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CHAPTER 6 

CONSTRAINED OPTIMIZATION 1: K-T CONDITIONS 

1 Introduction 

We now begin our discussion of gradient-based constrained optimization. Recall that in 
Chapter 3 we looked at gradient-based unconstrained optimization and learned about the 
necessary and sufficient conditions for an unconstrained optimum, various search directions, 
conducting a line search, and quasi-Newton methods. We will build on that foundation as we 
extend the theory to problems with constraints. 

2 Necessary Conditions for Constrained Optimum 

At an unconstrained local optimum, there is no direction in which we can move to improve 
the objective function.  We can state the necessary conditions mathematically as 0f  . At 
a constrained local optimum, there is no feasible direction in which we can move to improve 
the objective.  That is, there may be directions from the current point that will improve the 
objective, but these directions point into infeasible space. 
 
The necessary conditions for a constrained local optimum are called the Kuhn-Tucker 
Conditions, and these conditions play a very important role in constrained optimization 
theory and algorithm development.  

2.1 Problem Form 

It will be convenient to cast our optimization problem into one of two particular forms.  This 
is no restriction since any problem can be cast into either of these forms. 
 
 Max  f x   

 s.t.: 
   0 1,  ,  i ig b i k  x    

   0 1,  ,i ig b i k m   x    

or  
 Min  f x   

 s.t.: 
   0 1,  ,  i ig b i k  x    

   0 1,  ,i ig b i k m   x    

2.2 Graphical Examples 

For the graphical examples below, we will assume we are maximizing with ≤ constraints. 
 
We have previously considered how we can tell mathematically if some arbitrary vector, s, 
points downhill.  That condition is, T 0f s . We developed this condition by noting that 
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any vector s could be resolved into vector components which lie in the tangent plane and 
along the gradient (or negative gradient) direction. 
 
Now suppose we have the situation shown in Fig. 6.1 below. We are maximizing. We have 
contours increasing in the direction of the arrow. The gradient vector is shown. What is the 
set of directions which improves the objective? It is the set for which T 0f s . We show 
that set as a semi-circle in Fig. 6.1 
 

 
Fig. 6.1 Gradient and set of directions which improves objective function. 

 
 
Now suppose we add in a less-than inequality constraint, ( ) 0g x . Contours for this 
constraint are given in Fig. 6.2. The triangular markers indicate the contour for the allowable 
value and point towards the direction of the feasible space. What is the set of directions 
which is feasible? It is the set for which T 0f s . That set is shown as a semi-circle in the 
figure. 
 

 
Fig. 6.2 Gradient and set of feasible directions for a constraint. 

 
Now suppose we overlay these two sets of contours on top of each other, as in Fig. 6.3. 
Where does the optimum lie? By definition, a constrained optimum is a point for which there 
is no feasible direction which improves the objective. We can see that that condition occurs 
when the gradient for the objective and gradient for the constraint lie on top of each other. 
When this happens, the set of directions which improves the objective (dashed semi-circle) 
does not overlap with the set of feasible directions (solid semi-circle.) 
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Fig. 6.3 An optimum for one binding constraint occurs when the gradient vectors 
overlap. When this condition occurs, no feasible point exists which improves the 
objective. 

 
Mathematically we can write the above condition as 
  

    * *
1f g  x x  (6.1) 

 
where  is a positive constant. 
 
Now consider a case where there are two binding constraints at the solution, as shown in Fig. 
6.4 
 

 
Fig. 6.4 Two binding constraints at an optimum. As long as the objective gradient is 
within the cone of the constraint gradients, no feasible point exists which improves 
the objective.  

 
We see that the objective gradient vector is “contained inside” the constraint gradient 
vectors.  If the objective gradient vector is within the constraint gradient vectors, then no 
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direction exists which simultaneously improves the objective and points in the feasible 
region. We can state this condition mathematically as: 
   

      * * *
1 1 2 2f g g     x x x  (6.2) 

 
where, as with the single constraint case,   and  are positive constants. Having 
graphically motivated the development of the main mathematical conditions for a constrained 
optimum, we are now ready to state these conditions. 

2.3 The Kuhn-Tucker Conditions 

The Kuhn-Tucker conditions are the necessary conditions for a point to be a constrained 
local optimum, for either of the general problems given below. (The K-T equations also work 
for an unconstrained optimum, as we will explain later.) 
 
