Cylindrical dual gravity drained tanks with a constant cross sectional area ($A_{c}=2 \mathrm{~m}^{2}$) and maximum height of 1 m . If the tank overfills, the excess fluid is lost. There is an inlet flow $q_{i n}$, an intermediate outlet flow from tank 1 to tank 2 as $q_{\text {out } 1, ~ a n d ~ a ~ f i n a l ~ o u t l e t ~ f l o w ~ a s ~} q_{\text {out } 2}$. All flows are in units of $m^{3} / h r$ and heights are reported in units of m.

Inlet Flow
$\left(q_{\text {in }}\right)$ that relate inlet flow to the height of the tanks.

$$
A_{c} \frac{d h_{1}}{d t}=q_{\text {in }}-q_{\text {out } 1} \quad A_{c} \frac{d h_{2}}{d t}=q_{\text {out } 1}-q_{\text {out } 2}
$$

Outlet
Flow 1
(quut1)
$q_{\text {out } 1}=c_{1} \sqrt{h_{1}}$

$$
q_{\text {out } 2}=c_{2} \sqrt{h_{2}}
$$

The tanks are initially empty when the inlet to tank 1 starts to flow at a rate of $0.5 \mathrm{~m}^{3} / \mathrm{hr}$.
a) Solve for the heights (h_{1} and h_{2}) as functions of time with $c_{1}=0.13$ and $c_{2}=0.20$. Use a timestep size of $\mathbf{d t}=\mathbf{0 . 5} \mathbf{~ h r}$ and solve to $\mathbf{t = 1 0} \mathbf{~ h r}$.
b) Plot the predicted heights h_{1} and h_{2} and the measured height h_{2} as functions of time on the same plot. Label the axes as "time (hr)" and "height (m)".

Hint: use an explicit Euler's equation applied to each $d h / d t$ above: $d h / d t=f(h, t)->h_{n+1}=h_{n}+$ $d t^{*} f\left(h_{n}, t_{n}\right)$. Don't forget to add an IF statement to check for overfill conditions such as =IF(predicted height>1.0,1.0,predicted height).

