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CHAPTER 4 
DERIVATIVES 

4.1 Introduction 
Because many engineering models are continuous and differentiable, it is possible to obtain 
derivatives of response quantities with respect to design variables. Some of the most 
powerful optimization algorithms rely on derivatives to compute search directions, determine 
stopping criteria and examine the sensitivity of a design to small changes. Inaccurate 
derivatives can cause premature termination or a failure to make progress. Further, the 
calculation of derivatives often represents a significant proportion of the computation for an 
optimization. Thus we are interested in methods to compute derivatives accurately and 
efficiently. That is the subject of this chapter.  Additional information on this subject can be 
found in Martins et al. [16] and Nocedal and Wright [17]. 

4.2 Numerical Differentiation 

4.2.1 Finite Difference Methods 
One of the most general methods for obtaining derivatives is the finite difference method. It 
is easy to implement and only requires that we are able to compute function values. Thus this 
method is often used when we don’t have access to the analysis software and need to treat it 
as a “black box.” However, it is not as accurate as other methods for the same level of 
computational expense. 
 
This method flows from the definition of a derivative: 
 

 
  

df
dx

≡ lim
Δx→0

f x + Δx( )− f x( )
Δx

      

 
only instead of an infinitesimally small xD , we have a finite xD . 

4.2.2 Truncation Error 

4.2.2.1 Derivation 

The error associated with using a finite xD can be derived from a Taylor series expanded 
about  x + Δx . For a function of only one variable: 
   

 
   
f x + Δx( ) = f x( ) + df

dx
Δx + 1

2
d 2 f
dx2 Δx2 +…   (4.1) 

 
Solving for the derivative: 
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df
dx

=
f x + Δx( )− f x( )

Δx
− 1

2
d 2 f
dx2 Δx +…   (4.2) 

 
 
If we approximate this forward difference derivative as, 
 

  
 

df
dx

=
f x + Δx( )− f x( )

Δx
 (4.3) 

then we see we have a truncation error of 
   
− 1

2
d 2 f
dx2 Δx +…

⎛
⎝⎜

⎞
⎠⎟

 This error will be dominated by 

the first term, 
  
− 1

2
d 2 f
dx2 Δx  , which is proportional to Dx. Since we don’t usually know the 

sign or magnitude of the second derivative, we will assume it to be positive and indicate it is 
on the order of Dx. Thus to reduce this error, we should make Dx small. 
 
We can also derive a central difference derivative: 
 

 
   
f x + Δx( ) = f x( ) + df

dx
Δx + 1

2
d 2 f
dx2 Δx2 + 1

6
d 3 f
dx3 Δx3 +…   (4.4) 

 

 
   
f x − Δx( ) = f x( )− df

dx
Δx + 1

2
d 2 f
dx2 Δx2 − 1

6
d 3 f
dx3 Δx3 +…   (4.5) 

 
Subtracting the second expression from the first, 
   

 
   
f x + Δx( )− f x − Δx( ) = 2 df

dx
Δx + 1

3
d 3 f
dx3 Δx3 +…   (4.6) 

 
Solving for the derivative, 
   

 
   

df
dx

=
f x + Δx( )− f x − Δx( )

2Δx
− 1

6
d 3 f
dx3 Δx2 +…   (4.7) 

 
If we approximate the derivative as, 
 

 
  

df
dx

=
f x + Δx( )− f x − Δx( )

2Δx
  (4.8) 

 
then the truncation error is on the order of   Δx2 . Assuming xD  < 1.0, the central difference 
method should have less error than the forward difference method. For example, if xD = 
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0.01, the truncation error for the central difference derivative should be on the order of 
2(0.01) 0.0001= . 

 
If the error of the central difference method is better, why isn’t it always used? The central 
difference method requires two functions calls per derivative instead of one for the forward 
difference method. If we have 10 design variables, this means we have to call the analysis 
routine 20 times (twice for each variable) to get the derivatives instead of ten times. This can 
be prohibitively expensive. 

4.2.2.2 Example of Truncation Error 

We wish to compute the derivative of the function 3 1 2( )f x x x= +  at the point 3x = . 
 
The true derivative at this point is 27.2886751. We will use a forward difference derivative 
with 0.01xD = , 
 

( ) ( )3 0.01 3 29.0058362 28.7320508 27.37385
0.01 0.01

f fdf
dx

+ - -
= = =  

 
The absolute value of error is 0.08512. 
 