If *x  is a local max for: 
 
 Max  f x  (6.3) 

 s.t.: 
   0 1,  ,  i ig b i k  x   (6.4)  

   0 1,  ,i ig b i k m   x   (6.5)  

 
Or if *x  is a local min for: 
 
 Min  f x  (6.6)  

 s.t.: 
   0 1,  ,  i ig b i k  x   (6.7)  

   0 1,  ,i ig b i k m   x   (6.8)  

 

and if the constraint gradients at the optimum,  *
ig x , are independent, then there exist 

   T*
1 m λ  , called Lagrange multipliers, such that *x and *λ satisfy the following 

system of equations, 

   is feasible 1, ,i ig b i m  x   (6.9) 

    * * *

1

m

i i
i

f g


   x x 0  (6.10) 

  * * 0 1, ,i i ig b i k     x   (6.11) 

 * 0 1, ,i i k     (6.12) 

 
* unrestricted for 1, ,

or
i

i

i k m


 
   


 (6.13) 
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Note in the above equations, 1, ,i k   indicates inequality constraints, 1, ,i k m    
indicates equality constraints, and 1, ,i m  indicates all constraints. 
 
Just as with the necessary conditions for an unconstrained optimum, the K-T conditions are 
necessary but not sufficient conditions for a constrained optimum. 
 
We will now explain each of these conditions. 
 
Equation (6.9) requires that a constrained optimum be feasible with respect to all constraints. 
 
Equation (6.10) requires the objective function gradient to be a linear combination of the 
constraint gradients.  This insures there is no direction that will simultaneously improve the 
objective and satisfy the constraints. 
 
Equation (6.11) enforces a condition known as complementary slackness.  Notice that this 
condition is for the inequality constraints only.  This condition states that either an inequality 
constraint is binding, or the associated Lagrange multiplier is zero.  Essentially this means 
that nonbinding inequality constraints drop out of the problem. 
 
Equation (6.12) states that the Lagrange multipliers for the inequality constraints must be 
positive. 
 
Equation (6.13) states that the Lagrange multipliers for the equality constraints can be either 
positive or negative. 
 
Note that (6.10) above, which is given in vector form, represents a system of n equations.  
We can rewrite (6.10) as: 
 

 

1 2
1 2

1 1 1 1

1 2
1 2

0

0

m
m

m
m

n n n n

gg gf

x x x x

gg gf

x x x x

  

  

 
    

   

 
    

   



     



 (6.14) 

 
We note there is a Lagrange multiplier, , for every constraint.  Recall, however, that if the 
constraint is not binding then its Lagrange multiplier is zero, from (6.11). 
 
Taken together, the K-T conditions represent m+n equations in m+n unknowns. The 
equations are the n equations given by (6.14) (or (6.10)) and the m constraints ( (6.9)). The 
unknowns are the n elements of the vector x and the m elements of the vector  
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2.4 Examples of the K-T Conditions 

2.4.1 Example 1: An Equality Constrained Problem 

Using the K-T equations, find the optimum to the problem, 
 
 Min   2 2

1 22 4f x x x  

 s.t. 1 1 2: 3 2 12g x x   

 
A picture of this problem is given below: 
 

 
Fig. 6.5 Contours of functions for Example 1. 

   
Since the constraint is an equality constraint, we know it is binding, so the Lagrange 
multiplier will be non-zero. With two variables and one constraint, the K-T equations 
represent three equations in three unknowns. 
 
The K-T conditions can be written: 
 

  

 

1

1 1

1

2 2

1 1

0

0

0

gf

x x

gf

x x

g b






 

 


 
 

 x

 

 
evaluating these expressions: 
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1

2

1 2

4 3 0

8 2 0

3 2 12 0

x

x

x x





 

 

  

 

 
which we can write in matrix form as: 
 

 
1

2

4 0 3 0

0 8 2 0

3 2 0 12

x

x



     
           
          

 

 
The solution to this system of equations is 1 23.2727,  1.0909,  4.3636x x    .  The value 

of the objective at this point is 26.18f  . This optimum occurs where the gradient vectors of 
the constraint and objective overlap, just as indicated by the graphical discussion. We should 
verify to make sure this is a constrained min and not a constrained max, since the K-T 
equations apply at both. 
 
Because the objective function for this problem is quadratic and the constraint is linear, the 
K-T equations are linear and thus easy to solve. We call a problem with a quadratic objective 
and linear constraints a quadratic programming problem for this reason. Usually the K-T 
equations are not linear. However, the SQP algorithm attempts to solve these equations by 
solving a sequence of quadratic program approximations to the real program—thus the name 
of “Sequential Quadratic Programming.” 

2.4.2 Example 2: An Inequality Constrained Problem 

In general it is more difficult to use the K-T conditions to solve for the optimum of an 
inequality constrained problem (than for a problem with equality constraints only) because 
we don’t know beforehand which constraints are binding at the optimum.  Thus we often use 
the K-T conditions to verify that a point we have reached is a candidate optimal solution. 
Given a point, it is easy to check which constraints are binding. 
 
