after 4 minutes. The future prediction without control
shows that the output does not reach the target because the input sequence has not yet stabilized.

25

0 10 20 30
20

30

40

50

T1
tgt
pred

0 10 20 30
20

30

40

50

T2
tgt
pred

0 10 20 30
Minutes

0

20

40

60

80

100
q1
tgt

0 10 20 30
Minutes

0

20

40

60

80

100
q2
tgt

Figure 9: Closed loop DMC control example for TCLab device. The upper plots show the
temperatures (blue), the set-points (orange) and the open loop prediction (green) calculated from
the heater inputs. The set-points are changed after 13 minutes. The lower plots show the heater
inputs (blue) and the calculated future target (orange) at steady state.

0 5 10 15 20 25 30
20

30

40

50

60

T1 prediction

0 5 10 15 20 25 30
20

30

40

T2 prediction

0 5 10 15 20 25 30
Minutes

0

20

40

60 Q1

0 5 10 15 20 25 30
Minutes

0

10

20

30

40

50 Q2

Figure 10: Upper plots show predictions at 4 minutes. The blue trace shows past prediction, the
orange trace shows the future prediction with the heat input held constant at current value (no
control). The green trace is the desired temperature target. The lower plots show the past heat
inputs (blue) and the 100 future planned heat input changes (orange) not yet implemented.

26

5 Optimization

Industrial DMC type controllers often have an optimizer that sets the desired targets for
the inputs and outputs, Qin and Badgwell [5]. This allows for managing systems where the
number of inputs are different from the number of outputs, and it allows for driving the
process in a desired economical direction.

The steady state model for the TCLab device can be written as:[
T1
T2

]
−
[
T10
T20

]
=

[
0.5930 0.0967
0.2546 0.2869

] [
Q1 −Q10

Q2 −Q20

]
= G

[
∆Q1

∆Q2

]

Assuming the initial temperaures are T10 = T20 = 19 °C (typical indoor temperaure) and
that the initial heat inputs are Q10 = Q20 = 0 the possible operating map can be found
knowing the heat inputs are restriced to the range 0 ≤ Qi < 100. The possible predicted
operating range is shown as the red box on figure 11. The real data from the steps test (blue
dots) are overlayed on the plot. The model predicts the possible operating range well.

5.1 Constraints

The limits on the inputs are typical hard limits than cannot be vilolated.

QL
1 ≤ Q1 ≤ QH

1

QL
2 ≤ Q2 ≤ QH

2

The limits on the temperatures are typically soft as this allows for managing constraints that
are not possible to achieve in a real life situtation. The limits on the temperatures can be
changed by the addition of positive slack variables. If the optimization problem is feasible,
the slack variables will be zero.

TL
1 − SL

1 ≤ T1 ≤ TH
1 + SL

1

TL
2 − SL

2 ≤ T2 ≤ TH
2 + SH

1

Combining the limits on the inputs and outputs we get

TL
1 − T10
TL
2 − T20

QL
1 −Q10

QL
2 −Q20

 ≤

T1 − T10 + SL

1 − SH
1

T2 − T20 + SL
2 − SH

2

Q1 −Q10

Q2 −Q20

 ≤

TH
1 − T10
TH
2 − T20

QH
1 −Q10

QH
2 −Q20

27

or in more compact form as:
TL
1 − T10
TL
2 − T20

QL
1 −Q10

QL
2 −Q20

 ≤
[
G
I

] [
∆Q1

∆Q2

]
+

[
I
0

] [
SL
1

SL
2

]
+

[
−I

0

] [
SH
1

SH
2

]
≤

TH
1 − T10
TH
2 − T20

QH
1 −Q10

QH
2 −Q20

Combining the limits on inputs and outputs with the condition that the slack variables are
positive, the constraints can be written in matrix form as

xL ≤ Ax ≤ xH

where
xT =

[
∆Q SL SH

]T
and

A =

G I −I
I 0 0
0 I 0
0 0 I

 xL =

TL
1 − T10
TL
2 − T20

QL
1 −Q10

QL
2 −Q20

0
0
0
0

xH =

TH
1 − T10
TH
2 − T20

QH
1 −Q10

QH
2 −Q20

∞
∞
∞
∞

5.2 Constrained Optimization

The optimization problem can be solved as a Quadratic Program (QP) if a linear cost variable
is assigned to each heat input and a quadratic penalty is assigned to each slack variable. The
penalty assigned to the slack variables are often large positive numbers to drive the slack
variables to zero if possible.

minimize
1

2
xTPx+ qTx

subject to xL ≤ Ax ≤ xH

where

P =

0 0 0 0 0 0
0 0 0 0 0 0
0 0 wL

1 0 0 0
0 0 0 wL

2 0 0
0 0 0 0 wH

1 0
0 0 0 0 0 wH

2

q =

c1
c2
0
0
0
0

28

Simple Optimization
Assume we have the following constraints for the TCLab device.

