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CHAPTER 8

CONSTRAINED OPTIMIZATION 2: SEQUENTIAL QUADRATIC
PROGRAMMING, INTERIOR POINT AND GENERALIZED REDUCED
GRADIENT METHODS

8.1 The Interior Point (IP) Algorithm

8.1.1 Problem Definition

In general, for the primal-dual method given here, there are two approaches to developing
the equations for the IP method: putting slack variables into their own vector, and
incorporating slack variables as part of the design variables x. Both methods can be found in
the literature. We have opted for the former, because the development is somewhat more
straightforward. The development of the latter is given in a later optional section.

For simplicity, we will start with a problem that only has inequality constraints.

Min  f(x) (8.1)
s.t. gi(x)ZO i=11 ,m (8.2)

We will add in slack variables to turn the inequalities into equalities:

Min  f(x) (8.3)
s.t. gi(x)—sl. =0 i=1J ,m (8.4)
520 i=L...m (8.5)

Slack variables are so named because they take up the “slack” between the constraint value
and the right hand side. For an inequality constraint to be feasible, s; must be > 0. If (8.4) is
satisfied and s; = 0, then the original inequality is binding.

The IP algorithm eliminates the lower bounds on s by incorporating a barrier function as part
of the objective:

Min  f, = f(x)- w4 In(s) (8.6)
i=1
s.t. gi(x)—si =0 i=1/1 ,m (8.7)
We note that as s; approaches zero (from a positive value, i.e. from feasible space), the
negative barrier term goes to infinity. This obviously penalizes the objective and forces the

algorithm to keep s positive. The IP algorithm solves a sequence of these problems for a
decreasing set of barrier parameters 4. As pzapproaches zero, the barrier becomes steeper and

sharper. This is illustrated in Fig. 8.9.
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Fig. 8.9 Barrier function —xIn(x) for =20, 10 and 1.

We can define the Lagrangian function for this problem as,

L0x8,2) = (0 -13In(5) D 4,(8,(9 ) 839)

Taking the gradient of this function with respect to x,s, A, and setting it equal to zero gives
us the KKT conditions for (8.6)—(8.7),

V L=Vf(x)-) AVg (x)=0 (8.9)
=1

VLI=sl-u=0 i=11 ,m (8.10)

V.L=—(g,(x)-5)=0 i=1/] ,m (8.11)

If we define e as the vector of 1°s of m dimension and,

we can replace (8.10) above with (8.13) below,
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Vf(x)—i/ingi(x):O (8.12)
SAe— ,Lleliﬂ (8.13)
g(x)-s=0 i=1J ,m (8.14)

It is worth noting that as # — 0, the above equations (along with A,s >0) represent the KKT
conditions for the original problem (8.1)-(8.2). Notice that with ¢=0, (8.13) (perhaps more
easily seen in (8.10)) expresses complementary slackness for the slack variable bounds, i.e.
either 4. =0or s =0.

8.1.2 Problem Solution

We will use the NR method to solve the set of equations represented by (8.12)-(8.14). The
coefficient matrix will be the first derivatives of these equations. We note that we have n
equations from (8.12), m equations from (8.13) and m equations from (8.14). Similarly, these
equations are functions of n variables x, m variables A, and m variables s.

The coefficient matrix for NR can be represented as,

(folNR)T (stlNR)T (VAleR)T AX rl

: : : As |[=-| r2 (8.15)
T T T
3
(fo;n+2m)NR) (V.cf(n+2m)NR) (V}Ljr(n+2m)NR) A}L :
where f . (the first NR equation) is given by,
S = Z (8.16)

and /1, r2 and 3 represent the residuals for (8.12)—(8.14). If we substitute (8.16) into the first
row of (8.15), the first row of the coefficient matrix becomes,

a2f m aZgi agl agm
[ze 2 ox> |77 ox, ax E "ox dx, ax [0]---[0] Cox 77 ax
1 i=1 1 —_— 1 1
\v4 T
VT ! 2
Recalling,
VIL=V'f-) iV'g (8.17)

i=1
and
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| » |

J* = (Jk)r=[ vgh, - Vg

(o)

we can write the NR iteration equations at step & as,

VZLk 0 (_Jk)T k ka(X)—Zﬂlnglk(X)
X AX =1
0 A" 8 As* |= SfAfe— e (8.18)
o0 | Al g"(x)—s

