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Abstract—Control valve stiction is a common equipment
problem where the valve exhibits delayed response to con-
trol output and becomes stuck due to static friction, which
can lead to undesired nonlinear behavior and oscillations.
It is critical to identify and correct this problem to ensure
consistent operation in control loops. This paper introduces
the novel technique continuous wavelet transform - convo-
lutional neural network (CWT-CNN) for non-intrusive valve
stiction detection. Industrial Process data is converted to an
image with continuous wavelet transformation and then
fed into a deep convolutional neural network to classify
stiction behavior. The CWT-CNN is fine-tuned from pre-
trained models like GoogleNet and ResNet via transfer
learning for better classification and faster training while
requiring less data. This work uses control loops from
various chemical plants for training. The best performing
CWT-CNN using GoogleNet can accurately predict 95.62%
loops in the validation set, and has a true positive rate of
83.9% on the test set.

I. INTRODUCTION

Valve stiction is a prevalent equipment problem for

control valves that lead to undesired nonlinear behavior.

Monitoring and identifying ’sticky’ valves is important to

ensure consistent plant operation. In response to a change

in control output, sticky valves may demonstrate a static

period followed by a slip jump when the output has
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Fig. 1. Simulated process data for a flow loop with stiction. The PV does

not move while the OP changes due to static friction; once a threshold is

reached, the PV demonstrates a ’slip-jump’.

Fig. 2. CWT images produced by industrial process data. The left image

is that of a nonstiction loop, while the right is for a loop with stiction

behavior.

overcome the ’stickiness’ of the valve. Stiction is due to

excess static friction or other mechanical failure. One can

typically diagnose valve stiction in flow control loops by

looking for square waves in the process variable (PV) and

saw-tooth patterns in the controller output (OP), as seen in

Fig 1.

A collection of definitions of valve stiction can be found

in [5]. Resistance to initial motion, becoming stuck in a

certain position, undergoing a ’slip-jump’ to a new position

after static friction is overcome, and stickiness are all

behaviors exhibited by valves suffering from valve stiction.

It is imperative to identify and correct this undesired

behavior of control loops, as inconsistent and unpredictable

performance can lead to production upsets, process hazards,

or further equipment damage.

While stiction can be identified through invasive tests

like a bump test, this is not ideal as the valve either needs

to be removed from operation or non-standard behavior

would need to be introduced to the process. A non-intrusive

method would be preferred, as it would allow automated

screening during operation and not disturb the process.

Non-intrusive methods can be difficult due to the poor

quality of data, valve stiction occurring at different frequen-

cies and process regions, or other nonlinear problems that

may mask stiction behavior. The motivation of the work

proposed here is to non-intrusively and accurately detect

valve stiction to support chemical process operations.

This paper introduces a novel method of valve stiction

detection with advanced machine learning and signal pro-

cessing concepts known as Continuous Wavelet Transform

- Convolutional Neural Network (CWT-CNN). By perform-

ing a continuous wavelet transform (CWT) on a segment of

process data (composing of set-point (SP), PV, and OP), an

image can be generated that is characteristic of the loops

frequency behavior, as seen in Fig. 2. The image is then used



as an input to a deep convolutional neural network (CNN),

which will then classify whether stiction is occurring or

not. To leverage advanced models for faster training time

and better performance, transfer learning is used on state of

the art architectures like GoogleNet [24] and ResNet [11].

Industrial process data for flow loops is used to train and

evaluate the CWT-CNN model. The results section shows

that CWT-CNN has a higher accuracy and true positive rate

compared to state of the art machine learning methods.

Both valve stiction detection and valve stiction quantifi-

cation are well studied areas in literature. Akavalappil et. al

[1] and Capaci et. al [3] offer in depth reviews of available

methods for all studies related to modeling or detecting

valve stiction behavior. A brief review focusing on detection

methods only is presented below for comparison to the

CWT-CNN method.