Verify that the point  T 0.7059 2.8235x  is an optimum to the problem:  

 
   Min    2 2

1 2f x x x  

   s.t. 1 2: 4 12g x x   

 
Step 1: Put problem in proper form: 
 
   Min    2 2

1 2f x x x  

   s.t. 1 24 12 0g x x     

 
Step 2: See which constraints are binding: 
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    0.7059 4 2.8235 12 -0.0001 0      

 
Since this constraint is binding, the associated Lagrange multiplier is solved for.  (If it were 
not binding, the Lagrange multiplier would be zero, from complementary slackness.) 
 
Step 3: Write out the Lagrange multiplier equations represented by (6.10): 
 

 1
1

1 1

2 (1) 0
gf

x
x x

 
   

 
 

 1
2

2 2

2 (4) 0
gf

x
x x

 
   

 
 

 
Step 4: Substitute in the given point: 
 
  2 0.7059   (6.15) 

  2 2.8235 4  (6.16) 

 
 From (6.15), 1.4118   
 From (6.16), 1.4118   
 
Since these 's are consistent and positive, the above point satisfies the K-T equations and is 
a candidate optimal solution. 

2.4.3 Example 3: Another Inequality Constrained Problem 

Given the problem: 
 
  Min   2

1 2f x x x  

  s.t.   2 2
1 1 2 9 0g x x   x  

    2 1 2 1 0g x x x     

 

See if  T* 0 3 x satisfies the K–T conditions.   

 
Graphically the problem looks like, 
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Fig. 6.6. Contour plot and proposed point for Example 3. 

 
At the proposed point constraint 1g  is binding; 2g  is not. 

 
 
Step 1: Change problem to be in the form of (6.3-6.5): 
 
  Max    2

1 2f x x  x  

  s.t.   2 2
1 1 2: 9 0g x x  x  

    2 1 2: 1 0g x x  x  

 
Step 2: See which constraints are binding: 
 
In this case we can check constraints graphically. Because  2g x  is not binding, 2 0   

from (6.11). However, 1 is solved for since  1g x  is binding. 

 
Step 3: Write out the Lagrange multiplier equations represented by (6.10): 
 

 1 2
1 2 1 1 1

1 1 1

 2 (2 ) 0
g gf

x x
x x x

   
     

  
 (6.17) 

  1 2
1 2 1 2

2 2 2

1 2 0
g gf

x
x x x

   
     

  
 (6.18) 
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Step 4: Substitute in the given point: 
 
At  T 0 3 x , (6.17) vanishes; from (6.18): 

   1 1

1
2 3 1

6
       

so a valid set of ’s, i.e.,  T* 1
0

6
     

 has been found and the K–T conditions are 

satisfied. This is therefore a candidate optimal solution. 
   

2.4.4 Example 4: Another Point for the Same Problem 

Check to see if    T
* 1 0x  satisfies the K–T conditions for the problem given in Example 

3 above. This point is shown in Fig. 6.7 
 

 
Fig. 6.7 Contour plot and proposed point for Example 4. 

 
Step 1: Change problem to be in the form of (6.3-6.5): 
 
  Max    2

1 2f x x  x  

  s.t.   2 2
1 1 2: 9 0g x x  x  

    2 1 2: 1 0g x x  x  
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Step 2: See which constraints are binding: 
 
From Fig. 6.7 we can see that  1g x  is not binding and therefore 1 0  ;  2g x is binding so 

2 0   

 
Step 3: Write out the Lagrange multiplier equations represented by (6.10): 
 

 1 2
1 2 1 2

1 1 1

 2 (1) 0
g gf

x
x x x

   
     

  
 (6.19) 

  1 2
1 2 2

2 2 2

1 1 0
g gf

x x x
   

     
  

 (6.20) 

 
Step 4: Substitute in the given point: 
 
Substituting  T 1 0x  

 
 2 2    from (6.19) 

 2 1    from (6.20) 

 
Since we cannot find a consistent set of  ’s, and the  ’s are negative as well (either 
condition being enough to disqualify the point), this point does not satisfy the Kuhn-Tucker 
conditions and cannot be a constrained optimum. 
 
Question: In Examples 3 and 4 we have looked at two points—a constrained min, and point 
which is not an optimum. Are there any other points which would satisfy the K-T conditions 
for this problem? Where would a constrained max be found? Would the K-T conditions 
apply there? 