10 ≤ Q1 ≤ 90

20 ≤ Q2 ≤ 80

30 ≤ T1 ≤ 60

30 ≤ T2 ≤ 50

The temperaure and heat input constraints are shown in figure 11. Starting from the initial tem-
peraures T10 = T20 = 19 °C and zero initial heat input, the constraints can be written without
slack variables as:

30− 19
30− 19

10
20

 ≤
[
G

I

] [
Q1

Q2

]
+

60− 19
50− 19

90
80

The following cost variables will be assigned: c1 = −0.1 and c2 = −1.0. Without slack variables
the matrix P becomes a zero matrix and the optimization problem is a Linear Program (LP). The
LP will be solved using the OSQP algorithm. The OSQP Algorithm is very fast and has been used
for control of embedded systems, Stellato [7]. The OSQP solver is available as a Python library.
The optimal solution (shown as a purple dot on figure 11) becomes

Q =
[

31.61 80.00
]T

or T =
[

45.48 50.00
]T

where the active constraints are marked in bold. Heater #2 is at the maximum, and the limit on
temperature sensor #2 prevents heater #1 from increasing the input further.

Constraint Violation
If the temperature constraints are made narrower, they become impossible to satisfy within the
hard limits defined by the heat inputs.

55 ≤ T1 ≤ 60

30 ≤ T2 ≤ 35

If the QP is solved for wL
1 = wH

1 = wL
2 = wH

2 = 10000, the solution is:

x =
[
Q1 Q2 SL

1 SL
2 SH

1 SH
2

]T
=
[

54.8 20 1.58 0 0 3.68
]T

with both temperatures T =
[

53.41 38.68
]T

being outside the specified limits. Note that two

of the slack variables are non zero. The QP smears the error when constraints cannot be met.

29

10 20 30 40 50 60 70 80 90
T1

10

20

30

40

50

60

70

80

90

T 2

Operating envelope

Figure 11: The step test data (orange dots) are overlayed on the predicted operating map defined
by the red lines. The green square shows the constraints on the temperatures and the blue lines
show the constraints on the heat inputs. The optimal solution from the simple optimization example
is shown as the purple dot.

30

5.3 Optimizing Control

The optimizer can be connected to the control algorithm by evaluating the optimization
problem at the predicted future steady state (corrected for the prediction error). When
solved this way, the change in heat input ∆Q is the steady change that moves the process
to the optimal operating point. The optimization problem will be solved at each control
execution. Stability analysis of DMC type controllers driven by an LP or QP optimizer was
analyzed by Ying and Joseph [6].

Optimizing Control
Assume we have the following constraints:

0 ≤ Q1 ≤ 75 0 ≤ Q2 ≤ 75

30 ≤ T1 ≤ 60 30 ≤ T2 ≤ 52

If the initial cost vector is qT =
[

1 1
]T

the steady state solution will be T1 = T2 = 30 °C.

The plot in figure 12 shows closed loop control with the optimizer active. At 20 minutes, the cost

vector is changed to qT =
[
−0.1 −1.0

]T
and the active constraint set changes to T2 = 52 °C

and q2 = 75. At this constraint set the temperature T2 is essentially controlled by q1. Examples
like this where the primary control handle for a variable is tied up with another constraint often
arise when optimizing industrial processes.

6 Final Words

Hopefully, this document inspired you to learn about the math used in Dynamic Matrix
Control. Understanding the underlaying math used for solving the Dynamic Matrix Control
algorithm is not a requirement to work with this technology in practice, but it is useful to
understand how the math works to better understand the tradeoffs when changing tuning
constants.

Controlling the TCLab is more interesting than controlling a simulated process. The second
temperature sensor on the device used for the examples in this document has erratic readings.
This is possibly caused by the glue holding the sensor close to the heater being broken which
allows for the sensor to slightly move. Such problems are similar to the problems encountered
on industrial equipment where it often is necessary to work around broken equipment and
instrumentation.

31

0 10 20 30 40 50
10
20
30
40
50
60
70

T1
tgt
pred

0 10 20 30 40 50
10
20
30
40
50
60
70

T2
tgt
pred

0 10 20 30 40 50
Minutes

0

20

40

60

80

100

q1
tgt

0 10 20 30 40 50
Minutes

0

20

40

60

80

100

q2
tgt

Figure 12: Optimizing DMC Control. Initial cost factors are c1 = c2 = 1 which results in the
optimal solution T1 = T2 = 30. After 20 minutes the cost factors are changed to c1 = −0.1 and
c2 = −1.0 which results in the optimal solution T2 = 52 and q2 = 75. At this constraint set, T2 is
primarily being controlled by q1. The future targets for T1 and q1 calculated at 20 minutes when
the costs are changed are different from where these values finally settle out after 50 minutes. This
is a sign of model errors.