Traditionally, statistical based methods are used for early

advances in valve stiction detection, and many are based on

characterizing a PV-OP plot. Horch et al. [12] applied cross-

correlation functions between the OP and the PV to detect

stiction. Yamashita et al. [26] calculates a stiction index

based on limit cycle patterns. Approaches like Srinivasan et

al. [23] use waveforms to characterize the shapes of the OP

and PV data, and then classify stiction behavior. Choudhury

et. al [6] uses the bicoherence function from higher order

statistical analysis to detect nonlinear behavior in process

data, and then fit an ellipse to a filtered PV-OP plot to

classify stiction behavior.

Recently, machine learning based methods have become

more common in valve stiction detection. Rengaswamy et

al. [19] introduces machine learning to this endeavor, using

a hybrid method of a waveform shape-based approach and

neural networks. Dambros et al. [7] convert simulated PV

and OP data into an 8x8 pixel image based on intensity of

the process data and then use an artificial neural network

to classify stiction behavior.

The most recent literature has focused on advanced

machine learning methods that employ CNNs. The method

introduced in this paper is based on a CNN model, and

is the most comparable to these approaches. Rosario et. al

[20] uses a CNN method to classify a PV-OP plot using the

GoogleNet model [24]. Kamaruddin et al. [13] first compose

a ’butterfly’ shape image from PV and OP data, which is

then fed to a CNN. Zhang et al. [27] uses an advanced

mixed feature learning stage combined with a CNN to

classify valve stiction. Akavalappil et. al [2] introduced a

CNN method trained on simulation and industrial data that

directly uses the process data rather than perform a feature

transformation like previous methods.

Beyond the application of valve stiction, the combination

of CWT and CNN has been applied to other classification

tasks. Wang et al. [25] uses CWT and CNN to classify

electrocardiogram signals. Meintjes et. al [16] uses a sim-

ilar method to classify heart valve problems, and shows

improvement over traditional machine learning methods.

Mao et al. [15] demonstrated a classification task with CWT

and CNN that outperformed large CNNs like GoogleNet

and Alexnet. Cheng et al. [4] developed a CWT and CNN

method with local binary convolution layer for fault detec-

tion in rotating machinery.

The CWT-CNN is the first valve stiction detection method

that identifies stiction based on a CWT image of SP, PV,

and OP process data. As will be discussed in the results

section, This approach outperforms alternative state of

the art machine learning classification methods. The use

of CWT allows the method to capture important signal

information indicative of stiction without the need to filter

for noise. Unlike other methods ( [27], [7], [20]) that employ

extensive feature selection, this approach is purely data

driven and does not require manual input for threshold

values or controller specific parameters. CWT is chosen

over other image transformation methods due to its robust-

ness to signal noise found in most chemical process data.

Consequently, it is more flexible and easily be extended to

other flow loops.

II. Methods

The CWT-CNN method is visually summarized in Fig. 3.

Industrial process data (SP, PV, and OP) for a day is cut into

smaller segments. Each of the features is then transformed

with CWT and concatenated to form an red-green-blue

image (each color channel representing a different feature).

The image is rescaled and normalized to fit the input format

required by the selected pre-trained model, which outputs

a final classification.

CWT is a signal processing method that has been used

for image compression, electrocardiogram analysis, and

acoustics [22]. CWT is comparable to the Fourier transform

in that it convolves a signal with a basis function. While the

Fourier transform uses sinusoids for the transform, CWT

allows for a variety of customizable and mathematically

complex wavelet functions. The signal is convolved with the

wavelets at different scales to produce a two-dimensional

output from a one-dimensional signal. Varying the scales

allows CWT to capture information on signals with multiple

frequencies. CWT also acts as a filter for unwanted noise,

as only the periodic signals that match the chosen wavelet’s

shape are propagated. The mathematical definition of CWT

is as follows:

X(τ, s) = s−
1
2

∫ −∞

∞
x(t)ψ(

t− τ

s
)dt (1)

where X is the transformed signal, τ is the time shift, s
is the scale, x(t) is the original signal, ψ is the wavelet

function, and
(t−τ)

s is the scale factor. Operating at different

scales allows CWT to be more robust and capture non-

stationary signals, capturing a higher resolution of data

compared to a discrete transform. Commonly used wavelets

for CWT are the generalized morse wavelet, Morlet wavelet,

Mexican Hat wavelet, and Gaussian wavelet [14].

