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In the previous chapter we examined the necessary and sufficient conditions for a constrained
optimum. We did not, however, discuss any algorithms for constrained optimization. That is

the purpose fahis chapter.

The three algorithms we will study are three of the most com8exuenal Quadratic
Programming $QB is a very popular algorithm because of its fast convergence properties. It
is available in MATLABand iswidely usedThe Interior Point (IP) algorithm has grown in
popularity the past 15 years and recently became the default algorithm in MATLAB. It is
particularly useful for solvin¢arge scale problemsrhe Generalzed Reduced Gradient

method GRG)has beenwn to be effective on highly nbimear engineering problenasnd

is the algorithrmusedin Excel.

SQP and IP share a common background. Both of these algorithms apply the-Newton
Raphsor(NR) technique for solving nonlinear equations to the KKT equationa f
modified version of the problerithus we will begirwith a review of the NR method.
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Before we get to the algorithms, there is some background we need to cover first. Thi
includes reviewing thélewtonRaphsor(NR) method for solving sets of nonlinear
equations.
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TheNR method is usetb find the solution to sets abnlinear equation$:or example,
suppose we wish to find the solution to the equation:

X+2=¢

We cannot solve fax directly. TheNR method solves the equation in an iterative fashion
based on results derived from the Taylor expansion.

First, the equation is rewritten in the form,
x+2! &= 0 (8.1)

We then provide a starting estimate of the valuetbft solves the equatiofhis point
becomes the point of expansion for a Taylor series:
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f
f 10+ ddg(R(x" x°) (82)

where we use the subscript ONRO to distinguish betweeniarfurivére we are applying
the NR method and the objeeé function of an optimization problem/e would like to
drive the value of the function to zero:

0
0=f° +dfNR x-X° (8.3)
NR dX

If we denotd x° =x" x°, and solve forl x in (8.3):

n 0
1 w0 fNR

X0 =—_NR_ 84
df® / dx (84

We then add xto x° to obtain a new guess for the valuexdifiat satisfies the equation,
obtain the derivative there, get the new function value, and iterate until the functioowalue
residual goes to zerol'he processsiillustratedn Fig. 81 for the examplgiven in(8.1)

with a starting guess= 2.0.

.
| dy /dx Second trialx = 1.46¢
2 F|rst trial, x =2
|
Y ° i 5 x
-2
-4
Fig. 81 NewtonRaphson method qi8.1)
Numaeical results are:
X f(x) df/dx
2 £8.389056 £65.389056
1.469553 £0.877738 £8.347291

1.20732948 £0.13721157 | £P.34454106
1.14880563 £0.00561748 | £P.15442311
1.146198212 | £0.000010714| £r.146208926
1.1461932206| £0.00000000004 £P.1461932254
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For simple rootsNR hassecond order convergencehis meanshat the number of

significant figures in the solutiomughlydoubles at each iteration. Véan see this in the

above tablevhere the value of atiteration 2has one significant figure (1)t éeration 3 it

has one (It atiteration 4 it has three (1.14); at iteom 5 it has six (1.14619), and so. e

also see that the error in the residual, as indicated by the number of zeros after the decimal
point, also decreases in thislféon, i.e.the number of zesoroughly doubles at each

iteration.
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TheNR method is easily extended to solvequation im unknownsWriting the Taylor
series for the equations in vector form:

0= 2+ (1 £2) "

0 = fZONR ( fZONR)T !
E E
0 = anNR ( anNR)T "

We can rewrite these relationshgs

o \T% .
f]_NR) : $ ) leR

T '
I fZNR) '(X $) fZNR ' (85)
! $ :
#) anR &

T

o) &

FHAALBHLL

For 2 X 2 System

vf vf N

!Xl !Xz $(X1 $)leR'
!f2NR !fZNR §(X2 & ﬁ) fZNR &
b 1% g

(8.6)

In (8.5) we will denote the vector of residualsthe starting poinasf .. We will denote the
matrix of coefficients a&. Equation(8.5) can then be written

Gl X° ="f° 8.7)

The solution is obviously
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1x°=" (G7)fe (89
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In this section we will make a very important connedtione will applyNR to solve the
necessary conditions. Consider for example, a very simplél Gasencastrainedoroblem
in two variableswith objective functionf. We know the necessary conditions are,

.

'x,

o

I'x,
Now suppose we wish to solve these equations UsRighat is we wish to finthe valuex*
thatdrives the partial derivative® zero. In terms of notation and discussion this gets a little
tricky because thBIR method involves taking derivatives of the efijas to be solved, and
the equations we wish to solve are composed of derivatives. So when we sul@sdituriéo
theNR method, we end up witbecondleriatives.

(8.9)

!
For exanple, if we setf = ' and f,, . =—, then we can writ¢8.6) as,

X, X,
Coese oo b
Cixdxe Dodxat o T Hxa (8.10)
* ;i?/o | ulflo/o-§ Xz i */éiuo/o' |
NEE YRR RY N ) #X&
or,

(!)/#zf #f " I

_ - N 0D —

e I % g%#"l (8.11)
ot #E X)) R M

(It #5 ) (%#XZ)

which should béamiliar from Chapter 3, becaugg11) can be written in vector form as,
HI x="# f (8.12
and the solution js

"= | (H!l# £ (8.13
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We recogniz€8.13) as Newtornmethod for solving fornunconstrainedptimum Thus

we have the important result tié¢éwtonOs methithe same as applyifgRon the

neessary conditions for an unconstrained prohl&nom the properties of tHéR method,

we know that if NewtonOs method converges (and recall that it doesnOt always converge), it
will do so with secondrder convergence

Both SQP and Ihethods extend thesseas to constrained problems
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The SQP algorithm was developed in the early 1980@arily by M. J. D. Powell, a
mathemécian at Cambridge Universif@3, 24. SQPworks by solving for where theKT
equations are satisfied. SQP is a very efficient algorithm in terms of the number of function
callsneeded to get to the optimuihconverges to the optimum by simultaneously

improving the objective and tighteningasbility of the constraintsOnly the optimal design

is guaranteed to be feasible; intermediate designs may be infeasible. It requires that we have
some means of estimating the active constraints at each step of the algorithm.

We will start with a problem tich only has equality constraints. We recall that when we
only have equality constraints, we do not have to worry about complementary slackness
which makes thing simpler. So the problem we will focus on at this point is,

Min  f(x) (8.19)
s.t. g(x)=0 i!'l..m (8.15

)808( %BC(,3$(#¥GG<=UAPF;A%:

As we have previouslgnentionedn Chapter 7a problem with a quadratic objective and
linear constraints is knanas aquadratic programming problenfhese problems have a
special name because KKT equationsare linearexcept for complementary slackness)

and are easily solved. We will make a quadratic programming approxiraatioa pointx*
to the problem(8.14)-(8.15) given by,

f,= 1 fk)T"x+%" XT1 2Lk x (8.16)
T ) ;
gi]a:gik+(! gik) "x=0 i=1E,m (8.17)

where the subscriptindicates the approximationCloseexaminatio of (8.16) shows
something unexpected. Instead!off as we would normallpaveif we were doing a Taylor
approximation of the object, we have L, the Hessian of the Lagrangian function with

respect to x. Why is thihie case? Iis directly tied toapplyingNR on theKKT, as we will
presently showFor now we will just accept that the objective uses the biesdithe
Lagrangian instead of the Hessian of the objective.
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We will solvethe QP approximatior{8.16)-(8.17), by solving theKKT equations for this
problem, which, as mentioned, are linéltese equatioraregiven by,