Now suppose we use Dx = 0.01 with a central difference derivative: 
 

( ) ( )3 0.01 3 0.01 29.0058362 28.4600606 27.28878
2*0.01 0.02

f fdf
dx

+ - - -
= = =  

 
The absolute error has decreased to 0.000105 

4.2.3  Round-off Error 

4.2.3.1 Errors in Function Values 

Besides truncation error, we also have round-off error. This is error associated with a lack of 
significant figures in the function values. Although this can arise from storing a real number 
in binary form on the computer, we can largely overcome this problem by using double 
precision for all real variables. The more likely source of round-off error is lack of significant 
figures in the computer model, which often involves numerical approximations. Returning to 
our expression for a forward difference derivative, we will now consider we have some error
ε in the representation of the true value of the functions. We will assume this error is 
approximately the same for both values and is positive. 
  

 
   

df
dx

=
f x + Δx( ) + ε − f x( ) + ε

Δx
− 1

2
d 2 f
dx2 Δx +…   (4.9) 
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df
dx

=
f x + Δx( )− f x( )

Δx
+ 2ε
Δx

− 1
2

d 2 f
dx2 Δx +…   (4.10) 

 
 

where we see we have a new error term, 
  

2ε
Δx

. To make this term small, we should make xD

large.  

4.2.3.2 Subtractive Cancellation 

Besides a lack of significant figures in the functions values, we can lose a lot of significant 
figures in a finite difference calculation because of subtractive cancellation. This refers to the 
loss of significance caused by the subtraction of two large, nearly equal numbers in the 
numerator (4.3). This can easily cut our significant figures in half. We will consider 
subtractive cancellation to be part of round-off error and will denote this by x (assumed 
positive) and include it in our estimate of round-off error: 
  

 
  

2ε + ξ
Δx

⎛
⎝⎜

⎞
⎠⎟

   (4.11) 

 

4.2.3.3 Example of Round-off Error with Subtractive Cancellation 

We will illustrate the effect of a lack of significant figures and subtractive cancellation on the 
example in Section 4.2.2, i.e., the function 3 1 2( )f x x x= +  at the point 3x = . 
 
We will use a forward difference derivative with   Δx = 0.0001  Further we will assume that 
because of noise in our model, the function values are limited to seven significant figures. 
 

 
  

df
dx

=
f 3+ 0.0001( )− f 3( )

0.0001
= 28.73478− 28.73205

0.0001
= 0.00273

0.0001
= 27.3   

 
We see that after subtracting the two values in the numerator, we are left with 0.00273. This 
difference only has three significant figures; we have lost four significant figures by this 
calculation.  

4.2.4 Total Error 
Recall that the true derivative is, 
 

 
   

df
dx

=
f x + Δx( )− f x( )

Δx
− 1

2
d 2 f
dx2 Δx +…  (4.12) 

 
but we are estimating it as, 
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df
dx

=
f x + Δx( )− f x( )

Δx
+ 2ε + ξ

Δx
⎛
⎝⎜

⎞
⎠⎟

 (4.13) 

 
where this last term is the round-off error. The total error can be approximated as, 
 

 
  

2ε + ξ
Δx

⎛
⎝⎜

⎞
⎠⎟
+ 1

2
d 2 f
dx2 Δx  (4.14) 

 
Thus we have two competing errors, truncation error and round-off error. To reduce 
truncation error, xD should be small; to reduce round-off error, xD should be large. We will 
have to compromise. 

4.2.5 Example of Truncation and Round-off Error 
We will continue our example of 4.2.3; however we will reduce the number of significant 
figures from seven to five to more dramatically highlight the error trade-off. We will 
calculate error for a whole range of Dx’s: 
 

Dx Error 
1.0 9.98 
0.1 0.911 

0.01 0.1113 
0.001 0.2887 

0.0001 2.7113 
0.00001 27.728 

 
If we plot this data, 
 

 
Fig. 4.1. Plot of total error for example 
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As we expected, we see that the data have a “U” shape. At small perturbations, round-off 
error dominates. At large perturbations, truncation error dominates. There is an optimal 
perturbation that gives us the minimum error in the numerical derivative. 
 
Usually we don’t know the true value of the derivative so we can’t easily determine the 
optimal perturbation. However, understanding the source and control of errors in these 
derivatives can be very helpful. If we suspect we have a noisy model, i.e. we don’t have very 
many significant figures in our functions, we should use a central difference method with a 
large perturbation. The large perturbation helps reduce the effects of noise, and the central 
difference method helps control the truncation error associated with a large perturbation. 

