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CHAPTER 6 
REAL-VALUED GENETIC ALGORITHMS 

6.1 Introduction 
Gradient-based algorithms have some weaknesses relative to engineering optimization. 
Specifically, it is difficult to use gradient-based algorithms for optimization problems with: 
 
 1) discrete-valued design variables 
 2) multiple local minima, maxima, and saddle points 
 3) non-differentiable objectives and constraints 
 4) analysis programs which crash for some designs 
 
In recent years, several kinds algorithms have emerged for dealing with the above 
characteristics. One such family is referred to as “evolutionary algorithms.” Evolutionary 
algorithms mimic the optimization process in nature as it optimizes biological species in 
order to maximize survival of the fittest. One type of evolutionary algorithm is the genetic 
algorithm. In the last chapter we looked at genetic algorithms which code variables as binary 
strings. In this chapter we will extend these ideas to real-valued genetic algorithms. 
 
I express my appreciation to Professor Richard J. Balling of the Civil and Environmental 
Engineering Department at BYU for allowing me to use this chapter. 

6.2 Genetic Algorithms: Representation 

6.2.1 Chromosomes and Genes 
In order to apply a genetic algorithm to a particular optimization problem, one must first 
devise a representation. A representation involves representing candidate designs as 
chromosomes. The simplest representation is a value representation where the chromosome 
consists of the values of the design variables placed side by side. For example, suppose we 
have 6 discrete design variables whose values are integer values ranging from 1 to 5 
corresponding to 5 different cross-sectional shapes for each of 6 members. Suppose we also 
have 4 continuous design variables whose values are real numbers ranging from 3.000 to 
9.000 representing vertical coordinates of each of 4 joints. A possible chromosome is shown 
in Fig. 6.1: 

 

 
Fig. 6.1: Chromosome for a Candidate Design 

The chromosome in Fig. 6.1 consists of ten genes, one for each design variable. The value of 
each gene is the value of the corresponding design variable. Thus, a chromosome represents a 
particular design since values are specified for each of the design variables. 
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Another possible representation is the binary representation. In this representation, multiple 
genes may be used to represent each design variable. The value of each gene is either zero or 
one. Consider the case of a discrete design variable whose value is an integer ranging from 1 
to 5. We would need three binary genes to represent this design variable, and we would have 
to set up a correspondence between the gene values and the discrete values of the design 
variable such as the following: 
 
  gene values   design variable value 
  0 0 0     1 
  0 0 1     2 
  0 1 0     3 
  0 1 1     4 
  1 0 0     5 
  1 0 1     1 
  1 1 0     2 
  1 1 1     3 
 

In this case, note that there is bias in the representation since the discrete values 1, 2, and 3 
occur twice as often as the discrete values 4 and 5. 
 
Consider the case of a continuous design variable whose value is a real number ranging from 
3.000 to 9.000. The number of genes used to represent this design variable in a binary 
representation will dictate the precision of the representation. For example, if three genes are 
used, we may get the following correspondence between the gene values and equally-spaced 
continuous values of the design variable: 
 
  gene values   design variable value 
  0 0 0     3.000 
  0 0 1     3.857 
  0 1 0     4.714 
  0 1 1     5.571 
  1 0 0     6.429 
  1 0 1     7.286 
  1 1 0     8.143 
  1 1 1     9.000 
 

Note that the precision of this representation is 857.0
12
000.3000.9

3 =
-
- . 

Historically, the binary representation was used in the first genetic algorithms rather than the 
value representation. However, the value representation avoids the problems of bias for 
discrete design variables and limited precision for continuous design variables. It is also easy 
to implement since it is not necessary to make conversions between gene values and design 
variable values.   
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6.2.2 Generations 
Genetic algorithms work with generations of designs. The designer specifies the generation 
size N, which is the number of designs in each generation. The genetic algorithm begins with 
a starting generation of randomly generated designs. This is accomplished by randomly 
generating the values of the genes of the N chromosomes in the starting generation. From the 
starting generation, the genetic algorithm creates the second generation, and then the third 
generation, and so forth until a specified M = number of generations has been created.   

6.3 Fitness 
The genetic algorithm requires that a fitness function be evaluated for every chromosome in 
the current generation. The fitness is a single number indicating the quality of the design 
represented by the chromosome. To evaluate the fitness, each design must be analyzed to 
evaluate the objective f (minimized) and constraints 0gi £  (i = 1 to m). If there are no 
constraints, the fitness is simply the value of the objective f. When constraints exist, the 
objective and constraint values must be combined into a single fitness value. We begin by 
defining the feasibility of a design: 
 
 ( )1 2max 0, , ,..., mg g g g=        (6.1) 
 
Note that the design is infeasible if g > 0 and feasible if g = 0. We assume that in (6.1) the 
constraints are properly scaled.   
 