The specific tool used for CWT in this paper is the Python

package Ssqueezepy [17]. Scales are automatically gener-

ated with a log-piecewise sampling, and a time-frequency

image is created by Eq. 1. The image is reshaped into



Fig. 3. The CWT-CNN Method. Process Data is divided into segments, then CWT is performed independently on the SP, PV, and OP, and stacked

together into an image. A large CNN uses this image as input to make the final classification.

224x224 pixels and normalized for input into the CNN

models.

CNNs are a class of deep learning models that are

commonly used for image processing tasks. By learning

the best filters to apply to an input image, the model

can learn textures, patterns, and other image data that

is useful for prediction. These models can be applied to

classification, object detection, object segmentation, or any

other necessary task. More complex tasks can require larger

and more complex CNNs. Consequently, CNNs can become

very large and computationally prohibitive to train for

difficult tasks.

The best CNN models are compared in competitions on

large datasets like ImageNet [21]. ImageNet is a dataset

of over 14 million images with 1000 labels. As larger

models are difficult to train, a method known as transfer

learning can be employed to leverage the architecture and

performance of pre-trained models. These large models can

be trained on one task, like ImageNet classification, and

then applied to a different task after calibration on new

data.

For this study, deep CNN models trained on ImageNet

are used for transfer learning. These models are GoogleNet

[24] and ResNet-18 [11]. The full architectures are not

discussed here for brevity as they are open source models.

The pretrained models are downloaded and customized

using Pytorch [18]. The output layers of these pretrained

models are modified from a dense layer with 1000 outputs

to a dropout layer and a dense layer with 2 outputs of

stiction or non-stiction. The dropout layer is necessary to

help regularize the model during training and prevent over-

fitting.

The dataset used to train these models contains a week

of industrial process data, sampled every 10 seconds, from

163 flow loops. 55% of the manually labeled data exhibits

stiction behavior. The CWT-CNN method segments these

loops into 2.4 hour long batches, so that multiple pre-

dictions can be generated for a loop each day. Previous

tests showed that increasing or decreasing the time window

had no significant impact on classification performance.

The dataset after segmentation results in 11410 individual

images, which are randomly split into train and validations

sets with a 70/30 split for model selection. An additional

hold-out test set of 117 expertly labeled loops is used for

final performance evaluation. This test set only had one day

of data for each loop, with about 30% of the data considered

stiction loops.

Two alternative models are presented as baselines for

the CWT-CNN method in the results section. The first

classification model is InceptionTime [10], a CNN based

model. InceptionTime is a deep CNN model based on image

models like ResNet and AlexNet that uses residual connec-

tions, ensembles of convolution layers, and various filters

to classify a time series. InceptionTime is comparable to the

model described in [2], as the model learns directly from

the process data without any additional feature engineering.

The other approach is to use MiniRocket transformer [8]

with logistic regression classifier. MiniRocket uses a large

amount of semi-random kernels to extract features from a

time series, and then classifies with a simple model like

logistic regression. These models represent the state of the

art time series classification methods for both deep learning

and machine learning in general [9]. Because of this, they

are used as a benchmark against the CWT-CNN method.

