TCLab C - Parameter Estimation

Main.TCLabC History

Hide minor edits - Show changes to output

November 17, 2021, at 01:00 AM by 10.35.117.248 -
Changed line 184 from:
         linewidth=3,label=r'$T_1$ predicted')
to:
         lw=3,label=r'$T_1$ predicted')
Changed line 187 from:
         linewidth=3,label=r'$T_2$ predicted')
to:
         lw=3,label=r'$T_2$ predicted')
Changed line 193 from:
         linewidth=3,label=r'$Q_1$')
to:
         lw=3,label=r'$Q_1$')
Changed line 195 from:
         linewidth=3,label=r'$Q_2$')
to:
         lw=3,label=r'$Q_2$')
January 04, 2021, at 08:50 PM by 10.35.117.248 -
Added lines 516-518:

[[https://github.com/APMonitor/dynopt/blob/master/DynamicOptimization.ipynb|Virtual TCLab on Google Colab]]
-> [[https://colab.research.google.com/github/APMonitor/dynopt/blob/master/TCLabA.ipynb|Lab A]] | [[https://colab.research.google.com/github/APMonitor/dynopt/blob/master/TCLabB.ipynb|Lab B]] | [[https://colab.research.google.com/github/APMonitor/dynopt/blob/master/TCLabC.ipynb|Lab C]] | [[https://colab.research.google.com/github/APMonitor/dynopt/blob/master/TCLabD.ipynb|Lab D]] | [[https://colab.research.google.com/github/APMonitor/dynopt/blob/master/TCLabE.ipynb|Lab E]] | [[https://colab.research.google.com/github/APMonitor/dynopt/blob/master/TCLabF.ipynb|Lab F]] | [[https://colab.research.google.com/github/APMonitor/dynopt/blob/master/TCLabG.ipynb|Lab G]] | [[https://colab.research.google.com/github/APMonitor/dynopt/blob/master/TCLabH.ipynb|Lab H]]
Added lines 214-216:

'''Note:''' Switch to ''make_mp4 = True'' to make an MP4 movie animation. This requires imageio and ffmpeg (install available through Python). It creates a folder named ''figures'' in your run directory. You can delete this folder after the run is complete.

Added lines 232-241:
# Make an MP4 animation?
make_mp4 = False
if make_mp4:
    import imageio  # required to make animation
    import os
    try:
        os.mkdir('./figures')
    except:
        pass

Changed line 369 from:
plt.figure(figsize=(10,7))
to:
plt.figure(figsize=(12,7))
Changed lines 458-461 from:
to:
       if make_mp4:
            filename='./figures/plot_'+str(i+10000)+'.png'
            plt.savefig(filename)

Added lines 467-480:
  
    # generate mp4 from png figures in batches of 350
    if make_mp4:
        images = []
        iset = 0
        for i in range(1,n):
            filename='./figures/plot_'+str(i+10000)+'.png'
            images.append(imageio.imread(filename))
            if ((i+1)%350)==0:
                imageio.mimsave('results_'+str(iset)+'.mp4', images)
                iset += 1
                images = []
        if images!=[]:
            imageio.mimsave('results_'+str(iset)+'.mp4', images)
Changed line 16 from:
<iframe width="560" height="315" src="https://www.youtube.com/embed/SwogAa1719M" frameborder="0" allow="autoplay; encrypted-media" allowfullscreen></iframe>
to:
<iframe width="560" height="315" src="https://www.youtube.com/embed/SSu6PbguSyU" frameborder="0" allow="accelerometer; autoplay; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe>
Deleted line 204:
Attach:tclab_mhe.mp4
Changed line 207 from:
<video controls autoplay loop>
to:
<video width="550" controls autoplay loop>
Changed lines 205-211 from:
%width=550px%Attach:tclab_C_mhe.gif
to:
Attach:tclab_mhe.mp4
(:html:)
<video controls autoplay loop>
  <source src="/do/uploads/Main/tclab_mhe.mp4" type="video/mp4">
  Your browser does not support the video tag.
</video>
(:htmlend:)
Changed line 249 from:
      
