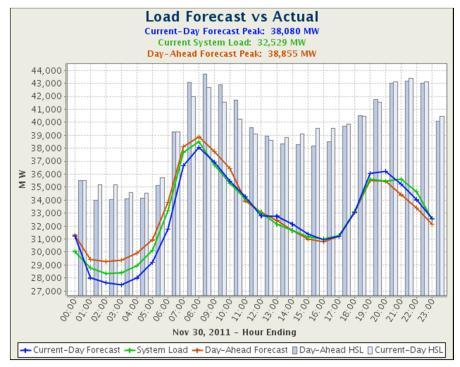

DYNAMIC OPTIMIZATION OF ENERGY SYSTEMS WITH THERMAL ENERGY STORAGE

PRELIMINARY RESEARCH PROPOSAL

Kody Powell November 6th, 2011

Motivation Why Energy Storage?


- Intermittency
 - Dispatchable power
- Supply/Demand Mismatch
 Load shifting
- Smart Grid
 - Grid reliability
 - Integration of renewables
 - Optimal grid performance

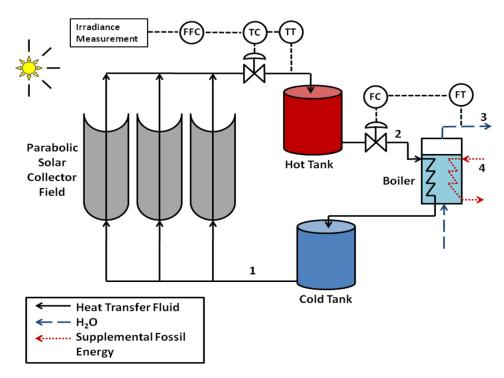
Motivation

Dynamic Optimization Using Forecasts

- 3
- Dynamic Optimization:
 Optimal control with long time horizon (days/weeks)
- Why dynamic optimization and forecasts?
 - Transient systems
 - Subject to disturbances
 - Slow storage dynamics
- Hypothesis: Storage provides extra DOFs that can be exploited to enhance system performance.

Background

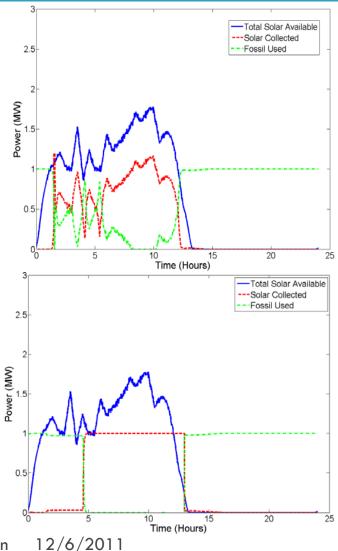
Thermal Energy Storage


- Energy stored as heat or cooling
- Low cost
- Niche but high impact applications
- Many types and configurations
 - Sensible, latent, chemical
 - Direct, indirect, two-tank, thermocline, etc.

