
  Chapter 9: Robust Design 

  1 

CHAPTER 9 
ROBUST DESIGN 

9.1 Introduction 
In the “real” world, almost all designs are subject to variation. Such variation can arise from 
multiple sources, including manufacturing processes, material properties, changing operating 
conditions, or the environment. We can also have uncertainty associated with our computer 
model. We may not know some assumed values as well as we would like (e.g. heat transfer 
coefficients, friction coefficients), and our assumptions about boundary conditions might also 
be faulty. For example, loads or temperatures might be different than we assumed. 
 
The consequences of variation are almost always bad. Variation in product dimensions can 
lead to assemblies which assemble poorly or not at all, or function improperly. Failure to take 
into account variation can lead to product failure, poor performance and customer 
dissatisfaction. A famous quality researcher, Genichi Taguchi, has promoted the idea that any 
deviation from a desired target value results in a loss to the customer. 
 
Optimized designs may be particularly vulnerable to variation. This is because optimized 
designs often include active or binding constraints. Such constraints are on the verge of being 
violated. Slight variations in problem parameters can cause designs to become infeasible. 
 
Thus it should be clear that we should not only be interested in an optimal design, but also in 
an optimal design which is robust. A robust design is a design which can tolerate variation. 
Fortuitously, a general approach to robust design can be formulated in terms of optimization 
techniques, further extending the usefulness of these methods. In this chapter we will learn 
how to apply optimization methods to determine a robust design as discussed by Parkinson et 
al. [32] and Parkinson [33]. 
 
We will define variation in terms of tolerances which give upper and lower limits on the 
expected deviation of uncertain quantities about their nominal values. We consider a design 
to be robust if it can tolerate variability, within the ranges of the tolerances, and still function 
properly. The term “function properly” will be taken to mean the constraints remain feasible 
when subjected to variation. We define this type of robustness as feasibility robustness. 

9.2 Worst-case Tolerances 

9.2.1 Introduction 
We will begin by considering worst-case tolerances. With a worst-case tolerance analysis, we 
assume all tolerances can simultaneously be at the values which cause the largest variation. 
We ignore the sign of the variation, assuming it always adds. This gives us a conservative 
estimate of the worst situation we should encounter. 

9.2.2 Background 
We will consider a design problem of the form, 
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  Min ( ),  f x p  

  s.t. ( ),  1, ,i ig b i m£ =x p !  
 

where  
x is an n dimensional vector of design variables  
p is a l dimensional vector of constant parameters, i.e., unmapped 
analysis variables.  

 
We will group the right-hand-side values, bi, into a vector b. 

 
For a given set of nominal values for x, p, and b, there can be fluctuations Dx, Dp, and Db 
about these nominal values. We would like the design to be feasible even if these fluctuations 
occur. As we will see, in a constrained design space, the effect of variation is to reduce the 
size of the feasible region.  

9.2.3 Two Approaches to Robust Optimal Design 
Several researchers have incorporated worst-case tolerances into the design process, using a 
“tolerance box” approach, as illustrated in Fig. 9.1. A tolerance box is defined for the design 
variables; the robust optimum is the design that is as close to the nominal optimum as 
possible and keeps the entire box in the feasible region. A main drawback is that it does not 
allow us to specify tolerances on parameters. 
 

 
Fig 9.1. Tolerance box approach for robust design with worst-case 
tolerances. 

 
In contrast to the tolerance box approach, the method we will develop relies on “transmitted 
variation.” As will be explained, we transmit the variation from the variables and 
parameters to the constraints, and then correct the nominal optimum so that it is feasible 
with respect to the constraints with the transmitted variation added in. This method is 
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illustrated in Fig. 9.2. The same optimization methods used to find the nominal optimum can 
be used to find the robust optimum, and tolerances may be placed on any model value, 
whether a variable or a parameter. 
 

 
Fig 9.2. Transmitted variation approach for robust design with 
worst-case tolerances. 

