Cylindrical dual gravity drained tanks with a constant cross sectional area ($A_c=2 m^2$) and maximum height of 1 m. If the tank overfills, the excess fluid is lost. There is an inlet flow q_{in} , an intermediate outlet flow from tank 1 to tank 2 as q_{out1} , and a final outlet flow as q_{out2} . All flows are in units of m^3/hr and heights are reported in units of m.

- a) **Solve** for the heights (h_1 and h_2) as functions of time with c_1 =0.13 and c_2 =0.20. Use a timestep size of **dt=0.5** *hr* and solve to **t=10** hr.
- b) **Plot** the predicted heights h_1 and h_2 and the measured height h_2 as functions of time on the same plot. Label the axes as "time (hr)" and "height (m)".

Hint: use an explicit Euler's equation applied to each dh/dt above: $dh/dt = f(h,t) \rightarrow h_{n+1} = h_n + dt^* f(h_n, t_n)$. Don't forget to add an IF statement to check for overfill conditions such as =IF(predicted height>1.0,1.0,predicted height).