" f# § rngz 0 (8.18)

9. :(I):l fori=1E ,m (8.19
Since, for examplefrom (8.16),

L =1 fl+1 2L x

we can also write these equationsarms of the original problem,

LEf+1 2L x #0481 g =0 (8.20

i=1

g +(1 g¢) "x=0 fori=1E,m (8.22)

These are a linear set@fuations we can readily solve, as shown in the examfhe next
section We will want to writethese equationsven more conciselyt we define the
following matrices and vectors,

n T %
s(1a) 0
1 T n
F=f o () =gt ey
$ k\T '
o) g
v $
#8 & m
gk:#' & IZLk:l ka(*) 2.k
# -k & X i:lz i
# &, &

We can wrie (8.20)-(8.21) as,

! §Lk"x+(#Jk)T$=#! £* (822
J¥ x="g" (8.23

Again, to emphasize, this set of equations represents the soluf@h8e(8.19).
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Suppose we have as our approximation the following,

"I x # "1 O#' X
f.=3+[3 2]3)(1%%[!& ! Xz]%) y%L%
x (8.29)
g,=5+|1
+ dg
We can write out th&KT equations for this approximation as,
m % % Youx (o
IXE 3 g__o—-°3( 61 0 (%, 61 (g
=1 &2) &0 1)&+x2) &3)
(8.25)
Youx (
g,=5+%1 3 (' =0
& ) ]
We canwrite these guations in matrlx form as,
" 10/6439(1 % 3
go 1 "3.8x = %2 (8.26)
i3 Og/y (&%
The solution is,
$'X % #$2.6
g“xz = §0.8. (8.27)

&) @04

ObservationsThis calculationrepresents the main step in an iteration of the SQP algorithm
which solves a&equencef quadratic programslf we wanted to contine, we would add

I Xxto our currenk, update the Lagrangian Hessiamake a new approximation, solve for
that solutionand continue iterating in this fashion.

If we ever reach a point whetexgoes to zeras we solvdor theoptimum ofthe
approximationthe originalKKT equations are satisfielVe cansee this by examining
(8.20)-(8.21). If ! xis zero, we have,

Vi +VilAx -y A'Vg =0 (8.29)
) i=1

=0
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+(!#gi);'€'Bx:0 fori=1E ,m (8.29)

=0
whichthenmatch(8.18)-(8.19).
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In this section we wish tlmok at applying th&R methodto the orignal KKT equations.
TheKKT equations for a problem with equality congitaionlyare,

"t $r g O (8.30)

i=1

g, =0 i=1E,m (8.31)

Now suppose we wish to solve these equations usingRhaethod.The coefficient matrix
for NR will becomposed of the derivatives @&.30)-(8.31). For examplethe first row of the
coefficient matrix would be,

# T )X & ﬁr;leR ((g
ol hne) () () | (832)
2NR
where functionf,, given by,
fae Lt
leR_E %#q (8.33

If we substitue (8.33) into (8.32), the first rowbecomes,

?/_p2 " m#| g.;(<-%| " m#i !zgi Sc,E’?/O!Zf " m#l l gl Sc?/'?lglgc'{?'g(E '4” mi(c
i=1 )&XZ Xl i=1 'lexl) 81|Xn!X1 i=1 'anxl)& Xl)& Xl) & Xl)
Recalling,

a=v o2

i=1
And using the matrices,

n %

o)
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|
49
g =# |
# k
# 9,

' )Z(Lk:' 2fk(* )il 29ik

i=1

RO RS

we canwrite the NR equations in matrix form,as

# # T &
oo 20 () et S 1)) ¢ 639
%, @) U8 gy |
3 J 0 &% (9°) (

If we do the matrix multiplications we have
20w (804) (S8 = £ (09) 80 (8:35)
Jrx=" (gk)

and ollecting terms,
! il_k"x+(#Jk)T$:#! K (8.36)

J*Ax =—(g")

which equationsarethe same a8.22)-(8.23)). Thuswe see thasolving for the optimum of

the QP approximation is the samedtsng aNRiteration on theKKT equationsThis is the

reason we use the Hessian of the Lagrangian function rather than the Hessian of the objective
in the approximation.
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In the previous section we considered equality constraints \&@yneed to extend these
results to the general ca¥®e will state this problem as

Min  f(X)
st g(x)! 0 i=1E ,k (8.37)
g,(x)=0 i=k+lE ,m
The quadratic approximation at pokftis:

Min £, = £ (! fk)T"x+%("x)T! 2 ko

. ~K k T H—
st g.:g+(! o) "x#0 =12,k (839
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gik+(! gi")T "x=0 i=k+1...m

Notice that the approximations are a function onlyxfAll gradients and the Lagrangian
hessian in(7.40)are evaluated at the point of expansion and so represanhlquantities.

In the article where PoweR4] describes this algorithime makes a significant statemeatt
this point Quoting, OThe extension of the Newton iteration to take account of inequality
constraints on the variables arises from the factthigavalue of! x that solveg$8.36) can
also be found by solvingguadratic programming probler@pecifically,! x is the value

that makes the quadratic function(8.38) stationaryO

Further, the value df for theKKT conditions isequal to the vectasf Lagrangemultipliers
of the quadratic programming problefrhus solving the quadratic obje® and linear
constraints ir(8.38) is thesame as solving tH¢Riteration on the originalKKT equations

Themain difficulty in extending SQP to the general problem has to dwithéhe
complementary slackness condition. This equatioroisinear, and so makdke QP

problem nonlinear. We recall that complementary slaskibasically enforces that either a
constraint is binding or the associated Lagrange multiplier is zero. Thus we can incorporate
this condition if wecandevelop a method tetermine whiclinequalityconstraints are

binding at theoptimum An example ofuch asolution techniqués given by Goldfarb and
Idnani[25]. This algorithm starts out by solving for the unconstrained optimum to the
problem ancevaluatingwhich constraints are violated. It theroves to adih these

constraints until its atthe optimum. Thus it tends to drive to the optimum from infeasible
space.

There are other important details to develop a realistic, effi§i@malgorithm.For example,
the QP approximation involv&the Lagrangian hessian matrix, which involves second
derivatives.As you mightexpect, we don't evaluate thiessian directijout approximaté
using a quasNewton update, such as the BFGS update.

Recall that updates use differenceg emddifferences irgradients to estimate second
derivativesTo estimate! 2L we will need to use differences in the gradient of the

Lagrangian function,
L= e S g
i=1

Note that to evaluate this gradient we need values; fove will get these from our solution
to the QP problentince oumpdatestays positivelefinite, we donOt have tomy about the
method divergindike NewtonOs method does for unconstrained problems.

)808Y =PPC::H(=:(_ _:BC(3$(#JL=<A;BP (

The SQP algorithm has the following characteristics,
¥ The algorithm isusuallyvery fast.

10
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¥l Because it does not rely ortraditional line search, it isften more accurate in
identifying an optimum.

¥ The efficiency of the algorithm is partly because it does not enforce feasibility of the
constraints at each step. Rather it gradually enforcegiieiy as part of th&KKT
conditions. It is only guaranteed to be feasible at the optimum.

Relative to engineering problemthere are some drawbacks:
¥ Becauseét can go infeasible duringptimizatiorN sometimes byelativelylarge
amounts it can crash egineering models.
¥ It is more sensitive taumerical noise andrf error in derivatives than GRG.
¥ If we terminate the optimization process before the optimum is reached, SQP does not
guaranteehatwe will have irhand a better degm thanwe started with

)808Z ,?PPF<Q(=I(,;CGH(I=<(,3$(#JL=<A;BP (

1. Make a @ approximation to the original prah.For the fist iteration, use a
Lagrangian lssian equal to the identity matrix.