 

9.2.4 Calculating Transmitted Variation: Linear Analysis 
Worst-case tolerance analysis assumes that all fluctuations may occur simultaneously in the 
worst possible combination. The effect of variations on a function can be estimated from a 
first order Taylor series, as follows: 
 

 
  
Δgi =

∂gi

∂x j

Δx j
j=1

n

∑ +
∂gi
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Δpj
j=1

l

∑  (9.1) 

 
where the bars indicate that the absolute value is taken. With the absolute value, (9.1) allows 
the tolerances to assume any sign and therefore computes the worst possible effect of the 
tolerances. We will refer to Dgi as the “functional variation.” For constraints, we must also 
add in variation of the right hand side Dbi, 
 
 i i ig bD = D +D  (9.2) 
 
We will refer to Di as the “total constraint variation.” 
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9.2.5 Developing a Robust Optimal Design 

9.2.5.1 Compensating for Variation 
Robustness can be developed for worst-case tolerances by adjusting the value of the 
constraint functions by the amount of the total constraint variation during optimization. For a 
less than constraint, we add the variation; for a greater than constraint, we subtract the 
variation. In both cases, this has the effect of reducing the size of the feasible region, with a 
corresponding degradation in the value of the objective. Thus a less than constraint becomes, 
   
 i i ig b+D £  (9.3) 
 
A greater than constraint becomes, 
 
  gi − Δ i ≥ bi  (9.4) 
 
Alternatively, we can consider that the variation has reduced (or increased) the right side, 
depending on whether we have a less than or greater than constraint, respectively: 
 
 i i ig b£ -D  (9.5) 
 
 i i ig b³ +D  (9.6) 
 

9.2.5.2 An Efficient Solution Method 
Adding in the transmitted variation can be computationally expensive because the 
transmitted variation is a function of derivatives, and these would have to be evaluated every 
time the constraint is evaluated. 
 
To reduce computation, we propose the following process, 
 
1. Drive to the nominal optimum. 
2. Calculate the transmitted variation. 
3. Adjust the constraint right hand sides by the amount of transmitted variation. 
4. Assuming the transmitted variation is a constant, re-optimize to find the robust 

optimum. 
 
The assumptions that are built into this method are,  

• the robust optimum is close to the nominal optimum. 
• the derivatives are constant, i.e. second derivatives are equal to zero.  

 
These assumptions are consistent with assuming a linear Taylor expansion, (9.1), for the 
transmitted variation. 
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9.2.5.3 An Example: The Two-bar Truss 
We will illustrate the method on our familiar example, the two-bar truss. Now, however, we 
will add in tolerances on all the analysis variables and the right hand side for stress. (The 
right hand side for stress is the yield strength, a material property, and so has variation 
associated with it. The other right hand sides are set by the user and are not uncertain.) Data 
regarding the truss are given in Table 9.1. 

Table 9.1 Worst-case Tolerance Data for the Two-bar Truss 
Description Nominal 

Value 
Worst-case 
Tolerance 

Height, H Design 
Variable 0.5 in 

Width, B 60 in 0.5 in 
Diameter, d Design 

Variable 0.1 in 

Thickness, t 0.15 in 0.01 in 
Modulus 30000 ksi 1500 ksi 
Density 0.3 lb/in3 0.01 lb/in3 
Load, P 66 kips 3 kips 
Yield Strength  
Right Hand Side 100 ksi 5 ksi 

Buckling  
Right Hand Side 0.0 0.0 

Deflection  
Right Hand Side 0.25 in 0.0 

 
Fig. 9.3 is a contour plot showing the design space for this problem. As a first step, we drive 
to the nominal optimum to the problem, which occurs at the intersection of the boundaries for 
stress and deflection, shown as a solid circle in the figure.  
 
We then calculate the transmitted variation, given by (9.1) and (9.2), using derivatives that 
are already available from the nominal optimization. If we subtract the worst-case variation 
for each constraint from the constraint right hand sides, as in (9.5), the new constraint 
boundaries are shown as 1*, 2*, and 3* in the figure. The decrease in the feasible region 
caused by including variation is shaded.  
 
The final step is to drive to the robust optimum, given by the shaded circle in the figure. The 
optimal value of the objective has increased from 15.8 to 18.0 pounds. 
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Fig. 9.3 Decrease in feasible region caused by including worst-case 
tolerances. 

