Karush-Kuhn-Tucker Conditions with Inequality and Equality Constraints

For a problem in the following form,

$$
\begin{array}{ll}
\operatorname{Min} & f(\mathbf{x}) \\
\text { s.t. } & g_{i}(\mathbf{x})-b_{i} \geq 0 \quad i=1, \ldots, k \\
& g_{i}(\mathbf{x})-b_{i}=0 \quad i=k+1, \ldots, m \tag{3}
\end{array}
$$

A) Give below the KT necessary conditions, explaining each equation.

Description	Equation	Applies to
Feasibility	$g_{i}\left(\mathbf{x}^{*}\right)-b_{i}$ is feasible $\quad i=1, \ldots, m$	2,3
No direction which improves objective and is feasible	$\nabla f\left(\mathbf{x}^{*}\right)-\sum_{i=1}^{m} \lambda_{i}^{*} \nabla g_{i}\left(\mathbf{x}^{*}\right)=\mathbf{0}$	$1-3$ (all)
Complementary slackness	$\lambda_{i}^{*}\left[g_{i}\left(\mathbf{x}^{*}\right)-b_{i}\right]=0 \quad i=1, \ldots, k$	2
Positive Lagrange multipliers	$\lambda_{i}^{*} \geq 0 \quad i=1, \ldots, k$	2

B) Solve for the optimum using the KKT conditions

Min $f=4 x_{1}^{2}+2 x_{2}^{2}$
s.t. $\quad 3 x_{1}+x_{2}=8$
$2 x_{1}+4 x_{2} \leq 15$
Note: at the optimum, it is known that the inequality constraint is satisfied but not binding. Take advantage of this information.

Solution

$$
\begin{aligned}
& 3 x_{1}+x_{2}-8=0 \\
& -2 x_{1}-4 x_{2}+15 \geq 0
\end{aligned}
$$

Not a binding constraint so $\lambda_{2}=0$ and we drop the inequality constraint.

$$
\left[\begin{array}{l}
8 x_{1} \\
6 x_{2}
\end{array}\right]-\lambda_{1}\left[\begin{array}{l}
3 \\
1
\end{array}\right]-0\left[\begin{array}{l}
-2 \\
-4
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

$\mathrm{A}:=\left(\begin{array}{ccc}3 & 1 & 0 \\ 8 & 0 & -3 \\ 0 & 6 & -1\end{array}\right) \quad \mathrm{b}:=\left(\begin{array}{l}8 \\ 0 \\ 0\end{array}\right) \quad \mathrm{x}:=\mathrm{A}^{-1} \cdot \mathrm{~b} \quad \mathrm{x}=\left(\begin{array}{l}2.323 \\ 1.032 \\ 6.194\end{array}\right)$
C) For the following problem,

$$
\begin{array}{ll}
\text { Min } & f=x_{1}^{2}+x_{2} \\
\text { s.t. } & g_{1}=x_{1}^{2}+x_{2}^{2}-9 \leq 0 \\
& g_{2}=x_{1}+x_{2}-1 \leq 0 \quad++
\end{array}
$$

Show that the point $[1,0]$ does not satisfy the KKT conditions
1 - Check feasibility of all equations
$x_{1}:=1 \quad x_{2}:=0$
$x_{1}^{2}+x_{2}^{2}-9=-8 \quad$ This is less than or equal to zero - passes test
$x_{1}+x_{2}-1=0 \quad$ This is less than or equal to zero - passes test

Translate Inequality Constraints to Standard Form

$$
\begin{aligned}
& g_{1}=-x_{1}^{2}-x_{2}^{2}+9 \geq 0 \\
& g_{2}=-x_{1}-x_{2}+1 \geq 0
\end{aligned}
$$

Calculate Lagrange multipliers
$\binom{2 \cdot x_{1}}{1}-\lambda_{1} \cdot\binom{-2 \cdot x_{1}}{-2 \cdot x_{2}}-\lambda_{2} \cdot\binom{-1}{-1}=0$
with $x_{1}=1$ and $x_{2}=0$
$\left(\begin{array}{ll}2 & 1 \\ 0 & 1\end{array}\right) \cdot\binom{\lambda_{1}}{\lambda_{2}}=\binom{-2}{-1}$
$\lambda_{2}:=-1 \quad 2 \cdot \lambda_{1}+\lambda_{2}=-2 \quad \lambda_{1}=-\frac{1}{2}$
$\lambda_{1}<0$ and
$\lambda_{2}<0 \quad$ violate KKT condition \#4

Set $\lambda_{1}=0$ and re-evaluate because contour plot shows that constraint \#1 is not active:
However, when this is performed, $\lambda_{2}=-2$ and $\lambda_{2}=-1$ result from KKT condition \#2 equations and a consistent set of Lagrange multipliers cannot be obtained. Therefore, it is not at the optimal solution.

CONTOURS
f
BOUNDARIES-
1-g1
2-g2

