Process Dynamics and Control – ChE 436 Fall 2018, Section 001 Exam 1 (Practice) – Closed Book, Notes, 1 Page (Front only) Allowed, In Class (50 minutes)

Name\_\_\_\_\_

## Exam 1, ChE 436 name\_\_\_\_\_\_ (Scores: \_\_\_\_/10 \_\_\_/20 \_\_/40 \_\_\_/30 \_\_\_\_Total) Total)

1. (10 pts, 5 min) A control system is composed of an actuator, sensor, and a controller. List at least 3 examples of control systems and detail the 3 elements of each:

Control System 1:

Sensor:

Actuator:

Controller Objective or Set Point:

Control System 2:

Sensor:

Actuator:

Controller Objective or Set Point:

Control System 3:

Sensor:

Actuator:

Controller Objective or Set Point:

2. (20 pts, 10 min) A process has the following step response with one input and two outputs.



Find the process parameters ( $K_p$ ,  $\tau_p$ , and  $\theta_p$ ) for each response assuming a FOPDT model.

3. (40 pts, 20 min) A reactor is used to convert a hazardous chemical A to an acceptable chemical B in waste stream before entering a nearby lake. This particular reactor is dynamically modeled as a Continuously Stirred Tank Reactor (CSTR) with a simplified kinetic mechanism that describes the conversion of reactant A to product B with an irreversible and exothermic reaction. Because the analyzer for product B is not fast enough for real-time control, it is desired to maintain the temperature at a constant set point that maximizes the consumption of A (highest possible temperature).



- (a) On the diagram, indicate which quantities are manipulated (MV), controlled (CV), and potential disturbance variables (DV).
- (b) Write the transient species balance to calculate  $C_A$  and an energy balance to calculate T.
- (c) Calculate the steady state values:



(d) Linearize the transient species balances. Use deviation variables:

$$C'_A = C_A - C_{A\_SS}$$
$$T' = T - T_{SS}$$

Reduce the final expression to the following form:

$$\frac{dC'_A}{dt} = \alpha_1 C'_A + \alpha_2 T' + \alpha_3 T_c'$$
$$\frac{dT'}{dt} = \beta_1 C'_A + \beta_2 T' + \beta_3 T_c'$$

List the numeric values of  $\alpha_{1-3}$  and  $\beta_{1-3}$  with the associated units:



4. (40 pts, 20 min) A process has a time constant of 5 seconds and a dead time of 3 seconds. A step change on the process input ( $\Delta u$ ) is implemented to change the output by an anticipated amount ( $\Delta y$ ). Determine how long it takes from the initial step input to get to:

0.5 Δy: \_\_\_\_\_\_sec

0.9 Δy: \_\_\_\_\_\_sec

0.95 Δy: \_\_\_\_\_\_sec

1.0 Δу: \_\_\_\_\_\_sec

A linear first-order equation is the following:

$$\tau_p \frac{dy}{dt} = -y + K_p u(t - \theta_p)$$

For a step change,  $\Delta u$ , the analytical solution for a first-order linear system (no dead-time) is:

$$\tau_p \frac{dx}{dt} = -x + K_p u(t)$$
$$x(t) = K_p \left( 1 - \exp\left(-\frac{t}{\tau_p}\right) \right) \Delta u$$

With dead-time, the solution to a step response becomes:

$$y(t) = x(t - \theta_p)S(t - \theta_p) = K_p\left(1 - \exp\left(-\frac{t - \theta_p}{\tau_p}\right)\right)\Delta u S(t - \theta_p)$$

where  $S(t - \theta_p)$  is a step function that changes from zero to one at  $t = \theta_p$ . In this case, x(t) is the solution without dead-time and y(t) is the solution with dead-time.