9.2.5.4 Additional Example Calculations 
To illustrate how this method might be implemented “by hand,” we will determine the effect 
on the optimum of the two-bar truss problem caused by just two tolerances. For the nominal 
optimization we have design variables height, diameter, and thickness. We wish to see the 
effect on the optimum of adding tolerances on the load and the width, 
 
 Dload =  2 kips 
 Dwidth =  1 inch 
 
The first step is to drive to the nominal optimum. The optimum occurs with height = 30, 
diameter = 2.204, thickness = 0.067, and an optimal weight of 11.88 lbs, with stress and 
buckling as binding constraints. Gradients at the optimum are given by: 
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The next step is to calculate the transmitted variation to the stress, buckling, and deflection 
constraints. 
 

 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

0.833 1 1.514 2 3.861

2.500 1 1.514 2 5.528

0.005 1 0.00303 2 0.01106

stress

buckling

deflection

D = × + × =

D = × + × =

D = × + × =

 

 
The third step requires that the constraint right hand sides be adjusted. For this problem, 
 

 
stress 100 3.861 96.139 ksi
buckling 0 5.528 5.528
deflection 0.25 0.01106 0.23894 in

£ - =
£ - = -
£ - =

 

 
When we re-optimize in accordance with these new constraints, the new optimum is, height = 
29.95, diameter = 2.22, thickness = 0.070, with a weight of 12.36 pounds, and with stress and 
buckling, again, as binding constraints. 

9.2.6 Verifying the Robust Design: Monte Carlo Simulation 
We have discussed a method to develop a robust design. How can we tell if the design is 
really robust, i.e., how can we be sure that any design within the tolerance bounds will 
remain feasible? One approach is Monte Carlo simulation, which refers to using a computer 
to simulate variation in a design. The computer introduces variation within the bounds of the 
tolerances for each variable. It then calculates the functions. We do this many times—in 
effect, we have the computer build thousands of designs—and we keep track of how many 
designs violate the constraints. For a worst-case analysis, the number of infeasible designs 
should be zero. 
 
Since these are worst-case tolerances, we will assign load and width to have uniform 
distributions. For a uniform distribution, the ends of the range have the same probability of 
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occurring as the middle. So, for example, the load would be assumed to be uniformly 
distributed with a lower bound of 64 and an upper bound of 68. 
 

  
Fig. 9.5 Uniform distribution for load. 

 
The width has a similar distribution, only the lower bound is 59 and the upper bound is 61. 
We then have the computer generate many designs where load and width are uniformly 
distributed between their tolerances, and we count the infeasible designs. 
 
The output from running a Monte Carlo simulation (100,000 trials) on the robust design of 
the previous section is shown below, 
 
no. of trials= 100000 
 mean values, variables given 
  29.952      60.000      2.2203      .69680E-01  .30000 
  30000.      66.000 
 mean values, variables calc 
  29.951      60.002      2.2203      .69680E-01  .30000 
  30000.      66.002 
 standard deviations, variables given 
  .00000E+00  .57735      .00000E+00  .00000E+00  .00000E+00 
  .00000E+00  1.1547 
 standard deviations, variables calc 
  .49268E-04  .57735      .37418E-05  .15760E-06  .63290E-06 
  .00000E+00  1.1517 
 mean values, functions 
  96.103     -5.5265      .19223 
 std devs, functions 
  1.7410      2.2150      .43622E-02 
 
 infeasible designs for function 1 =  0 
 infeasible designs for function 2 =  0 
 infeasible designs for function 3 =  0 
 
 total number of infeasible designs =  0 
 
Out of 100,000 simulations, there are no infeasible designs. 
 
It is instructive to compare these results to the non-robust design. If we run the same 
simulation, with the same tolerances, for the nominal optimum, we get, 
 
 no. of trials= 100000 
 mean values, variables given 
  30.000      60.000      2.2044      .67404E-01  .30000 
  30000.      66.000 
 mean values, variables calc 
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  30.000      60.002      2.2044      .67404E-01  .30000 
  30000.      66.002 
 standard deviations, variables given 
  .00000E+00  .57735      .00000E+00  .00000E+00  .00000E+00 
  .00000E+00  1.1547 
 standard deviations, variables calc 
  .00000E+00  .57735      .43317E-05  .13389E-06  .63290E-06 
  .00000E+00  1.1517 
 mean values, functions 
  99.982     -.32641E-01  .19999 
 std devs, functions 
  1.8111      2.2673      .45353E-02 
 
 infeasible designs for function 1 =  49812 
 infeasible designs for function 2 =  49213 
 infeasible designs for function 3 =  0 
 
 total number of infeasible designs =  56366 
 
Out of 100,000 simulations, 56,366 designs had at least one infeasible constraint. 

