K-T Conditions, LaGrange Multipliers

1. (10) Solve the following problem using K-T conditions:

$$
\begin{aligned}
& \mathrm{f}=\mathrm{x}_{1}^{2}-2 \mathrm{x}_{1} \mathrm{x}_{2}+4 \mathrm{x}_{2}^{2} \\
& 0.1667 \mathrm{x}_{1}-\mathrm{x}_{2}=2
\end{aligned}
$$

Plot the equality constraint on your paper and show the optimum point. Does your calculated optimum agree with a graphical optimum?

2. (10) Change the constraint to be,

$$
0.1667 x_{1}-x_{2}=2.1
$$

Solve again for the optimum. Does the Lagrange multiplier from part 1 accurately predict the change in the objective for a change in the constraint right hand side? Compare the actual change to the predicted change.
3. For the problem:

$$
\begin{aligned}
& \operatorname{Min} f(x)=x_{1}^{2}+x_{2} \\
& g_{1}(x)=x_{1}^{2}+x_{2}^{2}-9=0 \\
& g_{2}(x)=x_{1}+x_{2}^{2}-1 \leq 0 \\
& g_{3}(x)=x_{1}+x_{2}-1 \leq 0
\end{aligned}
$$

A contour plot of this problem looks like:

Figure taken from Himmelblau, David (1972). Applied nonlinear programming. New York: McGraw-Hill.
Using the K-T equations (constraints should be considered satisfied within acceptable roundoff):
a. (10) Verify that the point $[-2.3723,-1.8364]$ is a local optimum
b. (10) Verify that the point $[-2.5000,-1.6583]$ is not a local optimum
c. (15) Drop the equality constraint from the problem. Using the contour plot to see where the optimum lies, solve for the optimum using the K-T conditions.