Solar Thermal Energy Storage Modeling and Control

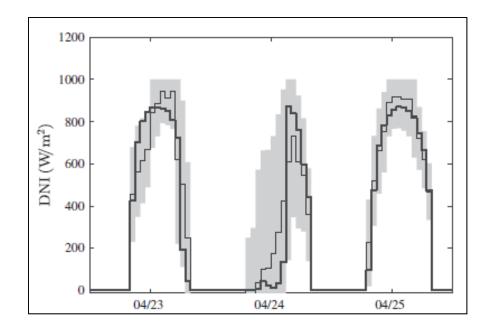
5

- Solar thermal vs PV
- Storage is critical

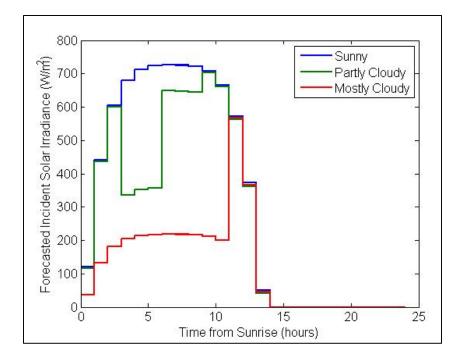


 First principles model
 Feedforward + feedback control

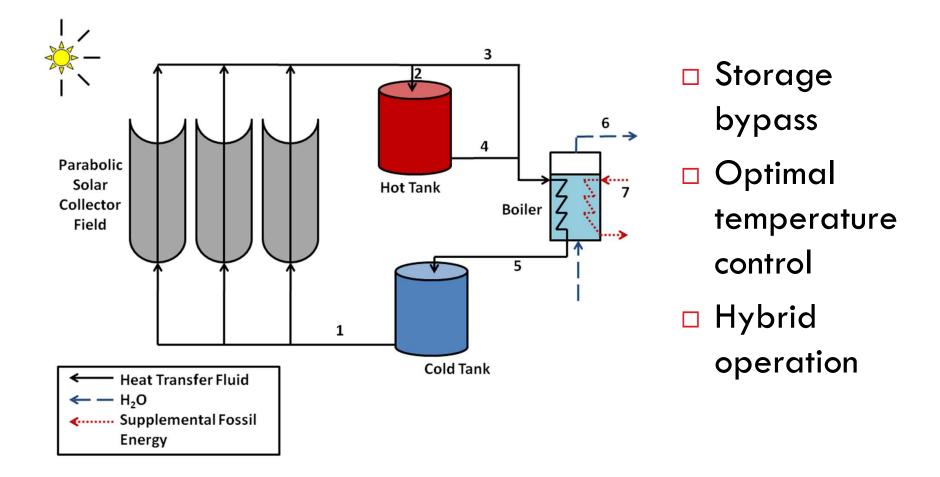
Solar Thermal Energy Storage Modeling and Control: Results


- Mitigates intermittency problems
- Provides dispatchable power
- Increases solar share

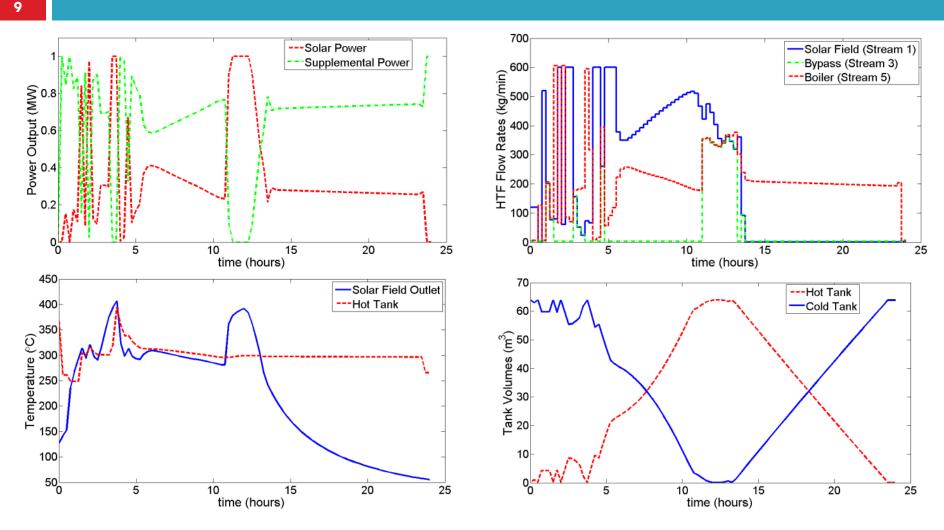
	Clear Day: w/o Storage	Clear Day: w/ Storage	Cloudy Day: w/o Storage	Cloudy Day: w/ Storage
Solar (MWh)	16.48	16.82	8.40	8.49
Supplemental (MWh)	12.58	7.18	15.78	15.51
Solar Share	47.6%	70.1%	34.3%	35.4%


K. Powell - Preliminary Research Proposal - UT Austin 12/6/

Solar Thermal Energy Storage Incorporating DNI Forecasts



- Nonlinear DAE Model (APMonitor)
- Simultaneous solution method (IPOPT)


- Include forecast
- Some information is better than none

Solar Thermal Energy Storage Intelligent Storage: Dynamic Optmization

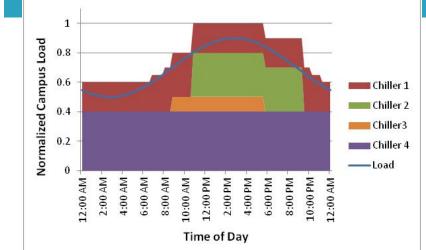
Solar Thermal Energy Storage Dynamic Optimization: Results