9.3 Statistical Tolerances 

9.3.1 Introduction 
Worst-case analysis is almost always overly conservative. There are some conditions, such as 
thermal expansion, which must be treated as worst-case. Often, however, it is reasonable to 
assume that fluctuations are independent random variables. When this is the case, it is very 
unlikely they will simultaneously occur in the worst possible combination. With a statistical 
tolerance analysis, the low probability of a worst-case combination can be taken into account. 
By allowing a small number of rejects—infeasible designs—the designer can use larger 
tolerances, or, as will be shown, back away from the optimum design a smaller amount than 
for a worst-case analysis. 

9.3.2 Background 
For this situation, variables with tolerances will be treated as random variables. Typically a 
random variable is described by a distribution type and distribution characteristics such as the 
mean and variance (or standard deviation, which is the square root of variance). We will 
consider all of the variables which have tolerances to be random variables described by 
normal distributions, with a mean at the nominal value and specified standard deviation. 

9.3.3 Calculating Transmitted Variation: Linear Statistical Analysis 
Just as with worst-case tolerances, we will transmit the variation of the variables into the 
constraints. Once again, we will rely on a first-order Taylor series, only this time we will find 
the mean and variance of the series. The mean of a first-order Taylor series is just the 
nominal value; the variance is given by: 
 

 
  
σ gi
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∑  (9.7)  
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 2 2 2

i ii b gs s s= +  (9.8) 
 
We will refer to 2

is as the “total constraint variance.” 
Thus we will consider that randomness in the variables induces randomness in the functions. 
The constraint boundaries are no longer described by a sharp boundary but rather by a 
distribution, with the mean at the nominal value, and with one tail inside the feasible region 
and one tail outside the feasible region. This is illustrated in Fig. 9.6a. 
 

  
 (a) (b) 
Fig. 9.6 The distribution of a constraint function. (a) The distribution with no shift. (b) The 
distribution with a shift to reduce the number of rejects. 
 
We note that the distributions shown in Fig. 9.6 are normal. This is an assumption of this 
method. An important theorem in statistics, the Central Limit Theorem, states that sums and 
differences of random variables, regardless of their distributions, will tend to be normal. With 
engineering models, variables combine not only as sums and differences but as products, 
quotients, powers, etc. This means the assumption that the functions are normally distributed 
will only be approximately satisfied. 

9.3.4 Developing a Robust Optimal Design with Statistical Tolerances 

9.3.4.1 Compensating for Statistical Variation 
As with worst-case tolerances, we will modify the constraints to take into account the 
transmitted variation. Thus each constraint becomes, 
 
 i i ig k bs+ £  (9.9) 
 
Alternatively, we can consider that the variation has reduced the right hand side, 
 
 i i ig b ks£ -  (9.10) 
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where k is the number of standard deviations we decide to shift. Unlike the worst-case 
approach where we wanted to be feasible 100% of the time, with the statistical approach we 
set the level of feasibility we desire. For a normal distribution, 
 

Table 9.2.   
Relation of k to Constraint Feasibility 
Value of k (number of 
standard deviations) 

Percentage of Designs 
that will be Feasible 
(Normal Distribution) 

1 84.13 
2 97.725 
3 99.865 
4 99.9968 

 
Shifting a constraint to control the number of rejects is illustrated in the Fig. 9.6b. 
 
To obtain a robust optimum based on a statistical analysis, we follow essentially the same 
steps as with the worst-case approach, 
 
1. Drive to the nominal optimum. 
2. Calculate the transmitted variance. 
3. Reduce the allowable value for a constraint by the amount of k times the standard 

deviation for a less than constraint; increase it for a greater than constraint. This has the 
effect of shifting the constraint distribution into the feasible region, as shown in Fig. 8.6b. 