III. Results

There are many different metrics to consider when com-

paring the performance of binary classifiers. The accuracy

represents how correctly the classifier predicts the label,

regardless of class. The true positive rate (TPR) indicates

how accurate the classifier is at predicting true positives, or

in this case stiction events. The true negative rate (TNR) is
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Fig. 4. Average performance scores of the four models on the training set

between 5 cross validations. The training and validation data are randomly

shuffled to generate the cross validations. The intervals represent the

standard deviation of the 5 runs.
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Fig. 5. Average performance scores of the four models on the validation

set between 5 cross validations. The training and validation data are

randomly shuffled to generate the cross validations. The intervals represent

the standard deviation of the 5 runs.

the same for nonstiction events. As TPR is the complement

of false negative rate, and TNR is the complement of false

positive rate, only TPR and TNR are presented for brevity.

The F1 score combines both precision and recall to evaluate

classifiers and can be a more balanced metric than accuracy.

For the task of valve stiction detection, it is important to

identify stiction loops that would otherwise go undetected

by traditional methods; therefore, it is valuable for the

classifier to have a high TPR and high F1 score.

A. Method Comparison
This section compares classification scores between dif-

ferent methods on industrial process data. The results are

summarized in Table I. For all CWT-CNN methods, 5 epochs

are used to train on the dataset; a low number of iterations

is possible due to the large volume of data and the use

of transfer learning. For InceptionTime [10], 50 epochs are

used for training. Each model is trained 5 times on a random

70/30 split of the training and validation data. Process data

batches, composed of 864 time-steps with 3 features, are

scaled individually for each batch and feature. The CWT

images are reshaped to 224x224 and normalized to be

processed through GoogleNet and ResNet-18. The default

architectures of GoogleNet and ResNet-18 as available from

Pytorch are used for the base model, with the first and

final layers being modified for CWT Channels and binary

classification [18]. The results of the different models are

plotted in Fig 4. Unless otherwise stated, all results are based

on classification of individual control loop segments.

MiniRocket has nearly perfect scores across cross vali-

dations on the training set, while the other models hover

around 96-97% for the scores, as shown in Fig. 4. For the

validation set, the best performing model with an F1 score

of 95.96% is the CWT-GoogleNet model, shown in Fig.

5. MiniRocket generates thousands of features with many

convolution kernels, and is potentially over-fitting on the

training set.

For the test set, the best model is again the CWT

GoogleNet with an F1 score of 68.96%, shown in Fig. 6. This

model also outperforms the other methods with a TPR of

83.9%, which is significantly greater than the other models.

Signal noise is filtered out for CWT-CNN methods, but
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Fig. 6. Average performance scores of the four models on the test set

between 5 cross validations. The training and validation data are randomly

shuffled to generate the cross validations. The intervals represent the

standard deviation of the 5 runs.

may hamper the InceptionTime and MiniRocket models.

The CWT-CNN model may allow for a broader detection

of stiction types, while other methods may only detect

specific patterns or wave forms. The pairing of CWT and

the GoogleNet architecture allow the CWT-CNN model to

detect stiction behavior that other models may miss.

B. Ablative Comparisons

Most traditional valve stiction detection methods make

use of only the PV and OP signals. In many loops, the SP

may be flat or constant, yielding no meaningful information

to the model. To test the importance of the SP feature, a

study on the CWT GoogleNet model is done where the SP

feature is replaced with an alternative signal, such as error

(difference between SP and PV) (E), PV multiplied by OP

(PV x OP), PV convolved with OP (PV*OP), or integrated

error (IE). The PV x OP and PV*OP features are chosen as

many traditional methods use correlations or convolutions

between these signals. The error and integrated error are

frequently used in control theory. The results of this study

on the test set are shown in Fig. 7. When using E instead

of SP, the CWT GoogleNet model’s F1 score improves from

68.96% to 71.49%. The TPR and accuracy do not change

much, so the improvement might not be significant and

warrants further investigation. The improved performance

could be due to how the error signal offers more informa-

tion than the SP signal.