One possible definition of fitness involves a user-specified positive penalty parameter P: 
 
 fitness = *f P g+          (6.2) 
 
The fitness given by (6.2) is minimized rather than maximized as in biological evolution. If 
the penalty parameter P in (6.2) is relatively small, then some infeasible designs will be more 
fit than some feasible designs. This will not be the case if P is a large value. 
 
An alternative to the penalty approach to fitness is the segregation approach. This approach 
does not require a user-specified parameter: 
 

 
max

                   if 0
        if 0   feas

f g
fitness

f g g
=ì

= í
+ >î

      (6.3) 

 
In (6.3), max

feasf  is the maximum value of f for all feasible designs in the generation (designs 
with g = 0). The fitness given by (6.3) is minimized. The segregation approach guarantees 
that the fitness of feasible designs in the generation is always better (lower) than the fitness 
of infeasible designs.  

6.3.1 Example 1 
The three-bar truss in Fig. 6.2 has two design variables: x1 = cross-sectional area of members 
AB and AD, and x2 = cross-sectional area of member AC. Suppose each design variable 
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ranges from 0.0 to 0.5 and is represented by a single continuous value gene. The starting 
generation consists of the following six chromosomes.   
 
1) 0.2833, 0.1408  2) 0.0248, 0.0316  3) 0.1384, 0.4092 
4) 0.3229, 0.1386  5) 0.0481, 0.1625  6) 0.4921, 0.2845 
 
The problem is the same as in a previous example where the objective and constraints are: 
 
 f = (100in)x1+(40in)x2   

0xg 11 £-=    
0xg 22 £-=  

 0x)ksi37500(x)ksi38400(kip9600g 213 £--=  
 0x)ksi75000(x)ksi76800(kip15000g 214 £--=  
 
Scale the objective and constraints by their respective values at x1 = x2 = 0.5in2. Then 
evaluate the segregation fitness of the starting generation. Calculate the average and best 
fitness for the generation. 
 
 

 

 

 

 

 

 

 

Fig. 6.2 The three-bar truss 

Solution 
Evaluating the objective and constraints at x1 = x2 = 0.5in2 gives: 

 f = 70in3 g1 = 0.5in2 g2 = 0.5in2 g3 = 28350kip     g4 = 60900kip 

The scaled objective and constraints are: 

 f = ( ) ( ) 22
1

2
3

21 xin571.0xin429.1
in70
(40in)x(100in)x -- +=

+    

30 in 30 in 

40 in 

A 

B C D 

20 kip 
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( ) 0xin2
in5.0
xg 1

2
2
1

1 £-=
-

= -    

( ) 0xin2
in5.0
xg 2

2
2
2

2 £-=
-

= -    

 
kip28350

x)ksi37500(x)ksi38400(kip9600g 21
3

--
=     

          ( ) ( ) 0xin323.1xin354.13386.0 2
2

1
2 £--= --  

 
kip60900

x)ksi75000(x)ksi76800(kip15000g 21
4

--
=  

          ( ) ( ) 0xin232.1xin261.12463.0 2
2

1
2 £--= --  

design 1: x1 = 0.2833in2   x2 = 0.1408in2 
 f = 0.4852 g1 = -0.5666 g2 = -0.2816 g3 = -0.2313 g4 = -0.2844 
 g = 0  fitness = 0.4852 
 
design 2: x1 = 0.0248in2   x2 = 0.0316in2 
 f = 0.0535 g1 = -0.0496 g2 = -0.0632 g3 = 0.2632 g4 = 0.1761 
 g = 0.2632 
 
design 3: x1 = 0.1384in2   x2 = 0.4092in2 
 f = 0.4314 g1 = -0.2768 g2 = -0.8184 g3 = -0.3902 g4 = -0.4324 
 g = 0  fitness = 0.4314 
 
design 4: x1 = 0.3229in2   x2 = 0.1386in2 
 f = 0.5406 g1 = -0.6458 g2 = -0.2772 g3 = -0.2820 g4 = -0.3316 
 g = 0  fitness = 0.5406 
 
design 5: x1 = 0.0481in2   x2 = 0.1625in2 
 f = 0.1615 g1 = -0.0962 g2 = -0.3250 g3 = 0.0585 g4 = -0.0146 
 g = 0.0585 
 
design 6: x1 = 0.4921in2   x2 = 0.2845in2 
 f = 0.8657 g1 = -0.9842 g2 = -0.5690 g3 = -0.7041 g4 = -0.7247 
 g = 0  fitness = 0.8657 
 

8657.0f feasmax =  
 
design 2: fitness = 0.8657+0.2632 = 1.1289 
design 5: fitness = 0.8657+0.0585 = 0.9242 
 
average fitness for generation 1 = 0.7293 best fitness for generation 1 = 0.4314 
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6.4 Genetic Algorithms:  New Generations 
The genetic algorithm goes through a four-step process to create a new generation from the 
current generation: 
 