32

References

[1] Hedengren, J., Kantor, J., Computer Programming and Process Control Take-Home
Lab, CACHE News Summer 2020

https://cache.org/sites/default/files/sum-2020-take-home-lab.pdf.

http://apmonitor.com/pdc/index.php/Main/ArduinoTemperatureControl

[2] Cutler, C.R. and Ramaker, B.L., Dynamic Matrix Control - A Computer Control Al-
gorithm, AICHE 86th National Meeting, Paper S1b, April 1979.

[3] Cutler, C.R., Morshedi, A.M., Haydel, J.J., An Industrial Perspective on Advanced
Control, AICHE meeting Washington D.C. October 1983.

[4] Dayal, B., MacGregor J., Identification of Finite Impulse Response Models: Methods
and Robustness Issues, Ind. Eng. Chem. Res. pp. 4078-4090, 35, 1996

[5] Qin, J., Badgwell, T., A Survey of Industrial Model Predictive Control Technology
Control Engineering Practice 11(7):733-764, 2003

[6] Ying, C., Joseph, B. Performance and Stability Analysis of LP-MPC and QP-MPC
Cascade Control Systems, AIChE Journal, Vol 45, No. 7, 1521-1534, 1999

[7] Stellato, B., Banjac, G., Goulart, P., Bemporad, A., Boyd, S., OSQP: an opera-
tor splitting solver for quadratic programs, Mathematical Programming Computation
12:637–672, 2020

https://web.stanford.edu/ boyd/papers/pdf/osqp.pdf

[8] Python and relevant packages

https://www.python.org/.

https://numpy.org/

https://scipy.org/

https://matplotlib.org/

https://pypi.org/project/osqp/

33

https://cache.org/sites/default/files/sum-2020-take-home-lab.pdf
http://apmonitor.com/pdc/index.php/Main/ArduinoTemperatureControl
https://web.stanford.edu/~boyd/papers/pdf/osqp.pdf
https://www.python.org/
https://numpy.org/
https://numpy.org/
https://matplotlib.org/
https://pypi.org/project/osqp/

Appendix

Python Examples

Python is used to illustrate all concepts in this document. Below is a list of the Python scripts
with a short description. The scripts appear in the order they are used in the document. All
examples can be run from the command line using Python.

test connection.py Performs a communication test to the TCLab device.

mylib.py This is a python library with common functions used in the scripts listed above.

steptest.py Performs a step test of the device where the heat input is changed and the
temperatures are recorded. The data is used to develop the dynamic model.

steptest plot.py This script plots the data from the step test shown on figure 1.

model id.py This script identifies the dynamic models of the TCLab device based upon
the step test data. The dynamic models are shown on figures 2 and 3.

predict.py This script uses the identified model to predict the data from the step test
shown on figure 4.

one move.py This script shows an example of control with one future move for a very
simple impulse response model and generates the plot shown on figure 5.

four moves.py This script illustrates the effect of move penalty shown in figure 6.

open loop.py This script performs open loop control of the TCLab device and attempts to
increase the temperature by 20 °C of each temperature sensor.

open loop plot.py Plots the data from the open loop experiment shown in figure 7.

open loop blocking.py This script created the plot in figure 8

future prediction.py This script is used in the Future Prediction Example.

control.py DMC control of the TCLab device.

control plot.py The DMC control data is shown on figure 9.

control plot2.py The DMC control data is shown on figure 10.

envelope.py The operating envelope shown on figure 11.

violate.py The calculations for the QP constraint violation example.

34

optimize.py Optimizing DMC control of the TCLab device.

optimize plot.py The optimized DMC control is shown on figure 12.

Python Environment

The examples were developed using the Anaconda environment for Python. Anaconda allows
for configuring a local Python installation where the versions of the packages used can be
controlled. This allows the user to ensure the packages will work together. All examples
were developed using the older version 2.7 of Python.

The following Python packages are needed in addition to the standard python installation.

numpy Numerical algorithms for solving matrix equations

scipy Numerical algorithms for sparse matrices

matplotlib Plotting of data

osqp QP solver

pyserial Serial communication

tclab Package to communicate with the TCLab device.

A conda environment named test with the required python packages can be installed with
the following commands.