At this point, we could solve this system of equations to obtain AXK, As¥, and AAX. However,
for large problems we can gain efficiency by simplifying this expression. If we look at row 2
above,

A'As" +S AL =—S" Ale+ pe (8.19)

We would like to solve (8.19) for As*. Rearranging terms and pre-multiplying both sides by
-1
(Ak ) gives,

As"=—(A) ' S"Ae+ e~ A7IS Ax! (8.20)

For diagonal matrices, the order of matrix multiplication does not matter, so the first term on
the right hand side simplifies to give,

As* =—S'e+uAe— AT'S" AX* (8.21)
Examining the first and second terms on the right hand side, we note that,
u
= 0
s 0|1 A I
-Sfe=- D=8t u(AH)Te= D=5
0 s: 1 0 u 1
A

Equation (8.21) becomes,
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As* =—s" +s" —(A")'S* AX*

(8.22)
=—(A")"'S* Ax*
We define Q) to be,
Qf =(A")'S (8.23)
so that we have,
As* =—QF AL (8.24)
We can then write (8.18) as a reduced set of equations:
v @) [ ae || e Xavae 825)

k k AL
J Q g (x)-s,

This matrix represents a linear symmetric system of equations (symmetric because the oft-
diagonal elements are the transpose of one another), of lower dimension than (8.18) and is

more efficiently solved. Once we have solved for A1*, we can use (8.24) to get As".

8.1.3The Line Search

It is sometimes said, “the devil is in the details.” That is certainly true for the line search for
the IP method. Modern algorithms employ a number of line search techniques, including
merit functions, trust regions and filter methods [ XX, XX, XX]. They include techniques to
handle non-positive-definite hessians or otherwise poorly conditioned problems, or to regain
feasibility. Sometimes a different step length is used for the primal variables (x, s) and the
dual variables (A). We will adopt that strategy here as well.

We can consider Ax, As, A4, as the search directions for x, s, and A. We then need to
determine the step size (between 0-1) in these directions,

X =x" + o AXF (8.26)
A= v af AL (8.27)
s =s" + o' As* (8.28)

Similar to SQP, a straightforward method is to accept o if it results in a decrease in a merit
function that combines the objective with a sum of the violated constraints, i.e.,

viol

P=f"+ VZ|gi‘
i=1

9/6/17 5



Chapter 8: Constrained Optimization 2

where v is a constant. We will also reduce the step length if necessary to keep a slack
variable or a Lagrange multiplier positive.

8.1.4 Example 1: Two Variables, One Constraint

We will apply the IP method to the same example given for SQP in Section 8.3.8, namely,

Min  f(X)=x'—2x,x" +x; +x —2x +5

st g(x)=—(x+025)" +0.75x, >0

We reformulate the problem using a slack variable, s;, for the constraint:

Min ( ) X! =2x,x0 + x5 +x0 —2x,+5
ot ( )=-(x +025) +0.75x, —5,=0
>0

We eliminate the lower bound for 51 by adding a barrier term,
Min  f, (x) = f(x)—uln(s,)

s.t. g(x) =—(x1 +O.25)2+O.75x2 —s,=0

At the starting point we have,

(x') =[-14] r2 =17, (vr*) =[8.6]. g"=24375, (Vg') =[15, 0.75]

We will assume we do not have second derivatives available, so we will begin with the

) 10
Hessian set to V°L’ =L) J J° =[1.5, 0.75]. We will also set z° =5, s =2.4375, /10 =2.
This value of A was picked to approximately satisfy (8.13),i.e. %" -’ =0.

If the merit function increases for a proposed step, we will cut the step in half and continue
doing so several times.