 1) selection 
 2) crossover 
 3) mutation 
 4) elitism 

6.4.1 Selection 
In this step, we select two designs from the current generation to be the mother design and 
the father design. Selection is based on fitness. The probability of being selected as mother or 
father should be greatest for those designs with the best fitness. We will mention two popular 
selection processes. The first selection process is known as tournament selection. With 
tournament selection, the user specifies a tournament size. Suppose our tournament size is 
three. We randomly select three designs from the current generation, and the most fit of the 
three becomes the mother design. Then we randomly select three more designs from the 
current generation, and the most fit of the three becomes the father design. One may vary the 
fitness pressure by changing the tournament size. The greater the tournament size, the greater 
the fitness pressure. In the extreme case where the tournament size is equal to the generation 
size, the most fit design in the current generation would always be selected as both the 
mother and father. At the other extreme where the tournament size is one, fitness is 
completely ignored in the random selection of the mother and father. 
 
The second selection process is known as roulette-wheel selection. In roulette-wheel 
selection, the continuous interval from zero to one is divided into subintervals, one for each 
design in the current generation. If we assume fitness is positive and minimized, then the 
lengths of the subintervals are proportional to (1/fitness)g. Thus, the longest subintervals 
correspond to the most fit designs in the current generation. The greater the roulette 
exponent, g, the greater the fitness pressure in roulette-wheel selection. A random number 
between zero and one is generated, and the design corresponding to the subinterval 
containing the random number becomes the mother design. Another random number between 
zero and one is generated, and the design corresponding to the subinterval containing the 
random number becomes the father design.   

6.4.2 Crossover 
After selecting the mother and father designs from the current generation, two children 
designs are created for the next generation by the crossover process. First, we must determine 
whether or not crossover should occur. A crossover probability is specified by the user. A 
random number between zero and one is generated, and if it is less than the crossover 
probability, crossover is performed. Otherwise, the mother and father designs, without 
modification, become the two children designs. There are several different ways to perform 
crossover. One of the earliest crossover methods developed for genetic algorithms is single-
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point crossover. Fig. 6.3 shows the chromosomes for a mother design and a father design. 
Each chromosome has n = 10 binary genes: 
 

 

 

 

 

 

 

 

Fig. 6.3: Single-Point Crossover 

With single-point crossover, we randomly generate an integer i from 1 to n known as the 
crossover point, where n is the number of genes in the chromosome. We then cut the mother 
and father chromosomes after gene i, and swap the tail portions of the chromosomes. In Fig. 
6.3, i = 7. The first child is identical to the mother before the crossover point, and identical to 
the father after the crossover point. The second child is identical to the father before the 
crossover point, and identical to the mother after the crossover point.   
 
Another crossover method is uniform crossover. With uniform crossover, a random number r 
between zero and one is generated for each of the n genes. For a particular gene, if x1 is the 
value from the mother design and x2 is the value from the father design, then the values y1 
and y2 for the children designs are:  
 

if r £  0.5 y1 = x2  y2 = x1 
          (6.4) 
if r > 0.5 y1 = x1  y2 = x2 

 
The goal of crossover is to generate two new children designs that inherit many of the 
characteristics of the fit parent designs. However, this goal may not be achieved when the 
binary representation is used. Suppose the last four genes in the chromosomes in Fig. 6.3 
represent a single discrete design variable whose value is equal to the base ten value of the 
last four genes. For the mother design, binary values of 1000 give a design variable value of 
8, and for the father design, binary values of 0111 give a design variable value of 7. For the 
first child design, binary values of 1111 give a design variable value of 15, and for the 
second child, binary values of 0000 give a design variable value of 0. Thus, the parents have 
close values of 8 and 7, while the children have values that are very different from the 
parents of 15 and 0. This is known as the Hamming cliff problem of the binary representation. 
With a value representation, a single gene would have been used for this design variable, and 

1 0 0 1 1 0 1 0 0 0 

1 1 1 0 1 0 0 1 1 1 

1 0 0 1 1 0 1 1 1 1 

1 1 1 0 1 0 0 0 0 0 

crossover 
point 

mother 

father 

first child 

second child 
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the parent values of 7 and 8 would have been inherited by the children with either single 
point or uniform crossover. 
 