2. Solve for the optimum to the QP problefs part of this solution, values for the
Lagrange multipliers are obtained.

3. Execute a simple line search by first steppinth&éooptimum of the ® problem. So the

initial step is Ix, andx™" = x %@+ Ax. See if at this point a penalty function, composed of
the values of the objective and hated constraints, is reducdtinot, cut back the step
size until the penalty function is reskd. The penalty function is given
vio
byP=f +" //|g| where the summation is done over the set of violated constraints, and
i=1
the absolute valued the constraints are takefhe Lagrange multipliers act as scaling or
weightingfactors between thebjective and violated constraints.

4. Evaluate the Lagramgn gradient at the new poir@alculate the difference and in the
Lagrangan gradient". Updatethe Lagrangian Hessian using the BFGS update.

5. Return to Step 1 untib is sufficiently smallWhen !x approaches zero, tiheKT
conditions for the original problem are satisfied.

)808) &UFPGJIC(=I(,3$(#JL=<A;BR

Find the optimum to the problem,

Min  f(x)=x"1 2%+ %+ §! 2% 5
st g(x)=!(x+ 029+ 0.75," (

starting from the poinf-1,4]. A contour got of the problem is shown ig. 8.2. Thisis

similar toRosenbrockOs function with a constraint. iadlemis interestingor several
reasons: the objective is quite eccentrithatoptimumthe algorithmstarts aa point where

11
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the search direction [®inting away from the optimunandthe constrait boundanyat the
starting pointhasa slope opposite to that at the optimu

.8

28.9
22.4
18.0
18
22
39
39
28.9
22.4
18.0
12
10.4

8.25

16 .45

5.12

5.12

6.45

18-25

/ 12.

15.

, 18.
1.00 2.

.00

1
o o ® »

28.9
00

o
o
- -1.00 .000
' x1

Fig. 8.2. Contour plot of example problem for SQP algorithm.

3.00 -2.00

Iteration 1
We calculate the gradients, etc. at the beginning point. The Lagrangian Hessian is initialized
to the identity matrix.

At (x°) =[1,4,f0=17(#f°) =[8,¢ #7 = g) 3'9

¢°=2.4375,(! ¢°)'= [ 15, 0.7
Based on these values, we create the first approximation

fa=17.0+[8 qﬁl Z@d—%[!xl ! )(2]31) (1)#0/'&%)1#

g, =2.4375+[ 1.5 0.7}3}2))):12(%

We will assume the consint is binding Then theKKT conditions for the optimum of the
approximatiorare given bythe followingequations:

“f# I gz 0

12
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9.=0
These equations can be written as,

8+"xi# /(1.9= C
6+"x,# /(0.79= (
2.4375+ 1.5x+ 0.75%

The solution to this set of equations'ig=#0.5," x=# 2.25,/= 5.0

) "Il " 054 1" 1.5#
The proposedtep is x* =x° + $x = =
Prop P ¥ Yy & %0p 8106

Before we accept this step, however, we need to check the penalty function,
vio

P=f+" /g

i=1

to make sure it decreased with the step. At the starting point, the constraint istsattsthe
penalty function is just the value of the objectif®Rs17. At the proposed poirthe objective
value is f =10.5and the constrainsislightly violated withg =! 0.25. The penalty funebn

is therefore,P =10.5+ 5.01! 0.25= 11.7. Since thiss less than 17, we accept the full step.
Contours of the first approximation and the path effttst step are shown in Fig.38

— < @ \\e] (8}

@ N e} — (o)}
— N N ™M [sa}

X2

.00

o

o

T-B.OO -2.00 -1.00 .000 1.00 2.00
x1

Fig. 83 The first SQP approximation and step.

13



Chapter 8 Constrained Optimizatio

Iteration 2
At(x') =[115 1.7, f= 105 f)={ 8D 1

g'=10.25, { g')= [25 0.7
We now need to updatke Hessian of the Lagrangiaio do this we need the Lagrangian

gradient akO andx?!. (Note that we use the same Lagrange multipliér,for both
gradients.)

L4180 | 1.5 ny 0.5
#L(AY)= %.q &(59) 0/97(5 &8
8.04 254 F 205

$L(X1'! )_O/p 1.Q ( )(/97(5 & 4/6/5

—_ 1n 1 On 1 "!Zl'w
=$L(x s Lk O % %_7_0(
115 * 1.0¢ " 0.5
0/275(& %o 4 s

From Chapter 3, we will use the BFGS Hessian update,

$x°

()" H % fx ) H K
(14) 1x* fx ) HIkx !

Hk+l:Hk+

Substituting

"1 Of "1, 04
e op B0 B0 g s 40 2y
. 1.7 "10.54 1. 0#1 05#

[121.0 ! 7.%225% [ 05 22}5&§ 1 %05 %

110 116.8000 560001 0.0471 0.21:
%. 1% %000 1.8667° & %2118 0.95:

#2L'=

.. 117.7529 5.388%
#L = 0
%.3882 1.9137

14
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The second approximation is therefore,

f =10.5+[$8.0 $1. IR
. +[$8.0 $ q)?/_pxz(&z[ % Xz]f)/&sssz 1.9137§‘%%

g, =$0.25+[ 2.5 0.7}3%: Z#%
$72)

As we did before, we will assume the coastt is binding TheKKT equations are,

"8+ 17.758 x+ 5.3882x," /( 25
"1+ 5.388%x+ 1.9137x" /( 0.75
10.25 25 0.75% |

The solution to this set of equatios$ x= 1.6145;" x=# 5.048/=# 2.6.. Because! is
negative, we need to drop the constraint from the picfWe.can see in Fig.8 below that
theconstraint is not bindingt the optimun) With the constraint dropped, the solution
is," x= 2.007," x=# 5.131/= (Thisgivesa newx of,

2 —x1+$x—"! 1.5 "2.007# " 0.507#
B “%h75 & %131 981

However, when we try to step this far, we find the penalty funttemmcreasedrom 11.75

to 17.48 (this is the value of the objective dwlthe violated constraint does not entetan

the penalty functioecause the Lagrange multgalis zero) We cut the step back. How

much to cut back is somewhat arbitrary. We will make the step 0.5 times the original. The

new value ok becomes,

15 "2.0074_ ! 0.496%
%75 &7 1% 131°% §Byss

X2 =x"+$x =

At which point the penalty function 537. So we accept this stepontours of the second
approximation are shown in Fig.48 along with the step taken.

15
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X2

.00

1

o
O
|—|

Fig. 84 The second approximation and step.