to:
Changed line 333 from:
m.Equation(TH1.dt() == (1.0/(mass*Cp))*(U*A*(Ta-T1) \
to:
m.Equation(TC1.dt() == (1.0/(mass*Cp))*(U*A*(Ta-T1) \
Changed line 338 from:
m.Equation(TH2.dt() == (1.0/(mass*Cp))*(U*A*(Ta-T2) \
to:
m.Equation(TC2.dt() == (1.0/(mass*Cp))*(U*A*(Ta-T2) \
Deleted line 388:
           tau.STATUS = 1
Changed line 391 from:
      
to:
Changed line 409 from:
      
to:
Changed line 446 from:
  
to:
Changed line 455 from:
  
to:
January 24, 2019, at 04:36 PM by 174.148.211.72 -
Added lines 19-20:
----
Added lines 93-94:
----
Added lines 203-204:
----
Added lines 468-469:

----
January 24, 2019, at 04:20 PM by 174.148.211.72 -
Changed line 91 from:
%width=550px%Attach:tclab_mimo_hybrid_estimation_gekko.png
to:
%width=550px%Attach:tclab_mimo_estimation_gekko.png
January 24, 2019, at 04:19 PM by 174.148.211.72 -
Added lines 1-524:
(:title TCLab C - Parameter Estimation:)
(:keywords Arduino, Parameter, Regression, temperature, control, process control, course:)
(:description Regression of Parameters in Multivariate (MIMO) Energy Balance with Arduino Data from TCLab:)

The TCLab is a hands-on application of machine learning and advanced temperature control with two heaters and two temperature sensors. The labs reinforce principles of model development, estimation, and advanced control methods. This is the third exercise and it involves estimating parameters in a multi-variate energy balance model. The predictions are aligned to the measured values through an optimizer that adjusts the parameters to minimize a sum of squared error objective. This lab builds upon the [[Main/TCLabB|TCLab B]] by using the model of two heaters and two temperature sensors.

!!!! Lab Problem Statement

* [[Attach:Lab_C_Parameter_Estimation.pdf|Lab C - Parameter Estimation]]

!!!! Data and Solutions

* [[https://apmonitor.com/pdc/index.php/Main/ArduinoEstimation2|Batch Parameter Estimation with MATLAB and Python]]

(:html:)
<iframe width="560" height="315" src="https://www.youtube.com/embed/SwogAa1719M" frameborder="0" allow="autoplay; encrypted-media" allowfullscreen></iframe>
(:htmlend:)

* [[Attach:tclab_dyn_data2.txt|Dynamic data, 2 heaters]]

(:toggle hide gekko_labCd button show="Lab C: Python TCLab Generate Step Data":)
(:div id=gekko_labCd:)
(:source lang=python:)
import numpy as np
import pandas as pd
import tclab
import time
import matplotlib.pyplot as plt

# generate step test data on Arduino
filename = 'tclab_dyn_data2.csv'

# heater steps
Q1d = np.zeros(601)
Q1d[10:200] = 80
Q1d[200:280] = 20
Q1d[280:400] = 70
Q1d[400:] = 50

Q2d = np.zeros(601)
Q2d[120:320] = 100
Q2d[320:520] = 10
Q2d[520:] = 80

# Connect to Arduino
a = tclab.TCLab()
fid = open(filename,'w')
fid.write('Time,H1,H2,T1,T2\n')
fid.close()

# run step test (10 min)
for i in range(601):
    # set heater values
    a.Q1(Q1d[i])
    a.Q2(Q2d[i])
    print('Time: ' + str(i) + \
          ' H1: ' + str(Q1d[i]) + \
          ' H2: ' + str(Q2d[i]) + \
          ' T1: ' + str(a.T1)  + \
          ' T2: ' + str(a.T2))
    # wait 1 second
    time.sleep(1)
    fid = open(filename,'a')
    fid.write(str(i)+','+str(Q1d[i])+','+str(Q2d[i])+',' \
              +str(a.T1)+','+str(a.T2)+'\n')
# close connection to Arduino
a.close()