K. Powell - Preliminary Research Proposal - UT Austin 12/6/2011

Solar Thermal Energy Storage Dynamic Optimization: Summary

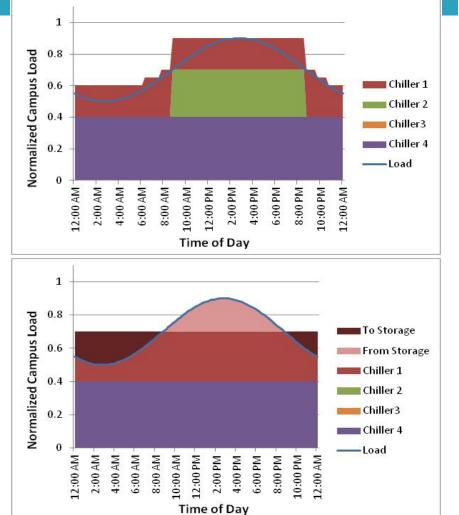
	Solar Energy Collected (MWh)	Energy Collected/ Total Incident Energy (%)
<u>Sunny</u>		
Standard Control	18.02	76.8%
Dynamic Optimization	18.59	79.2%
Partly Cloudy		
Standard Control	14.60	75.8%
Dynamic Optimization	15.83	81.1%
Mostly Cloudy		
Standard Control	4.75	52.1%
Dynamic Optimization	7.80	85.4%

10


- Most effective on cloudy day
- Could expand solar thermal footprint
- □ Future Work:
 - Stochastic problem
 - D-RTO

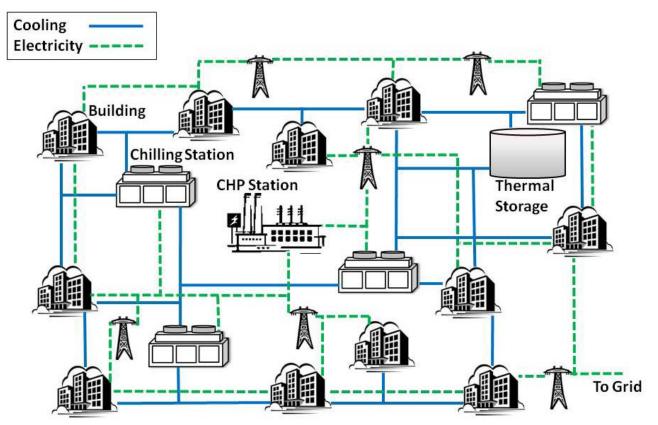
Proposed Future Work Phase 1: Campus Cooling w/ TES

- Objectives:
 - Cooling system modeling
 - Empirical cooling load forecasting
 - Analytical analysis of economics and energy savings
 - Solve dynamic optimization
 - Test operation strategy
 - Recommendations by May 2012


Proposed Future Work Phase 1: TES Operation Strategy

□ Forecasting + operator

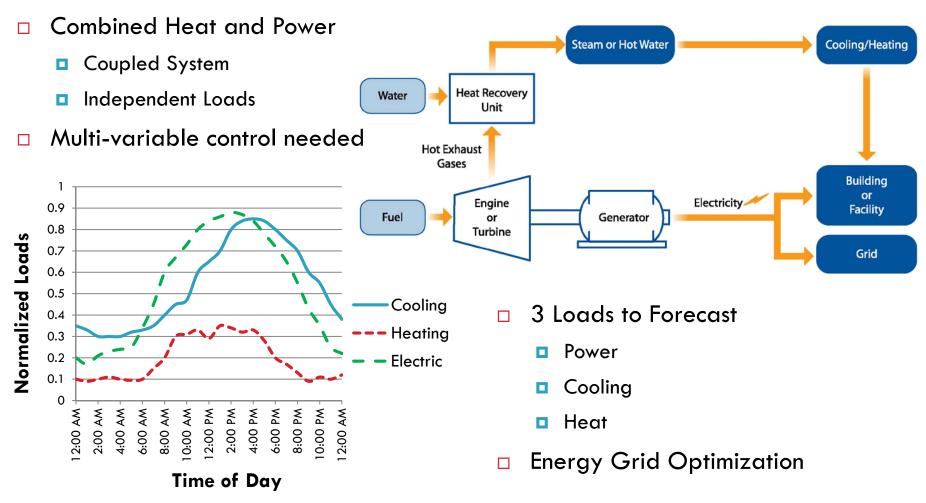
12


- Prescient operation
- □ Forecasting + optimization
 - Improved operation
- Forecasting + TES + optimization
 - Utilizes all DOFs
 - Harness full potential of system

Proposed Future Work

Phase 2: Smart Electric Grid Operation

- 13
- □ UT is a microgrid
- □ TES → electric storage
- Free up peak generation capacity
 - Explore scenarios to sell/buy power to/from grid
- New opportunities for interconnection with ERCOT*
 - Accepting bids for ERS
 - **\$3000/MWh**

