from sklearn.neural_network import MLPRegressor import numpy as np import matplotlib.pyplot as plt # generate training data x = np.linspace(0.0,2*np.pi) xr = x.reshape(-1,1) y = np.sin(x) # train nn = MLPRegressor(hidden_layer_sizes=(3), activation='tanh',\ solver='lbfgs',max_iter=2000) model = nn.fit(xr,y) # validate xp = np.linspace(-2*np.pi,4*np.pi,100) xpr = xp.reshape(-1,1) yp = nn.predict(xpr) ypr = yp.reshape(-1,1) r2 = nn.score(xpr,ypr) print('R^2: ' + str(r2)) plt.figure() plt.plot(x,y,'bo') plt.plot(xpr,ypr,'r-') plt.show()