8.1.4.1 First lteration
Based on the data above, the coefficient matrix (refer back to (8.18)) for the first step is,
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1 0 0 -15

0 1 0 -0.75
0 0 2 24375
1.5 0.75 -1 0

For the residual vector, we have,

Vf"(X)—ZﬂZ‘VgZ‘(X)={2}2 o { ° }

S‘Ate— e = 2.4375] 2| 5]=[ -0.125]

[o]

Thus the set of equations for our first step becomes,

g (x)-s" =| 24375 |- 2.4375]

1 0 0 -5 ) 5
0 1 0 -075 o o 45
0 0 2 24375 . ~0.125
15 075 -1 0 A 0

The solution is Ax" =[-0.930, —2.465], As=-3.244, A1=2.713

Because the full step would make the slack negative, we set the step length for x and s to be
0.748 to keep the slack slightly positive. We accept the full step for A. At this trial point the
objective has decreased to 11.78 but the constraint is violated at —0.471. However the merit
function has decreased from 17 to 14.00 and we accept the step. Our new point is

x' =[-1.695,2.157], s=0.012, 1=4.713.

8.1.4.2 Second lteration

At (xl)Tz[—1.695, 21571, f'=11.78, (Vfl)T: [-10.256 —1.435]

i Y
g'=-04714, (Vg') = [2.891 0.75]

We start this step by updating the Hessian of the Lagrangian. To do so, we evaluate the
Lagrangian gradient at x° and x'. We then calculate the y and Ax vectors. (As we did for
SQP, we use the same Lagrange multiplier, A', for both gradients.)
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VL(XO’/11): 8.0 _(4.713) 1.5 |_| 0.930
6.0 0.75 2.465

wed)| 058 He) 3 H 2

-24.811 }

P = VL(xl,zl)—VL(x(’,ﬂ,l) = s

Ax” = -1.695 || —-1.0 |_| -0.695
2.157 4.0 | —1.843

We use this data to obtain the new estimate of the Lagrangian Hessian using BFGS Hessian
update, as we did for SQP (see the SQP example for details). The new Hessian is,

e _[20.762 5.629}

5.629 1910

After evaluating the residuals, our next set of equations becomes,

20.762 5629 0  -2.891 Ay —-23.881
5629 1910 0 -0.75 Lol 4970

0 0 4713 0.012 Asl —-0.943
2891 075 -1 0 Al —0.484

The solution gives: Ax’ =[1.104, —3.319], As=0.218, AA1=-6.797. For A we only take

0.693 of the step to keep A > 0. With the full step for x and s, our merit function decreases
from 14.0 to 10.8. Our new point is,

(xz)T=[—o.592, ~1.162], s=0.230, A=0, f=8.820, g=-0.988

Subsequent steps proceed in a similar manner. The progress of the algorithm to the optimum,
with our relatively unsophisticated line search, is shown in Fig. 8.10 below. The algorithm

reaches the optimum in about nine steps. At every iteration we reduce p according to the
k

equation 4" = ,u? For comparison purposes, the progress of the Interior Point method in

fmincon on this problem is shown in Fig. 8.11.
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Example of Interior Point Method

6 T

Fig 8.10. The progress of the IP algorithm on Example 1.

Example of Interior Point Method

6 T

x2

Fig. 8.11 Path of fmincon IP algorithm on same problem.
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8.1.5 Example 2: One Variable, Two Constraints

In this example problem the functions are very simple, but the setup for the constraints is
more involved than the previous example. We will show how the problem changes when we
have two slack variables.

Min f= xl2
s.t. —2x,+920
x, =1

We will change the inequality and the bound to equality constraints by means of slack
variables so that we have,

Min flez

s.t. —2x1 +9—s1 =0
xl—l—s2=0
s,s >0

1’72

We remove the bounds on the slacks by adding barrier terms,

2
Min  f =x/- £ In(s)
i=1
s.t. —2x,+9-s5,=0
x —l-s,=0
By inspection, the solution to the problemis x, =1, s, =7, s5,=0;, f=1.
8.1.5.1 First lteration

. . _ 0\” _ 0 _ 0 _ 0 _
At our starting point x, =3, (s ) =[3,2], /=9, g =0, g,=0
We also have, V/* =[6], V’f=[2], Vg =[2], Vg,=[1l, V'g=[0], Vg, =[0]
Wewilluse ' =2, a"=0.5, (A°)" =[L1]. Thus,

I

Because we only have one variable, the Hessian of the Lagrangian is just a 1x1 matrix (we
use the actual second derivative here for simplicity):

VIL=V'f -2V - A,Vg, =[2]-(D[0]-(D[0]=[2]