Iteration 3
At (x?) =[10.4965 ! 0.818p, f= 7.367( f?F 1] 5.202 2.i:

g?=10.6724, * ¢°)= [0.493 0.7

'80# "2.5# I 8.0

$L(Xl,!) O/plQ () (/9](5 & :(e)

.2\ "15102¢ . "0.49% ! 5.10f
SL(x17)= /92124 &(0) 6’7(5 & o

| 2.898"
e okt b

$xim "10.496% ' 1.5 " 1.004¢
_%’0.8155& 1154 g5
Based on these vectors, the new Lagrangian Hessian is,

"17.7529 5.3882 " 1.4497! 0. 56;23 5.8551 0.7%

$2L2
%3832 1.9137% 1%05623 02181 % %7320 00K

16
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| 22 = .13.3475 4.093%
' .0939 2040@

S0 our next approximation is,

X 1 *13.3475 4.0930" x #
f =7.367+[$5.102 $ 2.1 Zlix !
s +$ $ q‘%’xz( &2[ % )%]9/&.0939 2.040(3‘?‘04%

= $0.6724+[ 0.493 0. 155 N "ot
)

TheKKT equations, assuming the constraint is binding, are,

"5.102 13.3476x+ 4.098%," /( 0.4p3
"2.124 4.0939x+ 2.0483," /( 0.F5
10.6724 0.493x 0!75%

The solution to this set of equation$ )= 0.1399;" x= 0.8046/= 0.12

Our new proposegointis, x*®=x?+$x = ;04963 "0.139% b 03566

Prop ’ %o.8155% 8%Bogs~% Hopo0
At this point the penalty function hdecreased from 7.38 5.85.We accept the full step\
contour plot of the third approximatiamshown in Fig. &.

n wn o n [ o

< < o o~ oo} o)}
N N ™M [aa} < O

X2

—-3.00 -2.00 -1.00 .000 1.00 2.00
x1

Fig. 85 The third approximation and step.
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Iteration4
At (x°) =[10.3566 ! 0.010p, f& 5859 f3F ![ 29101 0.2«

¢°=10.01954, { ¢°)= [ 0.2132 0.}

15.102¢ "0.49% ! 5.161
2 |3 -
$L(x%1%)= %212% &g (0.1209 %75 & P
12.910# "0.2132 "1 2.938
3713 = =
sLber)s %02764 &(0.1209 B & G
2 n 2n — '2'225'
! _#L(x3, 3)$#|_§< , 3)_ %.8475

"10.3566¢ ' 0.496% " 0.13%

$x°= #0.0109 & %.8155 & 0%pa

Based on these vectors, the new Lagrangian Hessian is,

o |183475 4.0039 | 2.7537 22868 106397 43I
%.0030 20408% %2865 1.8p86% %5647 19t

. . 15.4616 1.8157
#L°= 0
$3.8157 1.980¢

Our new approximation is,

"ox# 1 "5.4616 1.8158" X #
f =5.859+[$2.910 $ 0.27 Zlix
s [$ $ E}i.}’?’xz(&z[ % )<2]-0/f.8157 1.98cg5‘.&°{%

=$0.0195+[ 0.2132 0.7]%! Z#%
)

TheKKT equations, assuming the constraint is binding, are,

"2.916- 5.4618x+ 1.818%," / (0.2132)
"0.276% 1.8157x+ 1.980%," /( 0.5
10.0195 0.2132¢ 0.75%
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The solution to this problem i$,x= 0.6099;" x=# 0.1474/= 0.71¢ Since! is

positive, our assumption abt the constraint was correct. Our new proposed point is,

"10.3566¢ " 0.609% " 0.253%

4 _ 3 — —_
X=X +$X_9/.Po.o10@&! %1474 % Y183

At this pant the penalty function is 4.8 decrease from 5.8350 we take the full stefphe

contour plot is given in Fig..8. The fifth step is shown in Fig. 8.7.

(o)}
™

o

o

-
1

.00

1

-1.00

-3.00 -2.00 -1.00 .000 1.00 2.00
x1

Fig. 8.7 The fifth approximation and step.
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We would continue in this fashion tiin! x goes to zero. We would then know the original
KKT equations were satisfied. The solution to this problem occurs at

(x') =k 0.500 0750 ' =450

A summary offive steps is overlaidrothe original problem in Fig..8.

28.9
22.4
18.0
18.0
22 .4

8.25

16 .45

5.12

5.12

X2

8.25

10.4
12.8
l15.0
18.0

.00

1

122.4

" . . . j28.9
3.00 -2.00 -1.00 .000 1.00 2.00

o

o

-
I

x1
Fig. 8.8 The path of the SQP algorithm.
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)8 %BC(-;;C<A=<($=A:;(R-$S(#JIL=<A;BP

)8V89 $<=TICP(.CIA:A;A=(

In generalfor theprimal-dual methodgiven herethere are two approaches to developing
the equations for the IP methqalitting slack variables intineir ownvector, and
incorporating slack variables as part of the design variabBeth methods can be found in
the literatureWe have opted for the formdsecause the development is somewhat more
straightforwardlt is also the approaalsed in MATLAB.Thedevelopment of the lattas
givenin a lateroptional section

For simplicity, we will start with a problehat only has inequality constraints.

Min  f(x) (8.39)
st g(x)! 0 i=1E,m (8.40)

We will add inslackvariables to turn the inequalitiego equalities:

Min  f(x) (841
st g(x)!'s=0 i=1E,m (842
s!'0 i=1...m (843

Slack variables are so namedaese they take up the OslackO between the constraint value
and theright hand side. For anequality constraint to be feasiblemust be " 0 If (8.42) is
satisfied and = 0, then the origirlanequalityis binding.

ThelP algorithmeliminatesthe lower boundsn s by incorporating darrier functionas part
of the objective:

Min  f = f(x)! u"m In(s) (844

i=1

st g(x)!'s=0 i=1E,m (8.45)

We note that as appro@hes zero (from a positive valuee. from feasible spagehe
negativebarrier term goes to infinity. This obviously penalizes the objectidefarces the
algorithm to kees positive. The IP algorithm solves a sequence of these problems for a
decreasig set of barrier parameters Asu approaches zero, the barrier becomes steeper and

sharperThis is illustrated in Fig. 8.9
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140 ¢
120 |

100 |

Fig. 8.9Barrier function! uIn(x) for =20, 10 and 1.

We can define the Lagrangian function for this problem as,
L(x,s!)=f(x)" p# In(s)"# ! (9,(0)" s) (8:46)
i=1 i=1

Taking the gradierof this function with respect tg, s,/ , and settingt equal to zero gives
usthe KKT conditions fo(8.44)E(8.45),

| L= f(x)"$T#i! g.(x)=0 (8.47)
! SLzsl"i#uz_O i=1E ,m (8.49)
| L=#(g(x)#5)=0 i=1E ,m (8.49)

If we definee as the vector of 1Osrofdimension and,

s 0% &G 0%
s:ﬁ | g '=§ | g
#0 s g #0 (g

we can replacéB.48) above with(8.51) below,

22



Chapte 8: Constraned Optimizatior2

Ff(x)" § #! 9(x)=0 (8.50)
S e" ,ueIiO (851)
g(x)!'s=0 i=L1E,m (852

It is worth noting that gg! 0, the above equations (along withs" 0) represent the KKT
conditions for the original probler(8.39)-(8.40). Notice thatvith ¢ =0, (8.51) (perhaps
more easily seen i{8.48)) expresses complementary slackness fosldek variable bounds
i.e. either, =0or s =0.

)8V8L $<=TJICP(,=J?;A=(

We will use the NR method to solve the set of equations represent@®®)y(8.52). The
coefficient matrix (see 8.5) will be the first derivatsvof these equations. We note that we
haven equations fron§{8.50), m equations fron{8.51) andm equations fron{8.52).

Similarly, these equations are function\ofariablesx, mvariables/, andm variabless.