Blend crossover is similar to uniform crossover since it is also performed gene by gene. 
Blend crossover makes it possible for children designs to receive random values anywhere in 
the interval between the mother value and the father value. Thus, we generate a random 
number between zero and one for a particular gene. If x1 is the mother value and x2 is the 
father value, then the children values y1 and y2 are: 
 

y1 = (r)x1 + (1-r)x2  
           (6.5) 

y2 = (1-r)x1 + (r)x2  
 
It is possible to transition between uniform and blend crossover with a user-specified 
crossover parameter h: 
 

y1 = (a)x1 + (1-a)x2  
           (6.6) 

y2 = (1-a)x1 + (a)x2 
  

where: 

if  r £  0.5  
2
)r2(a
/1 h

=  

           (6.7) 

if  r > 0.5  
2
)r22(1a
/1 h-

-=  

 
Note that if h = 1, then a = r and (6.6) becomes (6.5), giving blend crossover. If h = 0, then in 
the limit a = 0 for r £  0.5 and a = 1 for r > 0.5, and (6.6) becomes (6.4), giving uniform 
crossover. In the limit as h goes to ¥ , a goes to 0.5 and (6.7) becomes y1 = y2 = (x1+x2)/2, 
which we may call average crossover. 

6.4.3 Mutation 
The next step for creating the new generation is mutation. A mutation probability is specified 
by the user. The mutation probability is generally much lower than the crossover probability. 
The mutation process is performed for each gene of the first child design and for each gene 
of the second child design. The mutation process is very simple. One generates a random 
number between zero and one. If the random number is less than the mutation probability, 
the gene is randomly changed to another value. Otherwise, the gene is left alone. Since the 
mutation probability is low, the majority of genes are left alone. Mutation makes it possible 
to occasionally introduce diversity into the population of designs.   
 
If all possible values are equally probable for the mutated gene, the mutation is said to be 
uniform mutation. It may be desirable to start out with uniform mutation in the starting 
generation, but as one approaches the later generations one may wish to favor values near the 
current value of the gene. We will refer to such mutation as dynamic mutation. Let x be the 
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current value of the gene. Let r be a random number between xmin and xmax, which are the 
minimum and maximum possible values of x, respectively. Let the current generation 
number be j, and let M be the total number of generations. The parameter b is a user-supplied 
mutation parameter. The new value of the gene is: 
 
 if r £  x a-a --+= 1

minminmin )xx()xr(xy  
           (6.8) 
 if r > x   a-a ---= 1

maxmaxmax )xx()rx(xy  
 
where 

b

÷
ø
ö

ç
è
æ -
-=a
M
1j1         (6.9) 

 
In Fig. 6.4, we plot the value of y as a function of r for various values of the uniformity 
exponent a. Note that if a = 1, then y = r, which is uniform mutation. For values of a less 
than one, the mutated gene value favors values near x. The bias increases as a decreases. In 
fact if a = 0, then y = x, which means that the gene is not mutated at all.  
 
 

 

 

 

 

 

 

 

 

Fig. 6.4: Dynamic Mutation 

In Fig. 6.5, we plot the uniformity exponent a versus the mutation parameter b and the 
generation number j. Note that if b = 0, then a = 1, and the mutation is uniform for all 
generations. If b > 0, then a = 1 for the starting generation (j = 1) and decreases to near zero 
in the final generation, giving dynamic mutation. 

xmin 

xmin 

xmax 

xmax 

r x 

x 

y 

a = 1 

a = 0.5 

a = 0.25 

a = 0 
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Fig. 6.5: Uniformity Exponent a 

6.4.4 Elitism 
The selection, crossover, and mutation processes produce two new children designs for the 
new generation. These processes are repeated again and again to create more and more 
children until the number of designs in the new generation reaches the specified generation 
size. The final step that must be performed on this new generation is elitism. This step is 
necessary to guarantee that the best designs survive from generation to generation. One may 
think of elitism as the rite of passage for children designs to qualify as future parents. The 
new generation is combined with the previous generation to produce a combined generation 
of 2N designs, where N is the generation size. The combined generation is sorted by fitness, 
and the N most fit designs survive as the next parent generation. Thus, children must 
compete with their parents to survive to the next generation. 

6.4.5 Summary 
Note that there are many algorithm parameters in a genetic algorithm including: generation 
size, number of generations, penalty parameter, tournament size, roulette exponent, crossover 
probability, crossover parameter, mutation probability, and mutation parameter. Furthermore, 
there are choices between value and binary representation, penalty and segregation fitness, 
tournament and roulette-wheel selection, single-point, uniform, and blend crossover, and 
uniform and dynamic mutation. Thus, there is no single genetic algorithm that is best for all 
applications. One must tailor the genetic algorithm to a specific application by numerical 
experimentation. 
 
Genetic algorithms are far superior to random trial-and-error search. This is because they are 
based on the fundamental ideas of fitness pressure, inheritance, and diversity. Children 
designs inherit characteristics from the best designs in the preceding generation selected 
according to fitness pressure. Nevertheless, diversity is maintained via the randomness in the 
starting generation, and the randomness in the selection, crossover, and mutation processes. 

1 

0 
M 

j 

1 

a 

b = 1 

b = 1/2 

b = 2 

b = 0 
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Research has shown that genetic algorithms can achieve remarkable results rather quickly for 
problems with huge combinatorial search spaces.   
 