10
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With this information we can then build our coefficient matrix,

, 2 0 0 2 -

Vit o (=) 0 1 0 3 0
0 A* S |2 0 0 1 0 2
O o 2 210 0 0
I 111 0 =10 0

The vector of residuals is,

Vf"(X)—Zﬂngf(XF [6]-(D[-2]-(D[1]=7

SkAke_luke:|: 3 0]: 1 0 :|: 1 }:2'0{ 1 }:{ 1 }
0 2101 1 1 0
keey_ok—| O
wso]

We can then solve for our new point as (recall alpha = 0.5),
T

x'=2.174, (sl) [4.652,1.174], (ll)T:[0.283,1.413] at which point = 4.73, and
g::O, gézO.

8.1.6 *An Alternate Development of the Newton Iteration Equations

*This section is optional.

As mentioned at the start of the section on IP algorithms, there are two approaches to
developing the NR equations: separating out the slack variables in their own vector, and
including the slacks as part of the x vector. Previously we kept the slacks separate. Now we
will combine them with x. This development follows the work by Wachter and Biegler [ XX,
XX].

For simplicity, we will start with a problem which only has equality constraints. We will,
however, include a lower bound on the variables:

Min  f(x) (8.29)
s.t. gi(x)zO i=11 ,m (8.30)
x>0 (8.31)
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As before, we eliminate the lower bounds by including them in the objective function with a
barrier function:

Min  f = f(x)- ,uiln(xi) (8.32)

st g(x)=0 i=1 ,m (8.33)

We now consider the necessary conditions for a solution to the barrier problem represented
by (8.32)-(8.33). We first define,

2 =£ (8.34)
xi

We can write the KKT conditions as,

m

Vf(x)-D . AVg (x)-2=0 (8.35)
i=l

g(x)=0 i=17 ,m (8.36)

xz—u=0 =1/ ,n (8.37)

If we define e as the vector of 1’s of » dimension and,

-
=
)
N

we can replace (8.37) above with (8.40) below,

Vf(x)—i/ll.Vgi(x)—z:O (8.38)
gl.(x):Ol_ i=1 ,m (8.39)
XZe—pe=0 (8.40)

As 11— 0, the above equations (along with z > () represent the KKT conditions for the

original problem. The variables z can be viewed as the Lagrange multipliers for the bound
constraints. Notice that with =0, (8.40) expresses complementary slackness for the bound

constraints, i.e. either x, =0or z =0.

12
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8.1.7 Problem Solution

We will now construct the coefficient matrix for the Newton iteration. We note that we have
n equations from (8.35), m equations from (8.39) and n equations from (8.37). Similarly,
these equations are functions of n variables x, m variables A, and » variables z.

For example, the first row of the coefficient matrix for NR could be represented as,

AX

T T T
{ (folNR) (V/lleR) (szlNR) AL :_[ rl :| (8.41)
Az
where f . is given by,
0 -, O
S = o /1, & ., (8.42)
ox, ‘o 'ox

1

and 7/ represents the residuals for (8.38). If we substitute (8.42) into matrix (8.41), the first
row of the coefficient matrix is,

e | e S
12 ~ 1 X, x 0 = ox, ax X, ax, dx, T
v.fT v, /7 )
Defining,
VIL=V'f-Y AV’g +uX" (8.43)
i=l
we can write the NR iteration equations at step & as,
Vi (=) ;
x AX rl
J 0 0 ALY =4 2 (8.44)
YA 0 X' | A r3

The reader might wish to compare this with (8.18). As before, we could solve this system of
equations to obtain Ax¥, AAX, and Az*. However, we can simplify this expression. We will
start by looking at the third set of equations in (8.18) above,

Z'AX* +0+ XAz =X "Z e+ pe (8.45)

where we have substituted in the actual residual value for 73, i.e.,

9/6/17 13
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—r3=-X"Z"e+ ue

We would like to solve (8.45) for Az*. Rearranging terms gives,

X'Az* =-X"Z' e+ ye— 7' Ax*
If we pre-multiply both sides by (X¥)! we have,

Az =-Z e+ u(X*)e— (X)) Z Ax"