The coefficient matrix for NRanbe represented as,

# T T T &
E’é) (! xleR) (! sleR) (! . leR) (# )x & ﬁ;rl 8
% ! ! ! %)s (=*%r2 ( (853
% T T o %r3(
%(I X f(n+2m)NR) (l s f(n+2m)NR) ( (n+2m)NR) g ) §
wheref . (the first NR egation)is given by,
R B e}
INRT #|,_ (8.54)
PX o m PX

andrl, r2 andr3 represent the residuals f@&50)E(8.52). If we substitut€8.54) into the first
row of (8.53), the first rowof the coefficient matrix becomes

%er @ 1tg(. Wit L@ g (o o %ig( %1
$ g|* ' f $#IX'|*@§ 'g 'g
ﬁg‘ﬁl##l )%3&#" #’#)ﬁ####n# &% 4%

+ 7 +,67

Recallng,
12 =1 2f G #1 2g (855

i=1
and
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n %

Y

L S (3 =gt " rg g

we can write the NR iteration equations at #tepg,

$ m '
o (o) e BPW o)
& K K )& K )_.& K k_ )
& 0 # S )g*s )="& S'#“e" u“e ) (8.56)
;%/OJI( "l 0 %%*+ % g g(x)" o g

% 2

At this point, we could solve this system of equations to oltdin#s’, and#! X. However,
for large problems we cagain efficiency bysimplifying this expressionf we look at row 2
above

|k g+ S 4 =854 Fe+ e (857)
We would like to solvé8.57) for #<, Rearranging termand premultiplying both sides by
(! k) ' gives,

| =" (#k)"lsk#ew# Tom 415K xk (8.58)

Fordiagonal matrices, the order of matrix multiplication does not matter, so the first term on
the right hand side simplifies to give,

| §“="S'e+pu#t 'e" # 'S x* (859

Examining the first and second terms on the right hand side, we note that,

o
s¢ 0%y s/t Oy
!ske:!§ ! RN Te k)’1e:§ ! x =g
0 SR $ N1
g Sn Q ! §O /Ak :) ’
" &

Equation(8.59) becomes,
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! Sk —n Sk+s n (# k)"lsk! Xk

. (8.60)
—n (# k) 1sk! Xk
We define! to be,
! k :(II k)#lsk (861)
so that we have,
LS ="#" & (8.62)
We can then writ¢8.56) as a reduced set of equations:
e () S k! 3'"f(x)+m+"g(x)')
&M (3) e yoig! R A (863
& k K )%* +X & =

This matrix represents a linear symmetric system of equations (symmetric because the off
diagonal elemds are the transpose of one anotheiJower dimensiothan(8.56) and is

more efficiently solved. Once we have solved fdr*, we @n usg8.62) to get! s*.

)8V80 %BC(5A:C(,CF<@B

It is sometimes said, Othe devil is in the details.O That is certainly true for tharhefae
the IP method. Modern algorithms employ a number of line search techniques, including
merit functions, trusregions and filter methods [26, 27,)28hey includetechniquego
handlenon-positivedefinite hessians or otherwise poorly conditiopeablems, or to regain
feasibility. Sometimes a differesteplengthis used for the primal variables, (s and the

dual variables!(). We will adopt that strategy here as well.

We can considel x,! s, ”, as the search directions fars, and! . We then need to
determine the step size (betweemh)dn these directions,

XK= x4k xk (8.64)
PRtz gk (8.65)
g =g kg (8.66)

Similar to SQP, atraightforwardnethodis to accep$ if it resultsin a decrease in a merit
function that combines the objective with a sum of the violated constraints, i.e.,

viol

P=f*+/" |g|

i=1
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where%is a costant.We will also reduce the step length if necessary to kestgch
variable or a Lagrange multiplipositive

)8V8Y &UFPGJIM206D=([F<AFTJCH7(*:.C(!=:H;<FA({;
We will apply the IP method to the same example given for SQP in Section 8.3.8, namely,

Min  f(x)=x"1 2%+ %+ §! 2% 5
st g(x)=!(x+ 029+ 0.75," (

We reformulate the problem using a slack variablefor the constraint:

Min  f(x)=x"1 2% X+ %+ §! 2% 5
ot (x)= (xl+0 25) +0.7%,! §=0
s"0

We eliminate the lower bound fer by adding a barrieterm,

Min  f (x)=f()! pin(s)
st g(x)=! (x+0.29 +0.75,! §=0

At the starting pointve have

(x)" =b-148 £2=17, (o°) =la.6§ °=24375 (1 o°) =}1.5 0.7

We will assume we do not have second derivatives available, so we will begin with the

Hessian set td *L° = ; o . J°=[1.5 0.79. We will also setu’ =5, § =2.437¢5,/’=2.

ST

This valueof ! was picked to approximately satig®.51), i.e. / °*" u°=0.

If the merit functionincrease for aproposedtep we will cut thestep in half and continue
doing soseverakimes.

"#"#"$%& ()*%+*,(-*'./%

Based onhe data abovehe coefficient matriXrefer back tq8.56)) for the first steps,
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" 9
1 0 0 115,
0O 1 0 1075
0 0 2 24375

15 075 I'1 0 &

R B

For the residualector, wehave

m %g (, %15 ( %5 (
k 11} k 8 n | 15 5
f - — * *
) %#' 909 = &6) &0.75) 845)

S fe" ufe=2.437HY by 0.12%

g (x)! S =32.4375} 1243755 108

Thus theset of equations for our first step becomes,

g1 O 0I15./°(X%$5.
$0 1 0 !075°'$ Oj_,$ 45
$0 0 2 24375$( $10.125°
$15 075 11 g( P o0 %

The solution is! x" =["0.93Q " 2.469, !s="3.244 | #=2.713
Because the full step would matke slack negative, @vset the step lengtar x andsto be

0.748 to keep the slashightly positive. We accept the full step forAt this trial pointthe
objectivehas decreased to 11.78 b constraint isiolated atb0.471. However the merit
function has decreased from 17 to 14200 we accept the stegpur new points

x" =[11.6952.157, s=0.012 " =4.71%

"#'#"'0%1,2./13%+*,(-*'./ %

T T
At (xl) =[11.695 2.157, f'=11.78 ("fl) = [110.256 !1.43§
T
g'=10.4714 ( gl) = [2.891 0.7
We start this step by updatitizge Hessian of the Lagrangian. To dowe,evaluate the

Lagrangian gradient at® and x*. We then calculate tHeand#x vectors. (As we did for
SQP, we use the same Lagrange multipliér,for both gradients.)

# # &# &
$60' $o75- $2465'
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Chapter 8 Constrained Optimizatio

$
713% 2 891) #23.881,

$
! L(Xl, nl) & #10 256 (
% 0.75 ( 50 #4.967 (

9% #1.435 (

J0—n L(Xl,#_‘l.)$u L(XO’#_‘L):?/O$24.811£

& $7.435 )
#II &#ll &#" &
| x0 =05 1-695 (5" 1.0 (g 0.695 ¢

$ 2157 " ¢ 4.0 $"1843'

We use this data to obtain the new estimate of the Lagrangiaimiessg BFGS Hessian
update as we did for SQP (see tB&Pexample for deiés). The new Hessian,is

! 2Ll=$20.762 5.629

#.629 1.9108&

After evaluating the residuals, our next set of equations becomes,

20.762 5629 0 12.891% %;;'238810/

$

$ 5.629 1.910 0 !0.75 3(51 _,$|497o-
$ 0 0 4.713 0012 ( '0943
¥ 2801 075 11 §< % 10484 g

The solution gived:x" =[1.104 " 3.319, !s=0.21§ ! #="6.797. For! we only take

0.693 of the step to keep' 0. With the full step fox ands, our merit functiordecreases
from 14.0 to 10.80ur new point is,

(xZ)Tz[!o.592!1.1ea, s=0.230 "=0, f=8.82Q g=!0.988

Subsequent steps proceed in a similar mafiiner progress of the algorithm to the optimum
with our relatively unsophisticateshé searchis shown in Fig. 8.10 belowhe algorithm

reaches the optimum in about nine stéjdevey iteration wereducey according to the
k

equationu™* —% For comparison purposebgetprogress of the Interior Point method in

fmin con on this problem is shown in Fig. 8.11.
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Example of Interior Point Method

T T T /
/

x1

Fig 8.10. The progress of the IP algorithm on Example 1.