4. Assuming the transmitted variation is a constant, re-optimize to find the robust optimum. 
5. Estimate the overall estimated feasibility as the product of the feasibilities for the binding 

constraints.  
 
The assumptions of this approach include, 
 

• Variables are independent and normally distributed. 
• The robust optimum is close to the nominal optimum. 
• Derivatives are constant, i.e., second derivatives are equal to zero. This assumption is 

consistent with assuming a linear Taylor expansion, (9.7), for the transmitted 
variation. 

• Constraints are normally distributed.  
• Constraints are not correlated. This means that for a random perturbation, the 

probability of one constraint being violated is independent of other constraints. This 
allows us to multiply the probability of each constraint together (step 5 above) to get 
the overall feasibility. 

 
These assumptions are not always completely met, so we consider this method as a means of 
estimating the order of magnitude of the number of rejects. This means we will determine 
whether the per cent rejects will be 10%, 1%, 0.1%, etc. This level of accuracy is usually on 
a par with the accuracy of tolerance data available during the design stage. 
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9.3.4.2 An Example: The Two-bar Truss 
In this section we will apply the method to the two-bar truss. The tolerances are given in 
Table 9.3 below. For comparison to a worst-case tolerance analysis, the standard deviations 
are made to be one third the worst-case tolerances given in the previous section. This means 
a worst-case tolerance band would be 3s± . 
 

 
Table 9.3 Statistical Tolerance Data for the Two-bar Truss 

Description Nominal 
Value 

Standard 
Deviation 

Height, H Design 
Variable 1.67 in 

Width, B 60 in 0.167 in 
Diameter, d Design 

Variable 0.033 in 

Thickness, t 0.15 in 0.0033 in 
Modulus 30000 ksi 500 ksi 
Density 0.3 lb/in3 0.0033 lb/in3 
Load, P 66 kips 1 kips 
Yield Strength   
Right Hand Side 100 ksi 1.67 ksi 

Buckling   
Right Hand Side 0.0 0.0 

Deflection   
Right Hand Side 0.25 in 0.0 

 
We desire each constraint to be feasible 99.865% of the time. To effect this, we calculate the 
variance for each constraint using (9.7). In the case of stress, which has a tolerance on the 
right hand side, we add in that variance using (9.8). We then subtract 3s from the constraint 
right hand sides, as shown in (9.10).  
 
Fig. 9.7 is a contour plot showing the design space for this problem. The shaded area shows 
the decrease in the feasible region caused by the tolerances. The new constraint boundaries 
are shown as 1*, 2* and 3*. Comparing to Fig. 9.3, we see that the decrease is smaller than 
for worst-case tolerances. The optimal value of the objective has increased from 15.8 to 16.8 
pounds. 
 
We have two binding constraints that should each be feasible 99.865% of the time. The 
predicted overall feasibility is computed to be 0.99865 0.99865 0.9973´ =  or 99.73%. Monte 
Carlo simulation of the robust optimum gives a feasibility of 99.8%. 
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Fig. 9.7 Effect of statistical tolerances on optimum for two-bar truss problem. Shaded 
area is decrease in feasible region caused by including statistical tolerances. Compare 
to Fig. 9.3. 

9.3.4.3 Additional Example Calculations 
As we did for worst-case tolerances, we will show how to implement this method by hand. 
For this problem we have as design variables height, diameter, and thickness. The optimum 
occurs with height = 30, diameter = 2.2044, thickness = 0.06740, and an optimal weight of 
11.88 lbs, with stress and buckling as binding constraints. 
 