# read data file
data = pd.read_csv(filename)

# plot measurements
plt.figure()
plt.subplot(2,1,1)
plt.plot(data['Time'],data['H1'],'r-',label='Heater 1')
plt.plot(data['Time'],data['H2'],'b--',label='Heater 2')
plt.ylabel('Heater (%)')
plt.legend(loc='best')
plt.subplot(2,1,2)
plt.plot(data['Time'],data['T1'],'r.',label='Temperature 1')
plt.plot(data['Time'],data['T2'],'b.',label='Temperature 2')
plt.ylabel('Temperature (degC)')
plt.legend(loc='best')
plt.xlabel('Time (sec)')
plt.savefig('tclab_dyn_meas2.png')

plt.show()
(:sourceend:)
(:divend:)

%width=550px%Attach:tclab_mimo_hybrid_estimation_gekko.png

(:toggle hide gekko_labCf button show="Lab C: Python GEKKO Parameter Estimation":)
(:div id=gekko_labCf:)
(:source lang=python:)
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from gekko import GEKKO

# Import or generate data
filename = 'tclab_dyn_data2.csv'
try:
    data = pd.read_csv(filename)
except:
    url = 'https://apmonitor.com/do/uploads/Main/tclab_dyn_data2.txt'
    data = pd.read_csv(url)

# Create GEKKO Model
m = GEKKO()
m.time = data['Time'].values

# Parameters to Estimate
U = m.FV(value=10,lb=1,ub=20)
alpha1 = m.FV(value=0.01,lb=0.003,ub=0.03)  # W / % heater
alpha2 = m.FV(value=0.005,lb=0.002,ub=0.02) # W / % heater

# STATUS=1 allows solver to adjust parameter
U.STATUS = 1 
alpha1.STATUS = 1
alpha2.STATUS = 1

# Measured inputs
Q1 = m.MV(value=data['H1'].values)
Q2 = m.MV(value=data['H2'].values)

# State variables
TC1 = m.CV(value=data['T1'].values)
TC1.FSTATUS = 1    # minimize fstatus * (meas-pred)^2
TC2 = m.CV(value=data['T2'].values)
TC2.FSTATUS = 1    # minimize fstatus * (meas-pred)^2

Ta = m.Param(value=19.0+273.15)    # K
mass = m.Param(value=4.0/1000.0)    # kg
Cp = m.Param(value=0.5*1000.0)      # J/kg-K   
A = m.Param(value=10.0/100.0**2)    # Area not between heaters in m^2
As = m.Param(value=2.0/100.0**2)    # Area between heaters in m^2
eps = m.Param(value=0.9)            # Emissivity
sigma = m.Const(5.67e-8)            # Stefan-Boltzmann

# Heater temperatures in Kelvin
T1 = m.Intermediate(TC1+273.15)
T2 = m.Intermediate(TC2+273.15)

# Heat transfer between two heaters
Q_C12 = m.Intermediate(U*As*(T2-T1)) # Convective
Q_R12 = m.Intermediate(eps*sigma*As*(T2**4-T1**4)) # Radiative

# Semi-fundamental correlations (energy balances)
m.Equation(TC1.dt() == (1.0/(mass*Cp))*(U*A*(Ta-T1) \
                    + eps * sigma * A * (Ta**4 - T1**4) \
                    + Q_C12 + Q_R12 \
                    + alpha1*Q1))

m.Equation(TC2.dt() == (1.0/(mass*Cp))*(U*A*(Ta-T2) \
                    + eps * sigma * A * (Ta**4 - T2**4) \
                    - Q_C12 - Q_R12 \
                    + alpha2*Q2))

# Options
m.options.IMODE  = 5 # MHE
m.options.EV_TYPE = 2 # Objective type
m.options.NODES  = 2 # Collocation nodes
m.options.SOLVER  = 3 # IPOPT

# Solve
m.solve(disp=True)

# Parameter values
print('U    : ' + str(U.value[0]))
print('alpha1: ' + str(alpha1.value[0]))
print('alpha2: ' + str(alpha2.value[0]))