Unlike gradient-based algorithms, it is not possible to develop conditions of optimality for 
genetic algorithms. Nevertheless, for many optimization problems, genetic algorithms are the 
only game in town. They are tailor-made to handle discrete-valued design variables. They 
also work well on ground-structure problems where constraints are deleted when their 
associated members are deleted, since constraints need not be differentiable or continuous. 
Analysis program crashes can be handled in genetic algorithms by assigning poor fitness to 
the associated designs and continuing onward. Genetic algorithms can find all optima 
including the global optimum if multiple optima exist. Genetic algorithms are conceptually 
much simpler than gradient-based algorithms. Their only drawback is that they require many 
executions of the analysis program. This problem will diminish as computer speeds increase, 
especially since the analysis program may be executed in parallel for all designs in a 
particular generation. 

6.4.6 Example 2 
Perform selection and crossover on the starting generation from Example 1. Use tournament 
selection with a tournament size of two, and blend crossover according to (6.5) with a 
crossover probability of 0.6. Use the following random number sequence: 
 
0.5292  0.0436  0.2949  0.0411  0.9116  0.7869 
0.3775  0.8691  0.1562  0.5616  0.8135  0.4158  
0.7223  0.3062  0.1357  0.5625  0.2974  0.6033 
 
Solution 

=+ ))6(5292.0(truncate1  design 4  fitness = 0.5406 

=+ ))6(0436.0(truncate1  design 1  fitness = 0.4852 

mother = design 1 

=+ ))6(2949.0(truncate1  design 2  fitness = 1.1289 

=+ ))6(0411.0(truncate1  design 1  fitness = 0.4852 

father = design 1 

since mother and father are the same, no crossover needed 

child 1 = child 2 = 0.2833, 0.1408 

 

=+ ))6(9116.0(truncate1  design 6  fitness = 0.8657 
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=+ ))6(7869.0(truncate1  design 5  fitness = 0.9242 

mother = design 6 

=+ ))6(3775.0(truncate1  design 3  fitness = 0.4314 

=+ ))6(8691.0(truncate1  design 6  fitness = 0.8657 

father = design 3 

0.1562 < 0.6 ==> perform crossover    

( 5616.0 )0.4921 + (1- 5616.0 )0.1384 = 0.3370  
(1- 5616.0 )0.4921 + ( 5616.0 )0.1384 = 0.2935 

(0.8135) 0.2845+ (1-0.8135) 0.4092  = 0.3078 
(1-0.8135) 0.2845+ (0.8135) 0.4092  = 0.3859 

child 3 = 0.3370, 0.3078 

child 4 = 0.2935, 0.3859 

=+ ))6(4158.0(truncate1  design 3  fitness = 0.4314 

=+ ))6(7223.0(truncate1  design 5  fitness = 0.9242 

mother = design 3 

=+ ))6(3062.0(truncate1  design 2  fitness = 1.1289 

=+ ))6(1357.0(truncate1  design 1  fitness = 0.4852 

father = design 1 

0.5625 < 0.6 ==> perform crossover 

 (0.2974) 0.1384+ (1-0.2974) 0.2833= 0.2402  
(1-0.2974) 0.1384+ (0.2974) 0.2833= 0.1815 

(0.6033) 0.4092+ (1-0.6033) 0.1408  = 0.3027 
(1-0.6033) 0.4092+ (0.6033) 0.1408  = 0.2473 

child 5 = 0.2402, 0.3027 

child 6 = 0.1815, 0.2473 
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6.4.7 Example 3 
Perform mutation on the problem in Examples 1 and 2. Use a mutation probability of 10%, 
and perform dynamic mutation according to (6.8) and (6.9) with a mutation parameter of b = 
5. Assume that this is the second of 10 generations. Use the following random number 
sequence: 
 
 0.2252  0.7413  0.5135  0.8383  0.4788  0.1916 
 0.4445  0.8220  0.2062  0.0403  0.5252  0.3216 
 0.8673 
 
Solution 

child 1, gene 1: 0.2252 > 0.1 ==> no mutation 

child 1, gene 2: 0.7413 > 0.1 ==> no mutation 

child 1 = 0.2833, 0.1408 

child 2, gene 1: 0.5135 > 0.1 ==> no mutation 

child 2, gene 2: 0.8383 > 0.1 ==> no mutation 

child 2 = 0.2833, 0.1408 

child 3, gene 1: 0.4788 > 0.1 ==> no mutation 

child 3, gene 2: 0.1916 > 0.1 ==> no mutation  

child 3 = 0.3370, 0.3078 

child 4, gene 1: 0.4445 > 0.1 ==> no mutation 

child 4, gene 2: 0.8220 > 0.1 ==> no mutation 

child 4 = 0.2935, 0.3859 

child 5, gene 1: 0.2062 > 0.1 ==> no mutation 

child 5, gene 2: 0.0403 > 0.1 ==> mutate!!! 