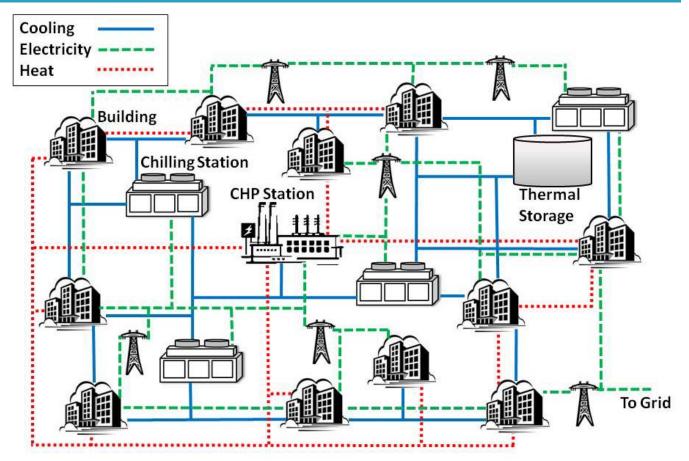

K. Powell - Preliminary Research Proposal - UT Austin 12/6/2011

<u>* http://files.harc.edu/sites/GulfCoastCHP/CHP2011/Patterson_EILS_CHP2011.pdf</u>

Proposed Future Work

14

Combined Heat and Power + Cooling



K. Powell - Preliminary Research Proposal - UT Austin 12/6/2011

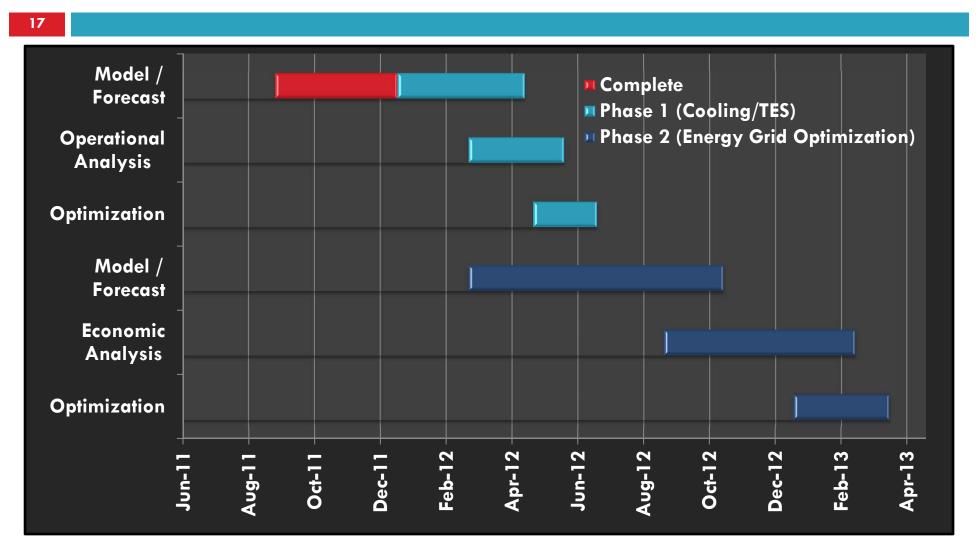
Proposed Future Work

Phase 2: Dynamic Energy Grid Optimization

- Electric, Cooling, and Heating Networks
- Forecasts
 - Loads
 - Ambient Conditions
 - Electric and gas prices
- Dynamic optimization of large & complex energy network
- Evaluation of longterm economics for UT

K. Powell - Preliminary Research Proposal - UT Austin 12/6/2011

Smart Grid Research


16

Collaboration Opportunities

Researcher	Component Modeling	Steady State & Dynamic Optimization	Economic/ Energy Analysis	Load/Pricing Forecasting	Multi- variable Control
Wesley Cole (PSP)	\checkmark	\checkmark	\checkmark		
Jongsuk Kim (Chemstations)	\checkmark		\checkmark		\checkmark
Kriti Kapoor (TI)	\checkmark	\checkmark	\checkmark		
Akshay Sriprisad (IGERT)			\checkmark	\checkmark	
Other IGERT/PSP	\checkmark	\checkmark	\checkmark	\checkmark	
BYU Chem E	\checkmark	\checkmark	\checkmark		\checkmark
UT CHP Facility			\checkmark	\checkmark	
Undergrad	\checkmark		\checkmark	\checkmark	