# Create plot
plt.figure()
ax=plt.subplot(2,1,1)
ax.grid()
plt.plot(data['Time'],data['T1'],'ro',label=r'$T_1$ measured')
plt.plot(m.time,TC1.value,color='purple',linestyle='--',\
        linewidth=3,label=r'$T_1$ predicted')
plt.plot(data['Time'],data['T2'],'bx',label=r'$T_2$ measured')
plt.plot(m.time,TC2.value,color='orange',linestyle='--',\
        linewidth=3,label=r'$T_2$ predicted')
plt.ylabel('Temperature (degC)')
plt.legend(loc=2)
ax=plt.subplot(2,1,2)
ax.grid()
plt.plot(data['Time'],data['H1'],'r-',\
        linewidth=3,label=r'$Q_1$')
plt.plot(data['Time'],data['H2'],'b:',\
        linewidth=3,label=r'$Q_2$')
plt.ylabel('Heaters')
plt.xlabel('Time (sec)')
plt.legend(loc='best')
plt.show()
(:sourceend:)
(:divend:)

%width=550px%Attach:tclab_C_mhe.gif

(:toggle hide gekko_labCm button show="Lab C: Python GEKKO Moving Horizon Estimation":)
(:div id=gekko_labCm:)
(:source lang=python:)
import numpy as np
import time
import matplotlib.pyplot as plt
import random
# get gekko package with:
#  pip install gekko
from gekko import GEKKO
# get tclab package with:
#  pip install tclab
from tclab import TCLab

# Connect to Arduino
a = TCLab()

# Final time
tf = 10 # min
# number of data points (1 pt every 3 seconds)
n = tf * 20 + 1

# Configure heater levels
# Percent Heater (0-100%)
Q1s = np.zeros(n)
Q2s = np.zeros(n)
# Heater random steps every 50 sec
# Alternate steps by Q1 and Q2
Q1s[3:]    = 100.0
Q1s[50:]  = 0.0
Q1s[100:]  = 80.0

Q2s[25:]  = 60.0
Q2s[75:]  = 100.0
Q2s[125:]  = 25.0

# rapid, random changes every 5 cycles between 50 and 100
for i in range(130,180):
    if i%10==0:
        Q1s[i:i+10] = random.random() * 100.0
    if (i+5)%10==0:
        Q2s[i:i+10] = random.random() * 100.0
       
# Record initial temperatures (degC)
T1m = a.T1 * np.ones(n)
T2m = a.T2 * np.ones(n)
# Store MHE values for plots
Tmhe1 = T1m[0] * np.ones(n)
Tmhe2 = T2m[0] * np.ones(n)
Umhe = 10.0 * np.ones(n)
amhe1 = 0.01 * np.ones(n)
amhe2 = 0.0075 * np.ones(n)

#########################################################
# Initialize Model as Estimator
#########################################################
# Use remote=False for local solve (Windows, Linux, ARM)
#    remote=True  for remote solve (All platforms)
m = GEKKO(name='tclab-mhe',remote=False)

# 60 second time horizon, 20 steps
m.time = np.linspace(0,60,21)

# Parameters to Estimate
U = m.FV(value=10,name='u')
U.STATUS = 0  # don't estimate initially
U.FSTATUS = 0 # no measurements
U.DMAX = 1
U.LOWER = 5
U.UPPER = 15

alpha1 = m.FV(value=0.01,name='a1')  # W / % heater
alpha1.STATUS = 0  # don't estimate initially
alpha1.FSTATUS = 0 # no measurements
alpha1.DMAX = 0.001
alpha1.LOWER = 0.003
alpha1.UPPER = 0.03

alpha2 = m.FV(value=0.0075,name='a2') # W / % heater
alpha2.STATUS = 0  # don't estimate initially
alpha2.FSTATUS = 0 # no measurements
alpha2.DMAX = 0.001
alpha2.LOWER = 0.002
alpha2.UPPER = 0.02

# Measured inputs
Q1 = m.MV(value=0,name='q1')
Q1.STATUS = 0  # don't estimate
Q1.FSTATUS = 1 # receive measurement

Q2 = m.MV(value=0,name='q2')
Q2.STATUS = 0  # don't estimate
Q2.FSTATUS = 1 # receive measurement