2.5 Unconstrained Problems 

We mentioned the K-T conditions also apply to unconstrained problems. This is fortunate 
since a constrained optimization problem does not have to have a constrained solution. The 
optimum might be an unconstrained optimum in the interior of the constraints. 
 
If we have an unconstrained optimum to a constrained problem, what happens to the K-T 
conditions? In this case none of the constraints are binding so all of the Lagrange multipliers 
are zero, from (6.11), so (6.10) becomes, 
 
 

      * * * *

1

0
m

i i
i

f g f


        
x x x  

 
Thus we see that the K-T equations simplify to the necessary conditions for an unconstrained 
optimum when no constraints are binding. 

= 0
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3 The Lagrangian Function 

3.1 Definition 

It will be convenient for us to define the Lagrangian Function: 
 

      
1

L ,
m

i i i
i

f g b


    x λ x x  (6.21) 

 
Note that the Lagrangian function is a function of both x and .  Thus the gradient of the 
Lagrangian function is made up of partials with respect to x and :  
    

   T

1 1

L L L L
L ,

n mx x  
    

          
x λ    (6.22) 

 
We will evaluate some of these partials to become familiar with them, 
 

The partial 
1

L

x




 is: 
11 1 1

L m
i

i
i

gf

x x x




 
 

    

 

Similarly,
2

L

x




is given by, 
12 2 2

L m
i

i
i

gf

x x x




 
 

    

 

The partial 
1

L





 is:  1 1
1

L
g b




  


 

 
It is convenient, given these results, to split the gradient vector of the Lagrangian function 
into two parts:  the vector containing the partial derivatives with respect to x, written xL , 

and the vector containing the partials with respect to , written L .  

 
The gradient of the Lagrangian function with respect to x can be written in vector form as: 
 

    
1

L
m

x i i
i

f g


    x x   (6.23) 

 
so that we could replace (6.10) by xL  0  if we wished. 

 
The gradient of the Lagrangian function with respect to  is: 
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1 1

2 2L

m m

g b

g b

g b



 
    
 
 

  

x

x

x


 (6.24) 

 

3.2 The Lagrangian Function and Optimality 

For a problem with equality constraints only, we can compactly state the K-T conditions as, 
 

 
L

L
L

x



 
    

0  (6.25) 

 
For a problem with inequality constraints as well, the main condition of the K-T equations, 
(6.10), can be stated as, 
 
 Lx  0  (6.26) 

 
Thus we can consider that at an optimum, there exist * and x* such that x* is a stationary 
point of the Lagrangian function. 
 
The Lagrangian function provides information about how the objective and binding 
constraints together affect an optimum. Suppose we are at a constrained optimum. If we were 
to change the objective function, this would clearly have an effect on the solution. Likewise, 
if we were to change the binding constraints (perhaps by changing the right hand sides), 
these changes would also affect the value of the solution. The Lagrangian function tells how 
these changes trade-off against each other, 
 

      
1

L ,
m

i i i
i

f g b


    x λ x x  

 
The Lagrange multipliers serve as “weighting factors” between the individual constraints and 
the objective. Appropriately, the multipliers have units of (objective function/constraint 
function). Thus if our objective had units of pounds, and constraint i had units of inches, 
Lagrange multiplier i would have units of pounds per inch. 

3.3 Interpreting Values of Lagrange Multipliers 

Thus far we have solved for Lagrange multipliers, but we have not attached any significance 
to their values. We will use the Lagrangian function to help us interpret what their values 
mean. 
 
We will start with the Lagrangian function at an optimum: 
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      * * * * *

1

L ,
m

i i i
i

f g b


    x λ x x  (6.27) 

 
Suppose now we consider the right-hand side of constraint i, bi, to be a variable.  How does 

the optimal solution change as we change bi?  To answer this question, we need to find 
*

i

df

db
.  

That is, we need to find how the optimal value of the objective changes as we change the 
right hand side, 

i
b . The Lagrangian function, which relates how constraints and the objective 

interact at the optimum, can give us this information.  
 
We will be concerned only with small perturbations at the optimum. This allows us to ignore 
nonbinding inequality constraints, which will be treated as if they were not there. Thus 
instead of m constraints, we will have m* constraints, which is the set of equality and binding 
inequality constraints.  
 
At an optimum, the value of L becomes the same as the value of f. This is because all of the 
terms in braces go to zero, 
 

        
*

* * * * * *

1

L ,
m

i i i
i

f g b f


        
x λ x x x  

 

since all constraints in our set m* are binding. At the optimum therefore, 
* L*

i i

df d

db db
 .   

