Application of KKT Conditions

For a problem in the following form,

$$
\begin{array}{ll}
\operatorname{Min} & f(\mathbf{x}) \\
\text { s.t. } & g_{i}(\mathbf{x})-b_{i} \geq 0 \quad i=1, \ldots, k \\
& g_{i}(\mathbf{x})-b_{i}=0 \quad i=k+1, \ldots, m \tag{3}
\end{array}
$$

A) Give the KKT necessary conditions, explaining each equation.
Equation
Explanation
B) A cylindrical storage tank is to be constructed for which the following costs apply:

Metal for sides	$\$ 30.00 / \mathrm{sq} . \mathrm{ft}$.
Concrete base and metal bottom	$\$ 37.50 / \mathrm{sq} . \mathrm{ft}$
Top	$\$ 7.50 / \mathrm{sq} . \mathrm{ft}$.

The tank is to be constructed with dimensions such that the cost is a minimum for whatever capacity is selected. One possible approach to selecting the capacity is to build the tank such that an additional cubic foot of capacity costs $\$ 8$. (Note this does not mean $\$ 8$ per cubic foot average for the entire tank.) Find the optimal diameter and height of the tank.

