Branch and Bound Exercise

Consider the optimization problem with the following objective function and constraints.

$$
\begin{aligned}
& \text { min } 4 x_{1}^{4}-4 x_{2} x_{1}^{2}+x_{2}^{2}+x_{1}^{2}-x_{1}+1 \\
& \text { s.t. }-1 \leq x_{1} \leq 1 \\
& \quad-1 \leq x_{2} \leq 2
\end{aligned}
$$

1. Verify that $[0.5,0.5]$ is optimal for the relaxed solution (with continuous variables). This is the root node, lower bound for the integer solution objective, and starting point for branch and bound.
2. For x_{1} constrained to integer values $(-1,0,1)$ and x_{2} constrained to integer values $(-1,0$, 1,2), determine the optimal solution by branch and bound. Compare the number of optimization evaluations from branch and bound to an exhaustive search.