# Measurements for model alignment
TC1 = m.CV(value=T1m[0],name='tc1')
TC1.STATUS = 1    # minimize error between simulation and measurement
TC1.FSTATUS = 1    # receive measurement
TC1.MEAS_GAP = 0.1 # measurement deadband gap
TC1.LOWER = 0
TC1.UPPER = 200

TC2 = m.CV(value=T2m[0],name='tc2')
TC2.STATUS = 1    # minimize error between simulation and measurement
TC2.FSTATUS = 1    # receive measurement
TC2.MEAS_GAP = 0.1 # measurement deadband gap
TC2.LOWER = 0
TC2.UPPER = 200

Ta = m.Param(value=23.0+273.15)    # K
mass = m.Param(value=4.0/1000.0)    # kg
Cp = m.Param(value=0.5*1000.0)      # J/kg-K   
A = m.Param(value=10.0/100.0**2)    # Area not between heaters in m^2
As = m.Param(value=2.0/100.0**2)    # Area between heaters in m^2
eps = m.Param(value=0.9)            # Emissivity
sigma = m.Const(5.67e-8)            # Stefan-Boltzmann

# Heater temperatures
T1 = m.Intermediate(TC1+273.15)
T2 = m.Intermediate(TC2+273.15)

# Heat transfer between two heaters
Q_C12 = m.Intermediate(U*As*(T2-T1)) # Convective
Q_R12 = m.Intermediate(eps*sigma*As*(T2**4-T1**4)) # Radiative

# Semi-fundamental correlations (energy balances)
m.Equation(TH1.dt() == (1.0/(mass*Cp))*(U*A*(Ta-T1) \
                    + eps * sigma * A * (Ta**4 - T1**4) \
                    + Q_C12 + Q_R12 \
                    + alpha1*Q1))

m.Equation(TH2.dt() == (1.0/(mass*Cp))*(U*A*(Ta-T2) \
                    + eps * sigma * A * (Ta**4 - T2**4) \
                    - Q_C12 - Q_R12 \
                    + alpha2*Q2))

# Global Options
m.options.IMODE  = 5 # MHE
m.options.EV_TYPE = 2 # Objective type
m.options.NODES  = 3 # Collocation nodes
m.options.SOLVER  = 3 # IPOPT
m.options.COLDSTART = 1 # COLDSTART on first cycle
##################################################################
# Create plot
plt.figure(figsize=(10,7))
plt.ion()
plt.show()

# Main Loop
start_time = time.time()
prev_time = start_time
tm = np.zeros(n)

try:
    for i in range(1,n):
        # Sleep time
        sleep_max = 3.0
        sleep = sleep_max - (time.time() - prev_time)
        if sleep>=0.01:
            time.sleep(sleep-0.01)
        else:
            time.sleep(0.01)

        # Record time and change in time
        t = time.time()
        dt = t - prev_time
        prev_time = t
        tm[i] = t - start_time

        # Read temperatures in Celsius
        T1m[i] = a.T1
        T2m[i] = a.T2

        # Insert measurements
        TC1.MEAS = T1m[i]
        TC2.MEAS = T2m[i]
        Q1.MEAS = Q1s[i-1]
        Q2.MEAS = Q2s[i-1]

        # Start estimating U after 10 cycles (20 sec)
        if i==10:
            U.STATUS = 1
            tau.STATUS = 1
            alpha1.STATUS = 1
            alpha2.STATUS = 1
       
        # Predict Parameters and Temperatures with MHE
        m.solve()

        if m.options.APPSTATUS == 1:
            # Retrieve new values
            Tmhe1[i] = TC1.MODEL
            Tmhe2[i] = TC2.MODEL
            Umhe[i]  = U.NEWVAL
            amhe1[i] = alpha1.NEWVAL
            amhe2[i] = alpha2.NEWVAL
        else:
            # Solution failed, copy prior solution
            Tmhe1[i] = Tmhe1[i-1]
            Tmhe2[i] = Tmhe1[i-1]
            Umhe[i]  = Umhe[i-1]
            amhe1[i] = amhe1[i-1]
            amhe2[i] = amhe2[i-1]
       