. Example of Interior Point Method

-0.5
x1

Fig. 8.11 Path ofnincon IP algorithmon Example 1
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)8VE8X &UFPGIC(12C([F<AFTJIC7(%D=(1=:H;<FA:;i

In this example problem the functions are very semplt the setugor the constraints
more involved than the previous exammée will show how the problerchanges when we
have two slack variables.

Min  f=x
st.  12x+9"0
x!1

We will change the inequalitgnd the bound tequality constrairstby means o$lack
variabkesso that we have,

Min  f=x

Ss.t. 12x +9! § =0
x!1l's =0
$5!0

We remove the boundsm the slacks by adding barrier terms,

2
Min  f =x2! " In(s)
i=1

st.  12x+9!'s=0
x!1's =0
By inspection, the solution to the problemxis=1, §=7, s,=0; f=1.
I"#"'4"$%&'()*%+*,(-*'./%
: Ch o\" _ 0_ 0_ 0_
At our starting pointx =3, (s ) =[32], " =9, ¢,=0, ¢g,=0

We also have! f°=[6], ! *f=[2], 'g,=["2], !g,=[1, ! g, =[0], ! *g,=[0]
We willuseu®=2, /°=0.5 ("°)" =[11]. Thus,

| | |
9=43 0% ooyl 08 ooy (25
"0 2% "0 1% " 109

Because we only have one variable, the Hessian of the Lagrangian is just a 1x{weatrix
usetheactual secod derivative here fasimplicity):

| 2L=12f " #) *g" #) 2g,=[2]" (D[0]" (D[0]=[2]

With this information we can then build our coefficient matrix
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v $
1o o (34" gé 2 8 2 013
% 0 #< %:go 0 10 2)
&3m0 ) g2 00 og
% %9%1 0 "10 0)

The vector of residuals is,

()" £ #1gf(x)= [6]" O["2" OY=7

# &# &1 & H1 & #1 &
Sk! kell er:%g 0 (%1 0 (%1 (|| 20%1 (:%1(
$0 2'$0 11" $1° $0-

n 0/

gi(x)! 8 =3
#0¢8

We can then suek for our new poinas(recall alpha = 0.5)
X =2.174 (sl)T =[4.6521.174, (! 1)T =[0.2831.413 at which point = 4.73, and
g,=0, g¢;=0.

)8V8Y . (#J;C<:F;C(.CKCJI=GPC:;(=I(;BC(+CD;=:(-;C<F;A=:(&M?F;A=H
*This section is optional.

As mentioned at the start of the section on IP algorithms, there are two approaches to
developing the NR equationseparating out the slack variablegheir own vector, and
including the slacks as part of theector. Previously & kept the slacks separate. Now we
will combine them withk. This development follows theork by Wachter and Biegler [29,
14].

For simplicity, we will start with a problem which only has equality constraints. We will,
however, include a lower bound dretvariables:

Min  f(x) (8.67)
st g(x)=0 i=1E,m (8.69)
x! 0 (8.69)

As before, we eliminate the lowerdads by including them in the objective function with a
barrier function
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Min fH:f(x)-uim(xi) (8.70)
st g(x)=0 i=J__E,m (8.71)

We now consider the necessary conditions for a solution to the barrier problem represented
by (8.70)-(8.71). We first define,

z=E (8.72)
Xi
We can write the KKT conditions as,
LE(x)" P #! g(x)" z2=0 (8.73
g,(x)=0 i=LE ,m (8.74)
xz! u=0 i=1E,n (8.75
If we definee as the vector of 1Osroflimension and,
! $ ! $
4% 0 & #2  0Og
—# I & —# I &
TR T T
# N " §
we can replacé.75) above with(8.78) below,
LF(x)" P #! g(x)" z2=0 (8.76)
g,(x)=0 i=L1E,m (8.77)
XZe! ue=0 (8.78)

Asu! 0, the above equations (along wath0) represent the KKT conditions for the

original probem The variableg can be viewed as the Lagrange multipliers for the bound
constraints. Notice that witp =0, (8.78) expresses complementary slackness for the bound

constraints, i.e. either=0or z =0.

)8VBZ $<=TJICP(,=J?;A=:(

We will now construct the coefficient matrix for the Newton iterat\die.note that we have
n equations fron{8.73), m equations fron{8.77) andn equations fron{8.75). Similarly,
these equations are functionsofariablesx, mvariables!/ , andn variablesz.

32



Chapte 8: Constraned Optimizatior2

For example, the first rowf the coefficient matrix for NR could be represented as,

7o) X ¢
G0t () () 0 (fnt e

go)z(

wheref, . is given by

$

_f (8.80)
D

1NR

# _9
X

LY

andrl represerdthe residuals fo8.76). If we substitut€8.80) into matrix(8.79), the first
row of the coefficient matrix is,

K O b W A P LI S U L4 S 2 A PRI T

$ * E ' Y é "
#X 4y ﬁ##@#" #r#ﬁ#'###”#x# %)&#Xﬁgi 4 %) #5 ;é’f
Defining,
1 2L=1 260 G 1 2g X (8.81)

i=1

we can write the NR iteration equations at #tepg,

# 1 &
2 k n k n

%!XL (J) |(§O)Xk&¢§rl<(g

% J¢ 0 0 (%) *" (="0r2( (8.82

Bz 0 x< (2 { fral

& (

The reader might wish to compare this Wlb6). As before we could solve this system of
equations to obtaitix®, #! ¥, and#z*. Howeverwe can simplify this expressioe will
start by looking at ththird set of equations i(8.56) above,

Z¥ x*+0+ XM Z“ =" X Z e+ e (8.83
where we have substituted in the actual residual valug foe.,
1r3=1 X*Z e+ e

We would like to solvé8.83) for #Z", Rearranging terms gives,
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X* Z8=" X Z e+ ue" Z*1 x* (8.84)
If we premultiply both sides byX*)™* we have,
| 2 ="Z"e+u(X*) te" (X*) 1z x (8.85)

Examining the first and second terms on the right hand side, we note that,

" % = (O
sz 001 $x (1t
IZke:|$ ] T _:IZk u(xk)!le:$ | vx " _:Zk
20 2 $ TR
g n Q ' % O F :) y
&
Equation(8.85) becomes,
| k:n k kn ky"1 kl k
1z z+% (X*) "Z"I'x (8.86)
—n (Xk) lzk! Xk
We defineSto be,
SC=(x"4)'*z" (8.87)
so that we have,
Iz =" Sl x* (8.88)
Now we will examine the first two rows ¢8.82). These represeptjuations,
! jl_k"xk+(#3k)T "SI 2K =#rl (8.89)
Jrxk="r2 (8.90)

We see that z* only appears i18.89). If we substitutg8.88) for! z“ and gather terms,
(8.89) becomes,

2+ S Ga (39 &= r (8.91)

or in matrix form,
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# T & &
3’! 2L +S ( Jk) () X" :..ﬁjorl f (892
s J" o ) sr2

Once we have solved farx*, we can usé8.88) to get! z*.

