K-T Equations: Inequalities

Solving K-T Equations with Inequalities

Solve for the optimum to the following problem using the KT conditions,
Min $f=x_{1}^{2}+2 x_{2}^{2}+3 x_{3}^{2}$
s.t. $\quad g_{1}=-5 x_{1}+x_{2}+3 x_{3} \leq-3$
$g_{2}=2 x_{1}+x_{2}+2 x_{3} \geq 6$

Example continued

ME 575

Step 1: Change problem to be in the proper form

$$
\operatorname{Min} \quad f=x_{1}^{2}+2 x_{2}^{2}+3 x_{3}^{2}
$$

s.t. $\quad g_{1}=5 x_{1}-x_{2}-3 x_{3} \geq 3$

$$
g_{2}=2 x_{1}+x_{2}+2 x_{3} \geq 6
$$

Step 2: Assume both constraints are binding (we will not know if this is correct until we see the signs of the Lagrange multipliers)

ME 575

Example continued

Step 3: Write out the Lagrange multiplier equations:

$$
\begin{aligned}
& \frac{\partial f}{\partial x_{1}}-\lambda_{1} \frac{\partial g_{1}}{\partial x_{1}}-\lambda_{2} \frac{\partial g_{2}}{\partial x_{1}}=0 \\
& \frac{\partial f}{\partial x_{2}}-\lambda_{1} \frac{\partial g_{1}}{\partial x_{2}}-\lambda_{2} \frac{\partial g_{2}}{\partial x_{2}}=0 \\
& \frac{\partial f}{\partial x_{3}}-\lambda_{1} \frac{\partial g_{1}}{\partial x_{3}}-\lambda_{2} \frac{\partial g_{2}}{\partial x_{3}}=0 \\
& g_{1}=3 \\
& g_{2}=6
\end{aligned}
$$

Example continued

$$
\begin{aligned}
& 2 x_{1}-\lambda_{1}(5)-\lambda_{2}(2)=0 \\
& 4 x_{2}-\lambda_{1}(-1)-\lambda_{2}(1)=0 \\
& 6 x_{3}-\lambda_{1}(-3)-\lambda_{2}(2)=0 \\
& 5 x_{1}-x_{2}-3 x_{3}=3 \\
& 2 x_{1}+x_{2}+2 x_{3}=6
\end{aligned}
$$

Solution

$$
\begin{aligned}
& x_{1}=1.450 \\
& x_{2}=0.800 \\
& x_{3}=1.150 \\
& \lambda_{1}=-0.50 \\
& \lambda_{2}=2.70
\end{aligned}
$$

What do we do?

- Drop the constraint
- Solve the problem again

$$
\begin{aligned}
& x_{1}=2.057 \\
& x_{2}=0.5143 \\
& x_{3}=0.6857 \\
& \lambda_{1}=0 . \\
& \lambda_{2}=2.057
\end{aligned}
$$

Contour Plot

CONTOURS
f
BOUNDARIES-
1-g1
2-g2
CONSTANTS-
$\mathrm{x} 3=0.68420$