1. conda create –name test python=2.7

2. conda activate test

3. conda install numpy scipy matplotlib pyserial

4. pip install tclab

5. pip install osqp

The installation can be checked with the following command which creates the plot shown
in figure 5:

python one move . py

The connection to the TCLab device can be checked with the following command:

python t e s t c o n n e c t i o n . py

35

Linux Troubleshooting

The TCLab device was able to communicate with Python on Windows 10. Getting the
communication working from Ubuntu Linux (Version 20.04 LTS) took a little more time.
Luckily, the TCLab device is built on Arduino which makes it easy to find information on
the internet.

The problem turned out to be lack of permission to access the USB serial connection used
to communicate between Python and the TCLab Arduino board. Below is a series of trou-
bleshooting steps that may be useful.

The Python statement a=tclab.TCLab() fails with the error Failed to Connect.

Python 2.7.18 |Anaconda , Inc.| (default , Apr 23 2020, 22:42:48)

[GCC 7.3.0] on linux2

Type "help", "copyright", "credits" or "license" for more information.

>>> import tclab

>>> a=tclab.TCLab ()

TCLab version 0.4.9

Traceback (most recent call last):

.......

raise RuntimeError(’Failed to Connect.’)

RuntimeError: Failed to Connect.

Once the Arduino board is connected to the USB port, the command dmesg will indicate
an Arduino device is connected to the serial port ttyACM0 (name may be different on other
computers).

[35203.646163] usb 1 -1.1: new full -speed USB device number 7 using ehci -pci

[35203.758130] usb 1 -1.1: New USB device found , idVendor =2341 , idProduct =8036

[35203.758135] usb 1 -1.1: New USB device strings: Mfr=1, Product=2, SerialNumber =3

[35203.758138] usb 1 -1.1: Product: Arduino Leonardo

[35203.758140] usb 1 -1.1: Manufacturer: Arduino LLC

[35203.758818] cdc_acm 1 -1.1:1.0: ttyACM0: USB ACM device

The output from the command lsusb also indicates an Arduino device is connected to USB.

Bus 001 Device 006: ID 2341:8036 Arduino SA Leonardo (CDC ACM , HID)

The Python serial package provides a command tool to check for serial ports. The command
python -m serial.tools.list ports -v produces the following output.

/dev/ttyACM0

desc: Arduino Leonardo

hwid: USB VID:PID =2341:8036 LOCATION =1 -1.1:1.0

/dev/ttyS4

desc: n/a

hwid: n/a

2 ports found

36

Trying to establish a connection to the serial port using Python fails with the error Per-
mission denied.

Python 2.7.18 |Anaconda , Inc.| (default , Apr 23 2020, 22:42:48)

[GCC 7.3.0] on linux2

Type "help", "copyright", "credits" or "license" for more information.

>>> import serial

>>> a = serial.Serial(’/dev/ttyACM0 ’, baudrate =9600 , timeout =2.0)

Traceback (most recent call last):

.....

serial.serialutil.SerialException:

[Errno 13] could not open port /dev/ttyACM0:

[Errno 13] Permission denied: ’/dev/ttyACM0 ’

The command ls -la /dev/ttyACM0 shows the serial device exists and that only members of
the dialout group has read/write permissions.

crw -rw ---- 1 root dialout 166, 0 Oct 11 13:56 /dev/ttyACM0

One solution is to execute the command: sudo chmod a+rw /dev/ttyACM0 every time the
TCLab board is connected to the USB port. The command ls -la /dev/ttyACM0 will indcate
the permissions were changed and that all users access now have access.

crw -rw -rw- 1 root dialout 166, 0 Oct 12 02:25 /dev/ttyACM0

A more permanent solution is to add the current user to the dialout group with the following
command: sudo usermod -a -G dialout $USER. This change seems to require a reboot (not
just log-out/log-in) to take effect. After the change the command groups will show the user
is a member of the dialout group.

Once the serial connecton to the Arduino device is working, the Python statement

a=tc l ab . TCLab()

will produce output similar to what is listed below.

TCLab version 0.4.9

Arduino Leonardo connected on port /dev/ttyACM0 at 115200 baud.

TCLab Firmware 1.4.3 Arduino Leonardo/Micro.

37

	Introduction
	Step Testing
	Model development
	Steady State Model
	Dynamic Model
	Model Identifcation
	Detrending
	Smoothening
	Step Response
	Prediction

	Control
	Future Prediction with Control
	Calculating the Future Moves
	Dynamic Matrix Control Solution

	Move Penalty
	Open Loop Control
	Blocking
	Constraints

	Future Prediction without Control
	Prediction Error
	Predicting into the Future

	The DMC Algorithm

	Optimization
	Constraints
	Constrained Optimization
	Optimizing Control

	Final Words