As we change bi, we would expect x* and * to change, so we need to consider x and  

themselves to be functions of bi, i.e.,    ,  i ib bx λ .  Then by the chain rule: 
 
 

 
T T* L* L

Lx
i i i i i

df d
L

db db b b b
  

     
  
x λ

 (6.28) 

 

At the optimum L 0x   and L 0  , leaving only 
L

ib




.  

From the Lagrangian function, 
L

i
ib





,  

Thus we have the result, 
 

**
i

i

df

db
  (6.29) 

 
The Lagrange multipliers provide us with sensitivity information about the optimal solution.  
They tell use how the optimal objective value would change if we changed the right-hand 
side of the constraints.  This can be very useful information, telling us, for example, how we 

= 0
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could expect the optimal weight of a truss to change if we relaxed the right-hand side of a 
binding stress constraint (i.e. increased the allowable value of the stress constraint). 
 
Caution:  The sensitivity information provided by the Lagrange multipliers is valid only for 
small changes about the optimum (since for nonlinear functions, derivatives change as we 
move from point to point) and assumes that the same constraints are binding at the perturbed 
optimum. 

3.3.1 Example 5: Interpreting the Value of the Lagrange Multipliers 

In Example 1, Section 2.4.1, we solved the following problem 
 
   Min   2 2

1 22 4f x x x  

   s.t. 1 1 2: 3 2 12g x x   

 
We found the optimal solution to be: 

1 23.2727,  1.0909,  4.3636x x    , at which point * 26.18f  . 

 
What would be the expected change in the objective be if we increased the right-hand side of 
the constraint from 12 to 13?  From (6.29), 
 
 * *

i if b    

 
For 1b  , the change in the objective should be approximately 4.36. 
 
If we change the right hand side and re-optimize the problem, the new optimum is, 

1 23.5454,  1.1818,  4.7272x x    , at which point * 30.72f  . The actual change in the 

objective is 4.54. (Indeed, it is the average of the two 's .)  
 
Thus, without optimizing, the Lagrange multiplier provides an estimate of how much the 
objective would change per unit change in the constraint right hand side. This helps us 
evaluate how sensitive the optimum is to changes. 
 
Sometimes the objective represents profit, and the right hand side of a constraint is viewed as 
a resource which can be purchased. The value of the Lagrange multiplier is a breakpoint 
between realizing a net increase in profit or a net loss. If, for a binding constraint, we can 
purchase more right hand side for less than the Lagrange multiplier, net profit will be 
positive. If not, the cost of the resource will outweigh the increase in profit. 

3.4 Necessary and Sufficient Conditions 

The K-T Conditions we have presented in previous sections are necessary conditions for a 
constrained optimum.  That is, for a point to be a candidate optimal solution, it must be 
possible to find values of  that satisfy (6.9)-(6.13).  If we cannot find such , then the 
candidate point cannot be a constrained optimal solution.   
 



 Chapter 6: Constrained Optimization 1 

 16 

Note, however, that as part of the KT conditions we require the constraint gradients, 
 *ig x , to be independent at the optimal solution; otherwise it is possible, although 

unlikely, that we could have a point be a constrained optimum and not satisfy the KT 
conditions. 
 
If a point satisfies the KT conditions, then it is a candidate optimal solution.  As we have 
seen, the necessary conditions can hold at a constrained max, constrained min, or a point that 
is neither.  An example showing how this might occur is given below: 
 

X1

X2

Decreasing Objective

C

B
A

* KT Conditions 
can be satisfied 
at points A, B, 
and C.

A, C - Locally Constrained Optima
B - Saddle Point

Infeasible Space

 
Fig. 6.8. Points where the K-T equations would be satisfied. 

 
For an unconstrained optimum we saw that sufficient conditions for a minimum were that 

0f  and, the Hessian, 2 ( )f x , is positive definite. 
   
Likewise, for a constrained optimum, sufficient conditions for a point to be a constrained 
minimum are the K-T equations are satisfied (6-9-6.13) and the Hessian of the Lagrangian 

function with respect to x,  2 * *L ,x x λ , is positive definite, where, 

 

     2 * * 2 * * 2 *

1

L ,
m

x i i
i

f g


    x λ x x  (6.30) 

 
Some further discussion is needed, however. If we write the condition of positive 
definiteness as, 
 

 2 * *L , 0T
x y x λ y  (6.31) 

 
The vectors y must satisfy, 
 
 ( *) 0J x y  (6.32) 
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Where ( *)J x is the Jacobian matrix of the constraints (matrix whose rows are the gradients of 
the constraints) active at x*. These vectors comprise a tangent plane and are orthogonal to 
the gradients of the active constraints. For more information about the sufficient conditions, 
see Luenberger, (1984), Fletcher (1987) or Edgar et al. (2001). 
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