

ADVANCED DEEPWATER MONITORING

ABOUT ASTRO TECHNOLOGY

ADVANCED INSTRUMENTATION FOR:

- Subsea fields
- Pipelines and risers
- Space structures
- Rocket Motors

ENGINEERING CAPABILITIES INCLUDE:

- System integration
- Real-time embedded systems
- Experimental stress analysis
- Fiber-optic sensor technology
- Conventional sensor integration

- Environmentally hardened systems
- Software development

INSTRUMENTATION OF NASA'S ROBONAUT HAND

Space Shuttle Return-to-Flight

Solid Rocket Motor Test

- Apply fiber-optic sensor technology to solid rocket motors
 - In-situ sensors on new motors
 - Sensors bonded to the interior of existing motors
 - Fiber Bragg-gratings
 - Fabry Perot
- •Measure mechanical and chemical properties during handling, storage, long-term aging, motor firing, case burst and damage assessment
- Provide tool for service life evaluation
- Early detection of possible structural failure

FIBER-OPTIC SENSOR ROCKET MOTOR TEST

FIBER-OPTIC SENSORS FOR CIVIL STRUCTURES

FAILURES TO MONITOR AND PREDICT

- Detect early warning signs
- Automate monitoring of critical systems
- Give critical data to key decision makers

Deepwater Horizon 2010

Thunder Horse 2005

Texas City Refinery

DEVIL'S TOWER BASS LITE (OMAE 2012)

PREVIOUS INSTRUMENTATION ON DEEPWATER RISERS

TROIKA — GULF OF MEXICO

ASTRO TECHNOLOGY pioneered the use of fiber-optic sensors on a subsea pipeline to monitor pressure, strain and vibration in external casing pipe bundle during fabrication.

FIBER-OPTIC SENSORS FOR DEEPWATER DRILLING OCEAN CLIPPER

OVERVIEW AETHOUS

FIBER BRAGG GRATINGS

Relationship between Strain (ε) and Change in Wavelength ($\Delta \lambda_b$)

 $\Delta \lambda_b / \lambda_b = (1-p_e)\epsilon$, where p_e is the photoelastic constant for glass and λ_b is the base wavelength

Multiple Gratings (sensors) can be placed on a single fiber, enabling high sensor count per fiber channel.

 $\lambda 1$

 $\lambda 2$

λ3

λ4

λ5.

λ8

RELATIONSHIP BETWEEN WAVELENGTH & STRAIN

EXAMPLE BASE WAVELENGTH FOR A SINGLE FBG

RELATIONSHIP BETWEEN WAVELENGTH & STRAIN — TENSION

REFLECTED SIGNAL FROM THE PREVIOUS FBG IN TENSION

RELATIONSHIP BETWEEN WAVELENGTH & STRAIN — COMPRESSION

REFLECTED SIGNAL FROM THE PREVIOUS FBG IN COMPRESSION

TENSION LEG PLATFORM SENSORS

TENDON TENSION MONITORING SYSTEM

TENDON BAND PREPARATION

Marine Growth (BEFORE)

Clean Band (AFTER)

Cleaning with Water Jet

Polishing to Bare Metal

DIVER INSTALLATION

Diver with Clamp

Clamp Installation

Riser Preparation

Clamp Inspection

HARDENED SENSOR STATIONS

TEMPERATURE & STRAIN GAUGES

OBSERVING TIDE CYCLES

OBSERVING WAVE ACTION

AMPLITUDE SPECTRUM

BOAT DOCKING

WEST AFRICAN ENVIRONMENT:

SUDDEN AND POTENTIALLY VIOLENT SQUALLS

SENSOR CALIBRATION WITH TIDE CYCLES

TRIDENT MONITORING SYSTEM

ADVANCED DEEPWATER MONITORING SUMMARY

- Flow Lines (Temperature, Pressure, Hydrates)
- Risers, Tendons (Strain, Fatigue, Vibration)
- New Data Acquisition Overview
 - Calibration on Post-Installed Systems
 - Key Software Architecture Elements
- Observing Unique and Interesting Events
- Synthesizing Data into Actionable Information
 - Delivered to Key Decision Makers
- Future Activities Include Automation of Load Balancing and Abnormal Event Detection

CLEAR GULF JOINT INDUSTRY PROJECT (JIP)

Collaboration between oil and gas industry, NASA and Astro Technology

PROPOSED PARTNERS INCLUDE:

- Create cutting-edge techniques for managing production
- Develop environmental and safety systems for drilling and production
- Respond to challenges faced when working in remote and harsh environments
- 7 specific deliverables for Phase-I on post-installed monitoring systems