5905.0
10
121
5
=÷

ø
ö

ç
è
æ -
-=a  

xmin = 0.0 xmax = 0.5 x = 0.3027   (child 5, gene 2 from Example 2) 

Generate random number y between xmin and xmax. 
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y = xmin + 0.5252(xmax - xmin) = 0.2626 < x 

a-a --+= 1
minminmin )xx()xy(xz  = 0.2783 

child 5 = 0.2402, 0.2783 

child 6, gene 1: 0.3216 > 0.1 ==> no mutation 

child 6, gene 2: 0.8673 > 0.1 ==> no mutation 

child 6 = 0.1815, 0.2473 

6.4.8 Example 4 
Determine the segregation fitness for each of the 6 child chromosomes in Example 3. Then 
perform the elitism step to create the second generation. Calculate the average and best 
fitness of the second generation and compare to the average and best fitness of the starting 
generation. 
 
Solution 
Recall the formulas for the scaled objective and constraints from Example 3(?): 
 f = ( ) ( ) 22

1
2 xin571.0xin429.1 -- +    

( ) 0xin2g 1
2

1 £-= -    

( ) 0xin2g 2
2

2 £-= -    

g3 ( ) ( ) 0xin323.1xin354.13386.0 2
2

1
2 £--= --  

g4 ( ) ( ) 0xin232.1xin261.12463.0 2
2

1
2 £--= --  

child 1: x1 = 0.2833in2   x2 = 0.1408in2  

 f = 0.4852 g1 = -0.5666 g2 = -0.2816 g3 = -0.2313 g4 = -0.2844 

 g = 0  fitness = 0.4852 

child 2: x1 = 0.2833in2   x2 = 0.1408in2  

 f = 0.4852 g1 = -0.5666 g2 = -0.2816 g3 = -0.2313 g4 = -0.2844 

 g = 0  fitness = 0.4852 

child 3: x1 = 0.3370in2   x2 = 0.3078in2 
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 f = 0.6573 g1 = -0.6740 g2 = -0.6156 g3 = -0.5249 g4 = -0.5579 

 g = 0  fitness = 0.6573 

child 4: x1 = 0.2935in2   x2 = 0.3859in2 

 f = 0.6398 g1 = -0.5870 g2 = -0.7718 g3 = -0.5693 g4 = -0.5992 

 g = 0  fitness = 0.6398 

child 5: x1 = 0.2402in2   x2 = 0.2783in2 

 f = 0.5022 g1 = -0.4804 g2 = -0.5566 g3 = -0.3548 g4 = -0.3995 

 g = 0  fitness = 0.5022 

child 6: x1 = 0.1815in2   x2 = 0.2473in2 

 f = 0.4006 g1 = -0.3630 g2 = -0.4946 g3 = -0.2343 g4 = -0.2872 

 g = 0  fitness = 0.4006 

Parent generation: 
design 1: 0.2833, 0.1408 fitness = 0.4852 
design 2: 0.0248, 0.0316 fitness = 1.1289 
design 3: 0.1384, 0.4092 fitness = 0.4314 
design 4: 0.3229, 0.1386 fitness = 0.5406 
design 5: 0.0481, 0.1625 fitness = 0.9242 
design 6: 0.4921, 0.2845 fitness = 0.8657 

 
Child generation: 

child 1: 0.2833, 0.1408  fitness = 0.4852 
child 2: 0.2833, 0.1408  fitness = 0.4852 
child 3: 0.3370, 0.3078 fitness = 0.6573 
child 4: 0.2935, 0.3859 fitness = 0.6398 
child 5: 0.2402, 0.2783 fitness = 0.5022 
child 6: 0.1815, 0.2473 fitness = 0.4006 

 
Generation 2: 

design 1: 0.1815, 0.2473 fitness = 0.4006 
design 2: 0.1384, 0.4092 fitness = 0.4314 
design 3: 0.2833, 0.1408  fitness = 0.4852 
design 4: 0.2833, 0.1408  fitness = 0.4852 
design 5: 0.2833, 0.1408  fitness = 0.4852 
design 6: 0.2402, 0.2783 fitness = 0.5022 

