Process Dynamics and Control - ChE 436
Fall 2018, Section 001
Exam 1 (Practice) - Closed Book, Notes, 1 Page (Front only) Allowed, In Class (50 minutes)

Name
(Scores: \qquad /10 \qquad /20 \qquad /40 \qquad 130 \qquad Total)

1. (10 pts, 5 min$)$ A control system is composed of an actuator, sensor, and a controller. List at least 3 examples of control systems and detail the 3 elements of each:

Control System 1:
Sensor:

Actuator:
Controller Objective or Set Point:
Control System 2:
Sensor:
Actuator:
Controller Objective or Set Point:
Control System 3:
Sensor:
Actuator:
Controller Objective or Set Point:
2. (20 pts, 10 min$)$ A process has the following step response with one input and two outputs.

Find the process parameters (K_{p}, τ_{p}, and θ_{p}) for each response assuming a FOPDT model.
3. ($40 \mathrm{pts}, 20 \mathrm{~min}$) A reactor is used to convert a hazardous chemical A to an acceptable chemical B in waste stream before entering a nearby lake. This particular reactor is dynamically modeled as a Continuously Stirred Tank Reactor (CSTR) with a simplified kinetic mechanism that describes the conversion of reactant A to product B with an irreversible and exothermic reaction. Because the analyzer for product B is not fast enough for real-time control, it is desired to maintain the temperature at a constant set point that maximizes the consumption of A (highest possible temperature).

(a) On the diagram, indicate which quantities are manipulated (MV), controlled (CV), and potential disturbance variables (DV).
(b) Write the transient species balance to calculate C_{A} and an energy balance to calculate T.
(c) Calculate the steady state values:
$C_{A_{-} s s}=$ \qquad
$T_{s s}=$ \qquad
(d) Linearize the transient species balances. Use deviation variables:

$$
\begin{gathered}
C_{A}^{\prime}=C_{A}-C_{A _s} \\
T^{\prime}=T-T_{S S}
\end{gathered}
$$

Reduce the final expression to the following form:

$$
\begin{aligned}
\frac{d C_{A}^{\prime}}{d t} & =\alpha_{1} C_{A}^{\prime}+\alpha_{2} T^{\prime}+\alpha_{3} T_{C}^{\prime} \\
\frac{d T^{\prime}}{d t} & =\beta_{1} C_{A}^{\prime}+\beta_{2} T^{\prime}+\beta_{3} T_{c}^{\prime}
\end{aligned}
$$

List the numeric values of α_{1-3} and β_{1-3} with the associated units:
$\alpha_{1}=$ \qquad $\beta_{1}=$ \qquad
$\alpha_{2}=$ \qquad

$$
\beta_{2}=
$$

\qquad
$\alpha_{3}=$ \qquad

$$
\beta_{3}=
$$

\qquad
4. (40 pts, 20 min) A process has a time constant of 5 seconds and a dead time of 3 seconds. A step change on the process input $(\Delta \mathrm{u})$ is implemented to change the output by an anticipated amount ($\Delta \mathrm{y}$). Determine how long it takes from the initial step input to get to:
$0.5 \Delta y$: \qquad sec
$0.9 \Delta y$: \qquad sec
$0.95 \Delta y$: \qquad sec
$1.0 \Delta \mathrm{y}$: \qquad sec

A linear first-order equation is the following:
$\tau_{p} \frac{d y}{d t}=-y+K_{p} u\left(t-\theta_{p}\right)$
For a step change, Δu, the analytical solution for a first-order linear system (no dead-time) is:
$\tau_{p} \frac{d x}{d t}=-x+K_{p} u(t)$
$x(t)=K_{p}\left(1-\exp \left(-\frac{t}{\tau_{p}}\right)\right) \Delta u$
With dead-time, the solution to a step response becomes:
$y(t)=x\left(t-\theta_{p}\right) S\left(t-\theta_{p}\right)=K_{p}\left(1-\exp \left(-\frac{t-\theta_{p}}{\tau_{p}}\right)\right) \Delta u S\left(t-\theta_{p}\right)$
where $S\left(t-\theta_{p}\right)$ is a step function that changes from zero to one at $t=\theta_{p}$. In this case, $x(t)$ is the solution without dead-time and $y(t)$ is the solution with dead-time.

