import numpy as np from gekko import GEKKO import matplotlib.pyplot as plt m = GEKKO() m.time = np.linspace(0,20,41) #constants mass = 500 #Parameters b = m.Param(value=50) K = m.Param(value=0.8) #Manipulated variable p = m.MV(value=0, lb=0, ub=100) #Controlled Variable v = m.CV(value=0) m.Equation(mass*v.dt() == -v*b + K*b*p) m.options.IMODE = 6 #control #MV tuning p.STATUS = 1 #allow optimizer to change p.DCOST = 0.1 #smooth out gas pedal movement p.DMAX = 20 #slow down change of gas pedal #CV tuning #setpoint v.STATUS = 1 #add the SP to the objective m.options.CV_TYPE = 2 #L2 norm v.SP = 40 #set point v.TR_INIT = 1 #setpoint trajectory v.TAU = 5 #time constant of setpoint trajectory #%% Solve m.solve() #%% Plot solution plt.figure() plt.subplot(2,1,1) plt.plot(m.time,p.value,'b-',lw=2) plt.ylabel('gas') plt.subplot(2,1,2) plt.plot(m.time,v.value,'r--',lw=2) plt.ylabel('velocity') plt.xlabel('time') plt.show()