 
average fitness for generation 2 = 0.4650 best fitness for generation 2 = 0.4006 
This is significantly better than the starting generation. 
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6.5 Multi-Objective Optimization 
Many optimization problems possess multiple objective functions. In structural design we 
may wish to minimize cost, maximize safety, maximize aesthetic beauty, minimize 
maintenance, maximize usable space, etc. Suppose, for example, we desire to minimize cost 
and minimize deflection at a particular location. These two objectives are competing. This 
means that the minimum cost design is not likely to be the minimum deflection design. Fig. 
6.6 shows an objective space plot for a particular structural optimization problem. The 
shaded region represents the possible combinations of cost and deflection for all feasible 
designs. Design A is the minimum cost design and design B is the minimum deflection 
design. Designs lying on the Pareto front are good compromise designs between the two 
objectives. It is often difficult to numerically quantify the relative preference of cost versus 
deflection. Many people do not know what their preferences are until they have a chance to 
inspect a variety of good designs. Without a numerical quantification of preference, it is 
impossible to combine the two objectives into a single objective and then execute an 
optimization algorithm. Since genetic algorithms work with generations of designs, they have 
the ability to produce a variety of designs on the Pareto front in a single run without requiring 
any numerical quantification of preference. Designers can then inspect these designs, form 
their opinions, and make a selection. 
 
 
 

 

 

 

 

 

 

 
Fig. 6.6 Objective Space Plot 

 
Now let's see how to modify a genetic algorithm to produce a variety of Pareto designs in a 
single run. First, it is necessary to formally define Pareto design. Pareto designs are the 
nondominated designs from a given set of designs. Design j dominates design i if it is equal 
or better in every objective, and better in at least one objective. Consider the generation of 
ten designs plotted in objective space in Fig. 6.7: 

Design A 

Design B 

deflection 

cost 

Pareto front 
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Fig. 6.7: A Generation of Ten Designs 

Design H dominates design D because it has lower values in both objectives. Design B 
dominates design D because it has a lower value of cost and an equal value of deflection. 
There are no designs that dominate designs A, B, H, of J. These four designs are the Pareto 
designs for this particular set of ten designs. 
 
It is our goal that the genetic algorithm converges to the Pareto designs for the set of all 
possible designs. We do this by modifying the fitness function. We will examine three 
different fitness functions for multi-objective optimization. The first fitness function is called 
the scoring fitness function. For a particular design i in a particular generation, the scoring 
fitness is equal to one plus the number of designs that dominate design i. We minimize this 
fitness function. For example, in Fig. 6.7, the scoring fitness of design D is 3 since it is 
dominated by designs B and H. The scoring fitness of design F is 10 since it is dominated by 
all other designs. Note that the scoring fitness of the Pareto designs is one since they are 
nondominated. 
 
Another fitness function for multi-objective optimization is the ranking fitness function. This 
fitness function is also minimized. To begin, the Pareto designs in the generation are 
identified and assigned a rank of one. Thus, designs A, B, H, and J in Fig. 6.7 are assigned a 
rank of one. These designs are temporarily deleted, and the Pareto designs of the remaining 
set are identified and assigned a rank of two. Thus, designs C, D, and I in Fig. 6.7 are 
assigned a rank of two. These designs are temporarily deleted, and the Pareto designs of the 
remaining set are identified and assigned a rank of three. Thus, designs E and G in Fig. 6.7 
are assigned a rank of three. This procedure continues until all designs in the generation have 
been assigned a rank. Thus, design F in Fig. 6.7 is assigned a rank of four. The ranking 
fitness differs from the scoring fitness. In Fig. 6.7, designs C and D have the same rank but 
they have different scores (design C has a score of 2 and design D has a score of 3). 
 

A 

deflection 

cost 

B 

C 

D 

E 
F 

G 

I 
H 

J 
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Note that since all Pareto designs in a particular generation have ranks and scores of one, 
they are all regarded as equally fit. Thus, there is nothing to prevent clustering on the Pareto 
front. Indeed, numerical experiments have shown that genetic algorithms with scoring or 
ranking fitness will often converge to a single design on the Pareto front. We also observe 
that the scoring and ranking fitness functions are discontinuous functions of the objective 
values. An infinitesimal change in the value of an objective may cause the ranking or scoring 
fitness to jump to another integer value. 
 
The third multi-objective fitness function we will consider is the maximin fitness function. 
We derive this fitness function directly from the definition of dominance. Let us assume that 
the designs in a particular generation are distinct in objective space, and that the n objectives 
are minimized. Let j

kf value= of the k’th objective for design i. Design j dominates design i 
if: 

i j
k kf f³  for 1 tok n=  (6.10) 

Equation (6.10) is equivalent to: 
 

min( ) 0i j
k kk
f f- ³  (6.11) 

 
Thus, design i is a dominated design if: 

 

( )max min( ) 0i j
k kkj i
f f

¹
- ³   

 (6.12) 
The maximin fitness of design i is: 

 

( )max min( ) 0i j
k kkj i
f f

¹
- ³  (6.13) 

 
The maximin fitness is minimized. The maximin fitness of Pareto designs will be less than 
zero, while the maximin fitness of dominated designs will be greater than or equal to zero. 
The maximin fitness of all Pareto designs is not the same. The more isolated a design is on 
the Pareto front, the more negative its maximin fitness will be. On the other hand, two 
designs that are infinitesimally close to each other on the Pareto front will have maximin 
fitnesses that are negative and near zero. Thus, the maximin fitness function avoids 
clustering. Furthermore, the maximin fitness is a continuous function of the objective values.  