We wish to see the effect on the optimum of adding tolerances on the load and the width, 
  

 
  

σ load = 0.6667 kips

σ width = 0.3333 inches
  

 
The first step is to drive to the nominal optimum, which we have already done. The second 
step is to calculate the transmitted variation using (9.7) with derivatives at the optimum: 
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We estimate the variance of the functions as: 
  
   σ stress

2 = (0.833× 0.333)2 + (1.514× 0.667)2 = 1.094   

 
  
σ buckling

2 = (2.500× 0.333)2 + (1.514× 0.667)2 = 1.713   

 
  
σ deflection

2 = (0.005× 0.333)2 + (0.00303× 0.667)2 = 000000686   
 
We will shift the constraints by 3s. These amounts are, 
 

 

  

3σ stress = 3.138
3σ buckling = 3.926

3σ deflection = 0.007856

 

  
We subtract these amounts from the right hand sides, as in (9.10) 
 
 Stress ≤ 100 – 3.138 = 96.86 ksi 
 Buckling ≤ 0 – 3.926 = -3.926 
 Deflection ≤ 0.25 – 0.00785 = 0.2421 in. 
 
When we re-optimize the new optimum is, height = 29.98, diameter = 2.21, thickness = 
0.0694, with a weight of 12.27 pounds, and with stress and buckling as binding constraints. 

9.3.5 Verifying the Robust Design with Monte Carlo Simulation 
We verify the results of the previous section using a Monte Carlo simulation similar to the 
one described for worst-case tolerances, only the independent variables are given normal 
distributions instead of uniform distributions. 
 
The output from running this program is given below, 
 
 no. of trials= 100000 
 mean values, variables given 
  29.980      60.000      2.2122      .69350E-01  .30000 
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  30000.      66.000 
 mean values, variables calc 
  29.980      60.000      2.2122      .69350E-01  .30000 
  30000.      65.997 
 standard deviations, variables given 
  .00000E+00  .33330      .00000E+00  .00000E+00  .00000E+00 
  .00000E+00  .66670 
 standard deviations, variables calc 
  .38388E-04  .33262      .52221E-05  .47925E-07  .63290E-06 
  .00000E+00  .66709 
 mean values, functions 
  96.860     -3.9271      .19373 
 std devs, functions 
  1.0160      1.2838      .25398E-02 
 
 infeasible designs for function 1 =  118 
 infeasible designs for function 2 =  118 
 infeasible designs for function 3 =  0 
 
 total number of infeasible designs =  183 
 
We have 0.183% infeasible designs. We predicted,  
 
 1 (0.99865 0.99865) 0.00270 0.27%- ´ = =  
 
This is well within our desired order of magnitude accuracy. 

9.4 Minimizing Variance: Sensitivity Robustness 

9.4.1 Introduction 
Up to this point we have considered only feasibility robustness: we wanted to develop 
designs that could tolerate variation and still work. We developed a method based on a linear 
approximation of transmitted variation. 
 
For worst-case analysis, we estimate transmitted variation by, 
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For a statistical analysis, we estimate transmitted variation by, 
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Besides feasibility robustness, we might also be interested in sensitivity robustness, which 
refers to reducing the sensitivity of the design to variation. This can be achieved by 
minimizing the transmitted variation as an objective in our optimization problem, either as 
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the sole objective in the problem or in combination with other objectives related to 
performance. The transmitted variation might also be a constraint. 
 
The idea here is to find a region in the design space where the derivatives of the function are 
small. Thus we can reduce the effect of the tolerances without reducing the tolerances 
themselves. This idea is very similar to the central concept of Taguchi methods. Taguchi 
showed that it was possible to reduce variation in a product without reducing tolerances 
(which usually costs money) by moving to a different spot in the design space, where the 
design was less sensitive to the tolerances. In contrast to the computer models we are using, 
Taguchi based his method on using Design of Experiments to obtain models experimentally. 
 
Minimizing variance can be computationally expensive, since we are minimizing a function 
which is composed of derivatives. To obtain a search direction, we will need to take second 
derivatives. 

9.4.2 Example of Minimizing Variation 
We will illustrate the concept of reducing transmitted variation by considering the design of a 
check valve—a device made to restrict flow to one direction only. 
 
A diagram of a check valve is shown in Fig. 9.8. The purpose of the valve is to allow fluid 
flow in only one direction. Fluid can flow through the valve from left to right when the 
pressure of the flow overcomes the force exerted on the ball by the spring. The pressure 
required to unseat the ball is called the “cracking pressure.” It is desirable to minimize 
cracking pressure to reduce pressure drop across the valve; however, cracking pressure must 
be sufficient to prevent backflow. Design variables, parameters and tolerances for this 
problem are given in Table 9.4. 
 

dw

db

q

do dc

lv

Flow

 
Fig. 9.8 Diagram of a check valve. 