Project Timeline

K. Powell - Preliminary Research Proposal - UT Austin 12/6/2011

Conclusions

- Optimization & Energy Storage Vital for Smart Grid
 - **TES** is a low cost option
 - Forecasting required
 - Proof of concept shown with solar thermal
- Large & Ambitious Project
 - Many collaboration opportunities
 - Opportunity for original, high-impact research
 - Fundamental
 - Solving large scale optimization problems
 - Incorporating energy storage and forecasting
 - Applied
 - Work with real system
 - Potential to save energy and money for UT

My Goals and Accomplishments

Career, Publications, Teaching

- 19
- Targeting Faculty Position
- Publications
 - Modeling and Control of Solar Thermal Plant w/ TES
 - Chem Eng Science Accepted for Publication
 - American Control Conference 2011
 - Dynamic Optimization of Solar Thermal System w/ TES
 - American Control Conference 2012
 - Optimization and Control of TES Systems
 - Reviews in Chemical Engineering, submitted
 - 2012-2013 Goal: 6 total 1st Author Peer-Reviewed Publications
 - In progress: Novel TES model, Dynamic optimization of solar thermal plant
 - Possible future work: Load forecasting, Large campus microgrid optimization, multivariable CHP control, Dynamic optimization of energy systems with storage, etc.
- Other Work
 - ExxonMobil Chemical Company Internship: Summer 2011 (Nonlinear control and Dynamic Optimization)
 - Re-formulated Distillation Lab for CHE 264

Acknowledgements

- Edgar Research Group
- National Science Foundation
- Cockrell School of Engineering
- □ AP Monitor
- Pecan Street, Inc.
- UT Austin Utilities and Energy Management
- My Family

Appendix

- Solar Thermal First Principles Modeling
- Solar thermal vs photovoltaic
- Standard control approach results
- Dynamic real-time optimization

Parabolic Trough Solar Collector Model

22

Heat Transfer Fluid

$$\rho_{HTF}C_{HTF}A_{ABS,i}\frac{\partial T_{HTF}}{\partial t} = \dot{m}C_{HTF}\frac{\partial T_{HTF}}{\partial x} + h_{pipe}P_{ABS,i}\left(T_{ABS} - T_{HTF}\right)$$

Absorber Pipe

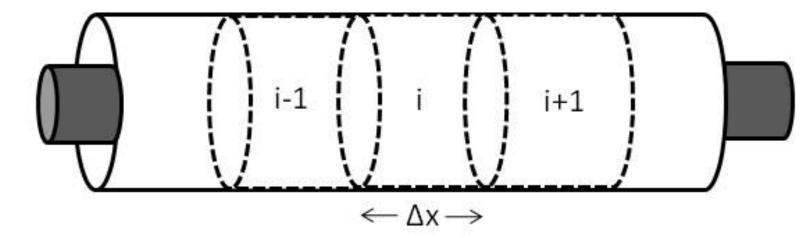
$$\rho_{ABS}C_{ABS}A_{ABS}\frac{\partial T_{ABS}}{\partial t} = h_{pipe}P_{ABS,i}\left(T_{HTF} - T_{ABS}\right) - \frac{\sigma}{\frac{1}{\varepsilon_{ABS}} + \frac{1 - \varepsilon_{ENV}}{\varepsilon_{ENV}}\left(\frac{r_{ABS,o}}{r_{ENV,i}}\right)}P_{ABS,i}\left(T_{ABS}^{4} - T_{ENV}^{4}\right) + q''_{absorbed}w$$

Glass Envelope

$$\rho_{ENV}C_{ENV}A_{ENV} \frac{\partial T_{ENV}}{\partial t} = \frac{\sigma}{\frac{1}{\varepsilon_{ABS}} + \frac{1 - \varepsilon_{ENV}}{\varepsilon_{ENV}} \left(\frac{r_{ABS,o}}{r_{ENV,i}}\right)} P_{ABS,i} \left(T_{ABS}^{-4} - T_{ENV}^{-4}\right) - \sigma \varepsilon_{ENV}P_{env,o} \left(T_{ENV}^{-4} - T_{AIR}^{-4}\right) - h_{air}P_{ENV,o} \left(T_{ENV} - T_{AIR}\right)$$