)8V8) &UFPGJC(92(,=JKA:L(;BC(-$(&M?F;A£:H
We will illustratethis approach on a similaxample problenused earlier

Min  f=x
st.  12x+9"0
x!0

We will change the inequality camnaint to an equality constraint by means sfack
variable x;, so that we have,

Min  f=x
s.t. 12x +9! x,=0
X%, ! 0

We will eliminate the lower bounds by using a barrier formulation:

2
Min  f =x2! " In(x)
i=1

S.t. 12x! x,+9=0

starting from(x®)" =[3, 3] . At this point,f°=9,(! )" =[6,0]; g°=0,(' g°)" =["2,"1].

We will setuy=10 and! =1. This then givesz = H -333zand z,= H -3333 Noting,
X %

! 2L:! 2f II$T#! 2gl+le"2 :?/02 0 AT 1)?/00 O £+|0/01111 O £
’ - &0 0) &0 0) & 0 1.111)

J¥=[12,11]

We can write the coefficient matrix,
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# n 8
# & 3111 0 2 "1 0
ol 2L (13 L1111 0 "1y
% (X ' (
% J* 0 0(43"2 "1 0 0 OE
% 7* 0 x<( %3333 0 0 3 0y
& ( % 0 33330 0 3(

By evaluating8.76) through(8.78) we find the vector of residuals to be,

' 9
4.667 ,
r1 0 §12333:
!$r2':!§ 0o
$r3g 5 O :

30 5
0.712 7 0.791 7
Solving this set of equations, givéx = $ , 1(=)0.831 !z= $
# 1.424 & #-1.582 &

If we take the full step by adding these delta values to our beginning values, we have

$ ! $
T 4424 % " 1.8059

At this new point the constraint is satisfiegl € 0) and the objective has decreased from 9 to
5.235.

)8X( %BC(6C:C<FJAIC>('C>?@C>(6<F>AC:;(R6'6S#IL=<A(BP

)8X89 -;;<=>7@;A=(

GRG works quite differently than the SQP or IP methtdgarted inside feasible space,
GRGgoes downhiluntil it runs into fencel constraint8l and then corrects theearch
direction such that it follows the fences downlAlt every step it enforcfeasibility. The
strategy of GRG in followindences works well for engineering problems because most
engineering optimumare constrainedzor information beyond what is given here consult
Lasdon et al. [30] and Gabriele and Ragsdell [31].

)8X81 &UGJA@A;(KH8(-PGJA@A;(&JAPA:F;A=:
Suppose we have the following optimization problem,

Min  f(x)=x+3% (893
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st g(x)=2x+x!6=0 (899
A contour pot is given in Fig. ®a

From previous discusms about modeling in Chapter\#e know there are two approaches
to this problerfl we can solve it as a problem in two variables with one equality constraint,
or we caruse the equality comrstint toeliminatea variableand the constraintVe will use

the second approach. Usi(®)94) to solve forx,,

X, =6! 2x

Substituting into the objective functip(B8.93), we have
Min  f(x)=x>+3(6! 2x ¥ (8.99)

Mathematically, solvinghe problem given b{8.93)-(8.94) is the samas solving the
problem in(8.95). We have used the constraintetplicitly eliminate a variabland a

constraintOnce wesolve for the optimal value of , we will obviously have to back
substitute to get the value &f using(8.94). The solution inx, is illustrated in Fig. &b,
wherethe sendivity plot for (8.95) is given (because we only have one variable, we canOt

show a contour plot)lhe derivativedd—fof (8.95) would be considered to blegreduced
X
gradientrelative to the original problem.

Usually we cannot make an explicit substitution as we didisnexample. So we eliminate
variableamplicitly. We show how this can be done in the next section.

o
o

" 45.1 AN

: 34.7 N
Q% 27.4 g: _____________________________________________

8 27.4 s

3 34.7

q;flvOO .000 1.00 2.80 3.00 4.00 5.00 -1.00 1000 1.00 2.00 3.00 2.00 5.00
Fig. 89 a) Contour plot inx, , x,with equality ~ Fig. 89 b) Sensitivity plot for Eq. 8.9 he
constraint. The optimum is at optimum is atx, = 2.769:

x' =[2.7693 0.461}.
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)8X80-PGIJA@A;(&IJAPA:HA=:

In this section we will look at how we can elirate variables implicitly. We do this by
consideringifferentialchanges in the objective and constraiwe.will start by considering
a simple problenof two variables with one equality constraint,

Min  (x) X" =[x ]
st g(x)=0

Suppose we are at a feasible poihtwus the equality constraint is satisfi¥de wish to
move to improve the objective functiofhe differential change is given by,

_f | f
df = E dx T dx (8.96)

to keep the constraint satisfiéae differential change must be zero

do=-9 ax +-9 gy =0 89
9—!)(1 X B % = (8.97)

Solving for dx, in (7.47) gives:

gl %

dx, = ——"—+dx
9/" %

substituting into(7.46 gives,

1% o Vot %3

df = d (8.98)
O %) gb xz‘% &
where the term in brackets is ttegluced gradient
o
ie. df 1% o Yo%/ %3 (899

ax oK %) 8 b

If we substitute#x for dx, then the quations are only approximaw.e are stepping tangent
to the constraint in a direction that improves the objective function.

)8X8Y 6'6(#JL=<A;BP( DA:B(&M?FJA;Q(I=:H:<BA(* :JO((

We can extend the concepts of thevpyas section to the general problem which we
represent in vector notatioBuppose now we consider theneral problemwith equality
constraints
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Min  f(X)
st g(x)=0 i=1E,m

We haven design variableandm equaliy constraintsWe begin by paitioning the design
variables intqdn-m) independent variableg, andm dependent variablgs The independent
variables will be used tinprove the objective function, anket dependent variables will be
used to satisfy theinding constraintdf we partition the gradient vectors as well we have,

!f(z)ngqu) f(x) £ "f(x) )
& 'z % "Zum |
o) g e S

We will also efine independent and dependent matrices gbainial derivatives of the
constraints:

2lo lo . o, 90 "0
:zgizl 'z, 'Zn#mg g Y "V
'Z !0y 'On g 'On ) "y Z/ggm O g 908

%Izl IZZ !Zn#mz 'lyl IIy2 " ym(

df =1 f(2) dz+! f(y) dy (8.100)
"y

- (8.101
z y

dy =" o (8.102)

substituting(8.102) into (8.100),

"1
df =$f(2)" dz'$ f(y)' #;y %dz
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TH T #

or $f=%f(z )"$ f(y) v (8.103

where! f_ is the reduced gradierithe reduced gradient is tlirection of steepest ascent
that stays tangent to the binding constraints

)8X8X 6'6(&UFPGJC (92(*:C(&M?FJA;Q(!=:H;<FA(

We will illustrate the theory of the previous section with the following exankalethis
example we will have three variables amgk equaty constraint. Westate the problem as,

Min  f =4x+ +3%
st g=2x +4x ! x= 1C

Step 1: Evaluate the objective and constraints at the starting point
The starting point will be<” =[2 2 2], at whichpoint f =32 andg = 1( So the

constraint is satisfied.