Examining the first and second terms on the right hand side, we note that,

-Z'e=- Cl=-z" wXM)e=

Equation (8.47) becomes,

Azf =—7" + 72" —(X*) ' ZF Ax*

=—(X""'Z Ax*
We define S to be,
S =(X""Z"
so that we have,
Az" =-S*Ax"

Now we will examine the first two rows of (8.44). These represent equations,

VLXK +(-0") AZF+-1AZF =]
JAX" =—r2

=

=

(8.46)

(8.47)

(8.48)

(8.49)

(8.50)

(8.51)
(8.52)

We see that Az* only appears in (8.51). If we substitute (8.50) for Az* and gather terms,

(8.51) becomes,

14
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(V2 st |axt +(-94) a2k =1 (8.53)

or in matrix form,

viLes ()| ={ rl} (8.54)
Jk 0 A/lk l"2

Once we have solved for Ax*, we can use (8.50) to get Az".

8.1.8 Example 1: Solving the IP Equations

We will illustrate this approach on a similar example problem used earlier:

Min f= xl2
s.t. —2x,+920
x,20

We will change the inequality constraint to an equality constraint by means of a slack
variable, x2, so that we have,

Min fle2
s.t. —2x,+9-x,=0
x,x, >0

We will eliminate the lower bounds by using a barrier formulation:

2
Min  f = X - wy. In(x,)
i=1

s.t. —2x1 - X, +9=0

starting from (x°)" =[3,3]. At this point, £° =9, (Vf°)" =[6,0]; g° =0,(Vg®)" =[-2,-1].

We will set #2=10 and A =1. This then gives, z, =% =3.333 and z, = £~ =3.333 Noting,

X X

VoV S AV 41X {2 0}_1{0 0} L1110
' f%"g’ﬂ 00()00 0 1.111

2

JE=[-2,-1]
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We can write the coefficient matrix,

T 311 0 2 -1 0

viL (_Jk) - 0 1111 1 0 -1
J* 0 0 |=| -2 -1 0 0 0
VA 0 X+ 3333 0 0 3 0

| ] 0 3333 0 0 3

By evaluating (8.38) through (8.40) we find the vector of residuals to be,

4.667

rl -2.333
— r2 |=— 0
r3 0
0

Solving this set of equations, gives Ax = 0712 , AM=-0.831, Az= 0.791
1.424 -1.582

If we take the full step by adding these delta values to our beginning values, we have

Xl — 2.288 , 21 20.169, Zl — 4.124
4.424 1.805

At this new point the constraint is satisfied (g' =0) and the objective has decreased from 9 to
5.235.
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The IP algorithm uses “barrier functions” to enforce feasibility of the constraints. It can be
used on very large problems. Continue....

The GRG algorithm works by computing search directions which improve the objective and
satisfy the constraints, and then conducting line searches in a very similar fashion to the
algorithms we studied in Chapter 3. GRG requires more function evaluations than SQP, but it
has the desirable property that it stays feasible once a feasible point is found. If the
optimization process is halted before the optimum is reached, the designer is guaranteed to
have in hand a better design than the starting design.

Other more sophisticated approaches apply trust regions and filter methods. [ XX, XX]. For
example we might accept a if it leads to “sufficient” progress towards reducing the barrier
function or the constraint violation. Part of this approach is to maintain a filter which
contains combinations of constraint violation values and barrier function values that are
prohibited for a successful step length. Initially, the filter is set so the algorithm will not
allow trial points to be accepted that exceed a maximum constraint violation. Later the filter
is augmented with additional conditions which help insure the algorithms does not cycle
between points that alternate between decreasing the constraint violation and the barrier
function.

If we use the more efficient method to solve these equations represented by, we first compute

S:
S — (Xk)—IZk _| 0.333 0 3.333 0 _| 1111 0
0 0.333 0 3.333 0 1.111

We can then define the set of equations given by XX,

4.222 0 2 4.667
0 2222 1 |8 — 5333
2 -1 o |M 0

The solution gives us the same Ax and AA,

ax=| 0712 As 0831
1.424

Substitution of the Ax values into (8.24) gives us Az:
Azt = —SFAxF = — 1.111 0 -0.712 |_| 0.791
0 1.111 1.424 -1.582
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which is what we computed previously.
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