 
The design problem is to choose values for the variables to improve the sensitivity robustness 
of cracking pressure (i.e. reduce its sensitivity to variation), subject to constraints on cracking 
pressure, stress at full deflection, ball travel (spring compression) and various diameter 
ratios.  
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Table 9.4. Variables, Parameters and Tolerances for Check Valve 
 
Design Variables 

 
Tolerance 

Standard  
Deviation  

Seat angle, q (degrees) ±1.0 0.3333 
Ball diameter , db (cm) ± 0.025 0.008333 
Spring coil diameter, dc (cm) ± 0.05 0.016667 
Spring wire diameter, dw (cm) ± 0.005 0.0016667 
Spring length unloaded (cm) ± 0.1 0.03333 
Spring number of coils ±0.5 0.16667 
 
Parameters 
Length of valve, lv (cm) ±0.1 0.03333 
Diameter of orifice, dv (cm) ± 0.025 0.008333 
Shear modulus (kPa/m2) ± 7.e5 2.333e5 

 
We will need to combine sensitivity robustness with feasibility robustness to insure that 
cracking pressure is at least 15 kPa (about 2.2 psi) for 99% of all valves. This can be 
accomplished in two steps, where we first minimize variance and then add constraint shifts 
and re-optimize to achieve feasibility robustness. The starting design is given in the first 
column of Table 9.5. 
 
After determining the minimum variance design, the next step was to shift it to obtain 
feasibility robustness. Constraint shifts based on a linear estimate of variance were 
inadequate for this problem so variance was calculated using a second order model. The 
shifted design is given in column 2 of Table 9.5. 
 
Also shown in Table 9.5 is a comparison design. In order to determine the effect of 
minimizing variance we wanted to compare it to some sort of baseline design. We chose as a 
comparison design the design that results from maximizing ball travel as the objective, 
ignoring variance, and with all other constraints the same. The comparison design was then 
shifted to obtain feasibility robustness. 

 
Table 9.5. Starting, Minimum Variance and Comparison Designs 

 
 
Design Variables 

 
Starting Design 

Shifted Min 
Variance Design 

 
Comparison 
Design* 

Seat angle, q (degrees) 45. 34.9 43.5 
Ball diameter , db (cm) 1.25 1.47 0.720 
Spring coil diameter, dc (cm) 1.0 1.13 0.535 
Spring wire diameter, dw (cm) 0.075 0.0755 0.0379 
Spring length unloaded (cm) 3.0 2.00 2.77 
Spring number of coils 10 8 12 
 
Parameters 
Length of valve, lv (cm) 2.5 2.5 2.5 
Diameter of orifice, dv (cm) 0.635 0.635 0.635 
Shear modulus (kPa/m2) 8.3e7 8.3e7 8.3e7 
 
Objective 
Variance of cracking pressure (kPa) 8.70 2.46 5.63 
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Constraints 
Cracking pressure ≥ 15 (kPa) 77 20.02 (b) 25.37 (b) 
0.5 ≤ Ball diam/coil diam ≤ 0.8 0.8 (b) 0.77 (b) 0.74 (b) 
4 ≤ Coil diam/wire diam ≤ 16 13.3 15.03 (b) 14.1 (b) 
Ball travel ≥ 0.5 (cm) 0.8 0.60 (b) 1.63 
Stress ≤ 900000 (kPa) 494000 295000 746600 (b) 
Predicted Feasibility N/A 96.06% 96.06% 
Actual Feasibility N/A 96.42% 96.59% 

The symbol “(b)” indicates a binding constraint 
*the objective for the comparison design was to maximize ball travel. 

 
Monte Carlo simulation was used to verify robustness, and the results are shown in the last 
two rows of the table. During the simulation, pressure values were recorded so that the 
distributions could be graphed. These are shown in Fig. 9.9. The improvement of the 
minimum variance design over the comparison design is clearly evident. 
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Fig. 9.9 Minimum variance and comparison design distributions for cracking pressure 

 