$$T_{HTF} \left(t, x = 0\right) = T_{in}$$

$$T_{HTF} \left(t = 0, x\right) = T_{HTF,0}$$


$$T_{ABS} \left(t = 0, x\right) = T_{ABS,0}$$

$$T_{ENV} \left(t = 0, x\right) = T_{ENV,0}$$

$$Heat Transfer$$
Fluid
$$h_{air} = f \left(V_w\right)$$

Spatial Discretization

23

•System divided into n segments: $\Delta x = L/n$

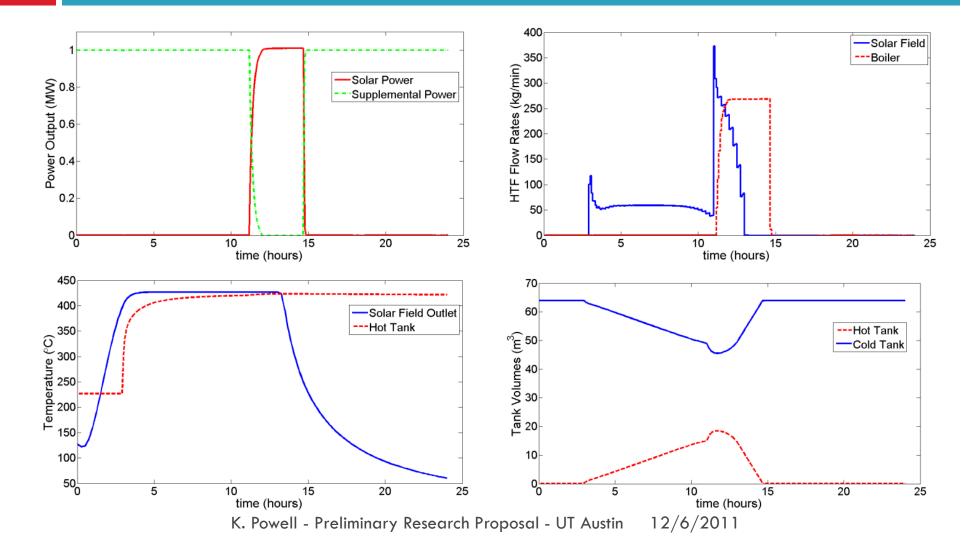
•Energy balance computed in each segment for fluid, absorber pipe and glass envelope

•Converts 3 coupled PDEs to 3n ODEs

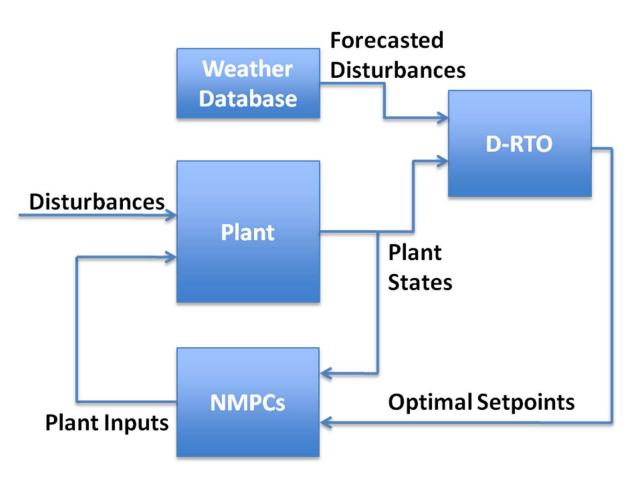
•Backward difference method used to approximate spatial derivatives $\frac{dT}{dx} \approx \frac{\left(T(i) - T(i-1)\right)}{\Delta x}$

Solar Thermal vs Photovoltaic (PV)

	Solar Thermal	Photovoltaic	
Energy Conversion	Sunlight \rightarrow Heat \rightarrow Mechanical \rightarrow Electricity	Sunlight \rightarrow Electricity	
Cost (\$/kWh)	0.12 ¹ (0.06 Projected) ²	0.18-0.231	
Efficiency ³	~18%	~12%	
Solar Irradiance Used	Direct Normal Irradiance (DNI)	Global Horizontal (GHI)	
Scale	Large Scale	Distributed to large scale	
Storage	Thermal Storage	Battery Storage	
Dispatchable on a large scale	Yes	No	
Impact on grid stability	Small	Large	


¹ http://www.window.state.tx.us/specialrpt/energy/exec/solar.html

² http://www.reuters.com/article/2009/08/24/us-energy-maghreb-desertec-sb-idUSTRE57N01720090824?sp=true


³ http://solarbuzz.com/facts-and-figures/markets-growth/cost-competitiveness

Solar Thermal Energy Storage Standard Control: Results

25

Dynamic Real-Time Optimization