        # Write new heater values (0-100)
        a.Q1(Q1s[i])
        a.Q2(Q2s[i])

        # Plot
        plt.clf()
        ax=plt.subplot(3,1,1)
        ax.grid()
        plt.plot(tm[0:i],T1m[0:i],'ro',label=r'$T_1$ measured')
        plt.plot(tm[0:i],Tmhe1[0:i],'k-',label=r'$T_1$ MHE')
        plt.plot(tm[0:i],T2m[0:i],'bx',label=r'$T_2$ measured')
        plt.plot(tm[0:i],Tmhe2[0:i],'k--',label=r'$T_2$ MHE')
        plt.ylabel('Temperature (degC)')
        plt.legend(loc=2)
        ax=plt.subplot(3,1,2)
        ax.grid()
        plt.plot(tm[0:i],Umhe[0:i],'k-',label='Heat Transfer Coeff')
        plt.plot(tm[0:i],amhe1[0:i]*1000,'r--',label=r'$\alpha_1$x1000')
        plt.plot(tm[0:i],amhe2[0:i]*1000,'b--',label=r'$\alpha_2$x1000')
        plt.ylabel('Parameters')
        plt.legend(loc='best')
        ax=plt.subplot(3,1,3)
        ax.grid()
        plt.plot(tm[0:i],Q1s[0:i],'r-',label=r'$Q_1$')
        plt.plot(tm[0:i],Q2s[0:i],'b:',label=r'$Q_2$')
        plt.ylabel('Heaters')
        plt.xlabel('Time (sec)')
        plt.legend(loc='best')
        plt.draw()
        plt.pause(0.05)

    # Turn off heaters
    a.Q1(0)
    a.Q2(0)
    # Save figure
    plt.savefig('tclab_mhe.png')
   
# Allow user to end loop with Ctrl-C         
except KeyboardInterrupt:
    # Disconnect from Arduino
    a.Q1(0)
    a.Q2(0)
    print('Shutting down')
    a.close()
    plt.savefig('tclab_mhe.png')
   
# Make sure serial connection still closes when there's an error
except:         
    # Disconnect from Arduino
    a.Q1(0)
    a.Q2(0)
    print('Error: Shutting down')
    a.close()
    plt.savefig('tclab_mhe.png')
    raise
(:sourceend:)
(:divend:)

See also:

[[http://apmonitor.com/do/index.php/Main/AdvancedTemperatureControl|Advanced Control Lab Overview]]
-> [[Main/TCLabA|Lab A - Single Heater Modeling]]
-> [[Main/TCLabB|Lab B - Dual Heater Modeling]]
-> [[Main/TCLabC|Lab C - Parameter Estimation]]
-> [[Main/TCLabD|Lab D - Empirical Model Estimation]]
-> [[Main/TCLabE|Lab E - Hybrid Model Estimation]]
-> [[Main/TCLabF|Lab F - Linear Model Predictive Control]]
-> [[Main/TCLabG|Lab G - Nonlinear Model Predictive Control]]
-> [[Main/TCLabH|Lab H - Moving Horizon Estimation with MPC]]

[[https://gekko.readthedocs.io/en/latest/|GEKKO Documentation]]

[[https://tclab.readthedocs.io/en/latest/README.html|TCLab Documentation]]

[[https://github.com/APMonitor/arduino|TCLab Files on GitHub]]

[[https://apmonitor.com/heat.htm|Basic (PID) Control Lab]]

(:html:)
<style>
.button {
  border-radius: 4px;
  background-color: #0000ff;
  border: none;
  color: #FFFFFF;
  text-align: center;
  font-size: 28px;
  padding: 20px;
  width: 300px;
  transition: all 0.5s;
  cursor: pointer;
  margin: 5px;
}

.button span {
  cursor: pointer;
  display: inline-block;
  position: relative;
  transition: 0.5s;
}

.button span:after {
  content: '\00bb';
  position: absolute;
  opacity: 0;
  top: 0;
  right: -20px;
  transition: 0.5s;
}

.button:hover span {
  padding-right: 25px;
}

.button:hover span:after {
  opacity: 1;
  right: 0;
}
</style>
(:htmlend:)