6.5.1 Example 5 
Consider an optimization problem with two design variables, x1 and x2, no constraints, and 
two objectives: 

 211 xx10f -=   
1

2
2 x

x1
f

+
=  

A particular generation in a genetic algorithm consists of the following six designs: 
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 design 1 x1=1 x2=1  design 4 x1=1 x2=0 

 design 2 x1=1 x2=8  design 5 x1=3 x2=17 

 design 3 x1=7 x2=55  design 6 x1=2 x2=11 

Calculate the objective values for these designs and make an objective space plot of this 
generation. 
 
Solution 

 91)1(10f11 =-=   2
1
11f 12 =

+
=  

 28)1(10f 21 =-=   9
1
81f 22 =

+
=  

 1555)7(10f 31 =-=   8
7
551f 32 =

+
=  

 100)1(10f 41 =-=   1
1
01f 42 =

+
=  

 1317)3(10f 51 =-=   6
3
171f 52 =

+
=  

 911)2(10f 61 =-=   6
2
111f 62 =

+
=  

 
 

 

 

 

 

 

Fig. 6.8 

6.5.2 Example 6 
Determine the scoring fitness and ranking fitness for the designs in Example 5. 

f
1 

f
2 

1 

2 
3 

4 

5 6 
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Solution 

Scoring Fitness: 

 Designs 2, 1, and 4 are not dominated by any other designs. Their score is 1. 

 Design 6 is dominated by design 1. Its score is 2. 

 Design 5 is dominated by designs 1, 4, and 6. Its score is 4. 

 Design 3 is dominated by designs 1, 4, 6, and 5. Its score is 5. 

Ranking Fitness: 

 Designs 2, 1, and 4 have a rank of 1. 

 Design 6 has a rank of 2. 

 Design 5 has a rank of 3. 

 Design 3 has a rank of 4. 

6.5.3 Example 7 
Determine the maximin fitness for the designs in Example 5. 

Solution 

design 1: 
( ) ( ) ( )
( ) ( ) ÷÷

ø

ö
çç
è

æ
----

------
62 ,99min,62 ,139min

,12 ,109min,82 ,159min,92 ,29min
max  

               ( ) ( ) ( ) ( ) ( )( )4,0min,4,4min,1,1min,6,6min,7,7minmax -------=  

               ( )4,4,1,6,7max -----=  

               1-=  

design 2: 
( ) ( ) ( )
( ) ( ) ÷÷

ø

ö
çç
è

æ
----

------
69 ,92min,69 ,132min

,19 ,102min,89 ,152min,29 ,92min
max  

               ( ) ( ) ( ) ( ) ( )( )3,7min,3,11min,8,8min,1,13min,7,7minmax -----=  

               ( )7,11,8,13,7max -----=  

               7-=  
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design 3: 
( ) ( ) ( )
( ) ( ) ÷÷

ø

ö
çç
è

æ
----

------
68 ,915min,68 ,1315min

,18 ,1015min,98 ,215min,28 ,915min
max  

               ( ) ( ) ( ) ( ) ( )( )2,6min,2,2min,7,5min,1,13min,6,6minmax -=  

               ( )2,2,5,1,6max -=  

               6=  

design 4: 
( ) ( ) ( )
( ) ( ) ÷÷

ø

ö
çç
è

æ
----

------
61 ,910min,61 ,1310min

,81 ,1510min,91 ,210min,21 ,910min
max  

               ( ) ( ) ( ) ( ) ( )( )5,1min,5,3min,7,5min,8,8min,1,1minmax -------=  

               ( )5,5,7,8,1max -----=  

               1-=  

design 5: 
( ) ( ) ( )
( ) ( ) ÷÷

ø

ö
çç
è

æ
----

------
66 ,913min,16 ,1013min

,86 ,1513min,96 ,213min,26 ,913min
max  

               ( ) ( ) ( ) ( ) ( )( )0,4min,5,3min,2,2min,3,11min,4,4minmax ---=  

               ( )0,3,2,3,4max --=  

               4=  

design 6: 
( ) ( ) ( )
( ) ( ) ÷÷

ø

ö
çç
è

æ
----

------
66 ,139min,16 ,109min

,86 ,159min,96 ,29min,26 ,99min
max  

               ( ) ( ) ( ) ( ) ( )( )0,4min,5,1min,2,6min,3,7min,4,0minmax -----=  

               ( )4,1,6,3,0max ----=  

               0=  

Note that design 2 is more fit than designs 1 and 4 even though all three are Pareto designs 

(negative fitness). This is because designs 1 and 4 are clustered. 


