
HW #10 – Loops, plots, statistics, and data collection

1. Write a program that retrieves a temperature measurement from the Temperature Control Lab

(see https://apmonitor.com/heat.htm) and displays the value on a plot.

Instructions for setting up and connecting to the TCLab:

a. Install tclab as a Python module with pip package manager (command prompt in

Windows with cmd or a new Terminal in MacOS):

 pip install tclab

or directly from within the Python script:

module='tclab'

try:

from pip import main as pipmain

except:

from pip._internal import main as pipmain

pipmain(['install',module])

to upgrade: pipmain(['install','--upgrade',module])

b. Plug in device to a USB port. The heater power supply is not needed for this exercise.

c. Run the following test script to ensure that the device is connected. The LED red light

should turn on and then off after 1 second.

import tclab

import time

Connect to Arduino

a = tclab.TCLab()

print('LED On')

a.LED(100)

Pause for 1 second

time.sleep(1.0)

https://apmonitor.com/heat.htm

print('LED Off')

a.LED(0)

a.close()

d. Test the temperature reading:

import tclab

import numpy as np

import time

Connect to Arduino

a = tclab.TCLab()

Temperature

print('Temperature (degC)')

print(a.T1)

Sleep (10 sec) with LED on

a.LED(100)

time.sleep(10.0)

a.LED(0)

Temperature

print('Temperature (degC)')

print(a.T1)

Close connection to Arduino

a.close()

Write a program that retrieves a temperature value from the Temperature Control Lab each

second for 1 minute. Create a plot of the temperature value versus the time is was collected

(start from 0 sec). Report the average (mean), maximum, and minimum temperatures. The

temperature should be reported in degrees Celsius.

Sample Output:

Max: 98.0 degC

Min: 18.0 degC

Average: 70.0 degC

Note that two temperatures are available (a.T1 and a.T2). For this assignment, please select just

a.T1 for the summary statistics and plotting.

2. Gravity Drained Tanks in Python

Cylindrical dual gravity drained tanks with a constant cross sectional area (Ac=2 m2) and maximum height

of 1 m. If the tank overfills, the excess fluid is lost. There is an inlet flow qin, an intermediate outlet flow

from tank 1 to tank 2 as qout1, and a final outlet flow as qout2. All flows are in units of m3/hr and heights

are reported in units of m.

A mass balance on each tank is used to derive the following equations that

relate inlet flow to the height of the tanks.

𝐴𝑐
𝑑ℎ1

𝑑𝑡
= 𝑞𝑖𝑛 − 𝑞𝑜𝑢𝑡1 𝐴𝑐

𝑑ℎ2

𝑑𝑡
= 𝑞𝑜𝑢𝑡1 − 𝑞𝑜𝑢𝑡2

The outlet flow rate for each tank depends on the height in the tank

according to Bernoulli’s equation for incompressible fluids as:

𝑞𝑜𝑢𝑡1 = 𝑐1√ℎ1 𝑞𝑜𝑢𝑡2 = 𝑐2√ℎ2

The tanks are initially empty when the inlet to tank 1 starts to flow at a rate

of 0.5 m3/hr.

a) Solve for the heights (h1 and h2) as functions of time with c1=0.13 and c2=0.20. Use a timestep
size of dt=0.5 hr and solve to t=10 hr.

b) Plot the predicted heights h1 and h2 as functions of time on the same plot. Label the axes as
"time (hr)" and “height (m)”.

Hint: use an explicit Euler's equation applied to each dh/dt above: dh/dt = f(h,t) -> hn+1 = hn + dt*f(hn,tn).

Don’t forget to add an IF statement to check for overfill conditions such as:

if (height[i]>=1.0 and dheight_dt>=0):
 height[i+1] = 1.0
else:
 height[i+1] = height[i] + dt * (f(height[i], qin, qout1))