Step 2 Partition the variables
We have one binding constraint so we will need one dependent variable. We will arbitrarily

choosex, as the dependent variap® y =[x, ]. The independent variables witiereforebe
z' :[x2 xs] Thus,

lllf#
Sy % .« " .
# or. 2% # 44 If #
2= $Z%y (%] &f(7)= 3,?&6{; % =8 206 & (¥) =80 (8%],, {16
( $_0/g @22 - %(
$_0% BE_, 5 #
2 B s o0 g ey 13

Step 3 Compute the reduced gradient
We now have the information we need to compute the redyregdent:

$IT=$1(2)"$ f( )T%%
#17=[4 1z~]$[1q§y§k4 $ 1

=[$28 20

Step4: Compute the direction of search
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We will step in the direction of steepest descent, i.e., theimegatiuced gradient direction,
which is thedirection of steepest descent whitays tangent to the constraint.

s—! 28" or,normalized,s= | 08137
" heot %0581

Step5: Do a line search in the independent variables
We will use our regular formula,

Znew: ZoId +/ <

We will arbitrarily pick astarting step lengtih =0.5

b J 0.8137 1 2408
&gew$ J $+ ® $0.5812% g 7004

Step6: Solve for the value of the dependent variable
We do this using (7.52bove, only we will substitutey for dy:

$y—"#'/ #—$z
Hy #
& & X, %
[#x]=" &), & )
. f’ ]]$O4O690
)" 0.2906
:"0.9590

So the new value ox;is,

Xfew_ led +! X
=2" 0.959(
=1.041

Our new points x" =[1.041 2.4069 1.709at which pointf =18.9 andy = 1. We

observe that the objective has decredsmd 32 to 18.%andthe constraint is still satisfied.
This only represents one step in the line search. We woulthae the line search untie
reach a minimum.

)8X8Y 6'6(#JL=<A;BP( DA;B(&M?FJA:Q(F:>(-:CM?FJA:Q(1=:H:<FA¢;H((

In this section we will considehe general problemwith both inequality an@quality
constraints,
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Chapter 8 Constrained Optimizatio

Min  f(X)
st g(x)! 0 i=1E K
g,(x)=0 i=k+lE ,m
The extension of the GRG algorithm to include inequality constraints involves some

addtional complexity, beaase the derivation of GR(S based orquality constraintshe
therefore convert inequalities into equalities by addiagk variables

The GRG algorithm described here isaative constraintlgorithniN only the binding
inequalityconstraints are used tletermine the search directidie nonbinding constraints
enter into the probleranly if they become binding or violated.

)8X8Z ,:CGH(=I(:BC(6'6(#JL=<A:BP (I=<(:BC(6C:C<FJ($<=TICR

1. Evaluate the objectivieinction and all constraints at the current point.
2. For any binding inequality constraints, add a slack variaple, s

3. Partitionthe variables into independentrizdbles and dependent variables. We will
need one dependent variable for each binding consthaigtvariable at either its
upper or lowe limit should become an independent variable.

4. Compute he reduced gradient usi(g.103).

5. Cdculate a direction of searcWe can use any method talculate the search direction
that relies on gradients since the reduced gradient is a grdebemtixample, we can
use a quadNewton update.

6. Do aline search in the independent vdaali~or each step, find the corresponding
values in the dependevariables using8.102) with #z and#y substituted fodz and
dy.

7.  Ateach step in the line search, drive back to the constraint boundaries for any violated
constraints using NewteRaphson to djust the dependent variabldéfsan independent
variable hits its bound, set it equalits bound.

;"1
TheNR iteration is given byy =" %(g" b) We note we already have the matrix

#

from the calculation of the reduced gradient.

8. The line search may terminate either of 4 ways

1)! The minimum in the dection of search is found (using, for example, quadratic
interpolation).
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Chapte 8: Constraned Optimizatior2

2)! A dependent variable hits its upper or lower limit.
3)! A formerly norrbinding constraint becomes binding.

4)! NR fails to convergeln this case we must cut back the step size NiRitloes
converge.

9. If at any point the redudegradient in step ¥ equal td), theKKT conditions are
satisfied.

)8X8) 6'6(&UFPGJIC(12(%D=(-:CM?FJA;Q(!=:H;<FA:H

In this problem wdrave two inequality constraints and will therefore need to add in slack
variables.

© H w1 © © ¢ 0 H ©
N v N Ho — — H N W
o . . . . . .
=y ® v 1 ™ ™ <+ 0 0w ©

00

1.

o

~Nol

x o
8 8.28
7 A ~+——Starting
o Point
o
q — Search

Direction

O D
O " " 2\ -~ -t 1 1
r‘|1—3.00 -2.00 -1.00 .000 1.00 2.00 3.00

x1

Fig. 810Example problem for GRG algorithm

Min. f(x)=x +Xx,
st g(x)=xX+x19" 0
g, (x)=x+%!1" 0

Suppose, to make things interesting, we are starting at[2.56155,! 1.56111! where both
constrains are binding.

Step 1:Evaluate functions.
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f(x)=5.0 g,(x)=0.0 g,(x)= 0.

Step 2 Add in slack varialss.
We note that both constraints are binding so we will add in two slack varigples.

Step 3: Partition the variables
Since tle slackvariables are at their lower limits (=0) they will become the independent
variables; x, xo will be the dependent variables.

2'=[s s] y =[x %]

Step 4: Compute the reduced gradient
1 f(z)= [0.0 04 1 f(y)= [5.123 1.0
$;/_"1 O %_#5.123 " 3.123
2 B g w 10 10)

%" #0.1213 0.378%
% (*0.1213 0.621p

% " P #0.1213 0378%#1 0 #0.1213 0.37¢

thus —= ' =
% % (01213 06213%0 )1 (% 01213 0.6%;

- 101213 0.3787
#1=[00 048[5123 Jou 1,14 0.6213
=[0.0 0.$[0.50 2.5p

=[$0.50 $2.54

Step 5: Calculate a search direction.
We want to move in the negag gradient direction, so our search direction will be

s' :[0.50 2.5@. This is the direction for the independent aates the slacks)When
normalized this direction is" =[0.19 0.9§.

Step 6: Conduct the line seaiialithe irdependent variables
We will start our line search, denoting the current poirt’as

72=72°+/¢

Suppose we pick = 1.0.Then
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L1001 g 019
2 Ttho% " Hes
1019

~#p.08%

Step 7: Adjust the dependent variables
To find the clange in the dependent variables, we use (7.52)

X %, B T BL U

#y =" =", iy 0
)#Xz(k ) &y (t) &(’f
10.1213 0.3787 0.1¢

“He.1213 0.6218F 0.9¢
_"10.394
“90.586

X =2.56159 0.3%4 2.168
X =1156156 0588 2.1

at whichpoint f (x) =2.522
Have we violated any constraints?

G (x) =X+ 1 9= (2.169°+ (! 2.14§ =9 0.%(violated)
g,(X)=x+x!1= 2168 2.148=1 0.¢(satisfied)

We need to drive back to where thelated constraint is satisfied/e will useNR to do this.
Since we don't want to drive battkwhere both constraints are bindimge will set the
residual for constraint 2 to zero.

NR Iteration 1:
(n) —_ (0) n #'/ ' n
yv =yt ——(g" b)
#y
12.168" 1 0.1213 0.3787 0'3

= $42.148% 01213 0621800 ¢

1 2.130"
~$0.110%

at this point
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0, =(2.130° +( 2.119°! 8! 0.0
g,=10.98

NR lteration 2:
" 2.130# " 0.1213 0.378#" 0.03

9 2.110% §$0.1213 062180%0.0

42,1313
“92113%

evaluating constraints:
0, =(2.1313° +(1 2.1} =
g,=10.98

We are now feasible agaii/e have taken ongep in the line search!

12.1313
Our new point isx = '@& 113$ at which point the objective B43, and all constraints are

satisfied.
We would continue the line search until we run into a new @insboundary, a dependent

variable hits a bound, or we can no longer get back on the constraint boundaries (which is not
an issue in this example, since the constraint is linear).

46