An important decision during the CWT pre-processing

step is the choice of the wavelet. To understand the impact

of this choice, the CWT GoogleNet model is evaluated

with different wavelets available in the Ssqueezepy library

[17]. The Morlet wavelet is used for previous studies as is

considered the most general and applicable to process data.

The alternatives are the generalized morse wavelets (GMW),

bump wavelet, Complex Mexican hat wavelet (CMHT) and

the Hilbert analytic hermitian hat wavelet (HHHT). The

accuracies of these models on the test set are visualized in

Fig. 8 for the CWT GoogleNet model. There seems to be no

significant improvement due to the choice of the wavelet

for the TPR and F1 score, the TNR does increase when

using the Bump wavelet from 71.92% to 81.20%, shown in

Table I. The different performance could be attributed to
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Fig. 7. Performance scores on the test set between CWT GoogleNet

models using alternative features. The SP feature is replaced by another

feature to produce a different image with CWT. The intervals represent

the standard deviation of the 5 runs on different shuffles of the training

and validation sets.
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Fig. 8. Performance scores on the test set between CWT GoogleNet

models using different wavelets for CWT. The default wavelet used is the

Morlet wavelet. The intervals represent the standard deviation of the 5

runs on different shuffles of the training and validation sets.

how well the wavelet shape matches stiction behavior in

process signals.

A final study to consider is the impact of data volume

on the models. Transfer learning can allow models to learn

more with less required data. 11410 images may not be

necessary for future applications or recalibration of the

model. Fig. 9 shows the impact of data volume on the CWT

GoogleNet model on the test set by randomly removing

input data from the training set. As expected, more data

leads to better classification performance. Interestingly, the

TPR is higher when 25% of the data is used compared to

the 50% and 75%. This could be because of how the data

is randomly split or due to the balance of the dataset and

warrants further investigation.

IV. Conclusions

The CWT-CNN is a novel contribution to the valve

stiction detection community that relies on advanced signal

processing and deep learning approaches. The comparison

results show that the proposed method outperforms state

of the art time series classifiers on real chemical process

data. Of the models evaluated, the CWT Googlenet method

performed the best on a hold-out test set. The CWT

Googlenet model had a much greater TPR 83.9 % compared

25% 50% 75% 100%

Percentage of Training set used

0.55

0.60

0.65

0.70

0.75

0.80

0.85

D
at

a 
V

o
lu

m
e 

S
co

re
s

Accuracy

True Positive Rate

F1 Score

Fig. 9. Performance scores of a CWT GoogleNet when trained on different

volumes of data. The intervals represent the standard deviation of the 5

runs on different shuffles of the training and validation sets.

to other methods. Using a different input feature like error

instead of SP can improve the F1 score as well. A primary

benefit of using data driven models like the CWT-CNN over

traditional models is the ability to retrain and recalibrate

on new data with relative ease. The use of CWT captures

important frequency information from process data without

undesired noise, allowing better performance than other

machine learning methods.

The CWT-CNN method can be expanded and improved

for better predictions and better understanding. The pro-

posed method is difficult to interpret, unlike traditional

statistical methods, and may perform poorly on process

data dissimilar to the training data. Future work involves

developing an explanation or interpretation of the models

with a feature attribution method like layer-wise relevancy

propagation or Shapley values. Although the CWT-CNN

is used for binary detection, the method can be extended

to severity quantification or categorization with improved

labeling of process data. This effort is difficult as there is

no established standard for quantifying stiction behavior

and requires further study. One important area that this

work needs to be expanded to is stiction detection for

temperature and level loops, which would necessitate a

larger dataset of labeled loops, and allow the method to

be applied in more settings. A larger study and comparison

of time series to image transformations, such as Gramian

angular field (GAF), Markov transition field (MTF), or

Discrete wavelet transform (DWT) is left for future work.

A full comparison of the CWT-CNN method with previous

methods such as [6] and [12] on a standard dataset would

help establish the improvements made by this work.
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