Application of KKT Conditions

For a problem in the following form,

$$
\begin{array}{ll}
\text { Min } & f(\mathbf{x}) \\
\text { s.t. } & g_{i}(\mathbf{x})-b_{i} \geq 0 \quad i=1, \ldots, k \\
& g_{i}(\mathbf{x})-b_{i}=0 \quad i=k+1, \ldots, m \tag{3}
\end{array}
$$

A) Give the KT necessary conditions, explaining each equation.

Equation	Explanation
$g_{i}\left(\mathbf{x}^{*}\right)-b_{i}$ is feasible $\quad i=1, \ldots, m$	Primal Feasibility
$\nabla f\left(\mathbf{x}^{*}\right)-\sum_{i=1}^{m} \lambda_{i}^{*} \nabla g_{i}\left(\mathbf{x}^{*}\right)=\mathbf{0}$	Dual Feasibility No direction which improves objective and is feasible
$\lambda_{i}^{*}\left[g_{i}\left(\mathbf{x}^{*}\right)-b_{i}\right]=0 \quad i=1, \ldots, k$	Complementary slackness
$\lambda_{i}^{*} \geq 0 \quad i=1, \ldots, k$	Positive Lagrange multipliers

B) A cylindrical storage tank is to be constructed for which the following costs apply:

Metal for sides
Concrete base and metal bottom
Top
\$30.00/sq. ft.
\$37.50/sq. ft.
\$7.50/sq. ft.

The tank is to be constructed with dimensions such that the cost is a minimum for whatever capacity is selected. One possible approach to selecting the capacity is to build the tank such that an additional cubic foot of capacity costs $\$ 8$. (Note this does not mean $\$ 8$ per cubic foot average for the entire tank.) Find the optimal diameter and height of the tank.

$$
\begin{aligned}
& \text { dollars }:=1 \\
& \mathrm{c}_{\text {side }}:=30 \cdot \frac{\text { dollars }}{\mathrm{ft}^{2}} \quad \mathrm{c}_{\text {base }}:=37.50 \frac{\text { dollars }}{\mathrm{ft}^{2}} \quad \mathrm{c}_{\text {top }}:=7.50 \cdot \frac{\text { dollars }}{\mathrm{ft}^{2}} \\
& \mathrm{~d}=\text { Diameter } \quad \mathrm{h}=\text { height } \quad \mathrm{V}=\text { capacity } \\
& \mathrm{A}_{\text {side }}=\pi \cdot \mathrm{d} \cdot \mathrm{~h} \quad \mathrm{~A}_{\text {base }}=\mathrm{A}_{\text {top }}=\frac{\pi}{4} \cdot \mathrm{~d}^{2}
\end{aligned}
$$

min total cost
s.t. Volume Equation
$\min \quad c_{\text {total }}=c_{\text {side }} \cdot A_{\text {side }}+\left(c_{\text {top }}+c_{\text {base. }}\right) \cdot A_{\text {base }}=c_{\text {side }} \cdot(\pi \cdot d \cdot h)+\left(c_{\text {top }}+c_{\text {base. }}\right) \cdot\left(\frac{\pi}{4} \cdot d^{2}\right)$
s.t. $\quad \mathrm{V}=\frac{\pi}{4} \cdot \mathrm{~d}^{2} \cdot \mathrm{~h} \quad \lambda_{1}:=8 \cdot \frac{\text { dollars }}{\mathrm{ft}^{3}}$

Write the KT Conditions

1. Primal Feasibility

$$
\frac{\pi}{4} \cdot d^{2} \cdot h-V=0
$$

2. Dual Feasibility

$$
\left[\begin{array}{c}
\mathrm{c}_{\text {side }} \cdot \pi \cdot \mathrm{h}+\left(\mathrm{c}_{\text {top }}+\mathrm{c}_{\text {base. }}\right) \cdot \frac{\pi}{2} \cdot \mathrm{~d} \\
\mathrm{c}_{\text {side }} \cdot \pi \cdot \mathrm{d}
\end{array}\right]-\lambda_{1} \cdot\binom{\frac{\pi}{2} \cdot \mathrm{~d} \cdot \mathrm{~h}}{\frac{\pi}{4} \cdot \mathrm{~d}^{2}}=0
$$

3. Complementarity slackness and 4. Positive Lagrange multipliers don't apply

Solve KT Conditions

Start with last equation in dual feasibility section

$$
\begin{aligned}
& \mathrm{c}_{\text {side }} \cdot \pi \cdot \mathrm{d}-\lambda_{1} \cdot \frac{\pi}{4} \cdot \mathrm{~d}^{2}=0 \quad \text { Eliminate } \mathrm{d}=0 \text { solution } \quad \mathrm{c}_{\text {side }} \cdot \pi-\lambda_{1} \cdot \frac{\pi}{4} \cdot \mathrm{~d}=0 \\
& \\
& \text { Solve for } \mathrm{d} \quad \mathrm{~d}:=\frac{4 \mathrm{c}_{\text {side }}}{\lambda_{1}} \\
& \mathrm{~d}= \\
& =15 \cdot \mathrm{ft}
\end{aligned}
$$

Use first dual feasibility equation to solve for h

$$
\begin{aligned}
& \mathrm{c}_{\text {side }} \cdot \pi \cdot \mathrm{h}+\left(\mathrm{c}_{\text {top }}+\mathrm{c}_{\text {base. }}\right) \cdot \frac{\pi}{2} \cdot \mathrm{~d}-\lambda_{1} \cdot \frac{\pi}{2} \cdot \mathrm{~d} \cdot \mathrm{~h}=0 \\
& \mathrm{~h}=\frac{-\left(\mathrm{c}_{\text {top }}+\mathrm{c}_{\text {base. }}\right) \cdot \frac{\pi}{2} \cdot \mathrm{~d}}{\mathrm{c}_{\text {side }} \cdot \pi-\lambda_{1} \cdot \frac{\pi}{2} \cdot \mathrm{~d}}=\frac{-\left(\mathrm{c}_{\text {top }}+\mathrm{c}_{\text {base. }}\right) \cdot \mathrm{d}}{2 \mathrm{c}_{\text {side }}-\lambda_{1} \cdot \mathrm{~d}} \\
& \mathrm{~h}=11.25 \mathrm{ft}
\end{aligned} \quad \mathrm{~h}:=\frac{-\left(\mathrm{c}_{\text {top }}+\mathrm{c}_{\text {base }}\right) \cdot \mathrm{d}}{2 \mathrm{c}_{\text {side }}-\lambda_{1} \cdot \mathrm{~d}}
$$

Use Primal Feasibility Constraint to solve for V

$$
\underset{\mathrm{V}}{\mathrm{~V}}:=\frac{\pi}{4} \cdot \mathrm{~d}^{2} \cdot \mathrm{~h} \quad \mathrm{~V}=1988 \mathrm{ft}^{3}
$$