4.2.6 Partial Derivatives 
The concepts of the preceding sections on derivatives extend directly to partial derivatives. 

For two variables, 1 2andx x , a finite forward difference partial derivative, 
1

f
x
¶
¶

, would be 

given by, 
1 1 2 1 2

1 1

( , ) ( , )f x x x f x xf
x x

+D -¶
»

¶ D
 (4.15) 

 
Note that only 1x is perturbed to evaluate the derivative. This variable would be set back to its 

base value and 2x perturbed to find 
2

f
x
¶
¶

. 

In a similar manner, a central difference partial derivative for 
1

f
x
¶
¶

would be given by, 

1 1 2 1 1 2

1 1

( , ) ( , )
2

f x x x f x x xf
x x

+D - -D¶
»

¶ D
 (4.16) 

4.3 Complex-Step Derivative Approximation 

4.3.1 Derivation 
The discussion in this section closely follows that given by Martins et al. [16]. Like the finite 
difference approximation, the complex-step approximation can be derived using a Taylor 
series, only instead of expanding the series about x + Δx , we expand the series about an 
imaginary step x + iΔx : 
   

 
  
f x + iΔx( ) = f x( ) + df

dx
iΔx − 1

2
d 2 f
dx2 Δx2 − 1

6
d 3 f
dx3 iΔx3   (4.17) 

 
where we have taken advantage of the fact that i2 = –1. If we group imaginary parts together 
and divide by  Δx : 
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df
dx

=
Im f x + iΔx( )⎡⎣ ⎤⎦

Δx
+ 1

6
d 3 f
dx3 Δx2   (4.18) 

 
We see that the approximation involves a truncation error on the order of   Δx2 . Note that 
unlike the regular finite difference method, we do not have the loss of significant figures 
associated with subtractive cancellation. This is because the base point,   f (x) , as a real, does 
not show up in the imaginary formula. To counter the effects of subtractive cancellation in 
the regular finite difference method, we needed to keep Dx large; this results in a larger 
truncation error. With the complex-step, we can drive Dx small to reduce truncation error 
without a corresponding increase in round-off error. This allows us to get significantly better 
accuracy. 
 
Because there is no subtractive cancellation, the perturbation for the complex-step can be 
made extremely small. At some point (~10-8 for the problem below) the estimate will be as 
accurate as the function evaluation. The step can be made almost as small as the smallest 
number the computer can represent and still be accurate. A typical perturbation for this 
method is 1e-30. 

4.3.2 Example of Complex-Step 
We will repeat the example of 4.2.3 which illustrated subtractive cancelling for the forward 
difference derivative. We will keep the same function, 3 1 2( )f x x x= +  at the point 3x = , 
with seven significant figures. Initially, for comparison purposes, we will keep the 
perturbation of Dx = 0.0001. The derivative is given by, 
 

 
  

df
dx

= Im f (3+ i0.0001)
0.0001

= 27.28868  (4.19) 

 
The error has decreased from 0.011325 to 4.87e-06. If we use double precision (~15 
significant figures) and reduce the perturbation to 10-8, the error drops to zero, within the 
limits of the machine.  
 
The complex-step provides superior accuracy for somewhat more computational cost than 
the forward difference derivative. For example, in a problem with 18 variables involving 
aerodynamic and structural analysis, Martins et al.[18] compared the accuracy and 
computational efficiency of finite difference to complex-step: 
 
“The cost of the complex-step procedure is more than twice that of the finite-difference 
procedure since the function evaluations require complex arithmetic. We feel, however, that 
the complex-step calculations are worth this cost penalty since there is no need to find an 
acceptable step size a priori, as in the case of the finite-difference approximations. Again, we 
would like to emphasize that while there was considerable effort involved in obtaining 
reasonable finite-difference results by optimizing the step sizes, no such effort was necessary 
when using the complex-step method.” 
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To implement this method, we need to be able to modify the analysis software. Specifically, 
all real type variables should be declared to be complex. Also, all functions and operators 
need to be defined for complex arguments. 

4.4 Analytic Derivatives of Simultaneous Equations 

4.4.1 Introduction 
It is often the case in engineering analysis that we need to solve sets of simultaneous 
equations. These can be represented in the form, 
 
  Ku = f  (4.20) 
 
Where K is a p x p coefficient matrix, u is a solution vector of length p (we will later refer to 
the variables u as the state variables), and f is a vector, also of length p, of right hand sides.  
 
As an example, we could assume (4.20) represents a linear, elastic finite element structural 
problem, where K is the stiffness matrix, u is the vector of displacements and f is the vector 
of applied forces. K is a function of the design variables x, of length n, which could be the 
cross-sectional areas. The solution can be written for convenience as, 
 
   u = K −1f  (4.21) 
 
although we would likely not actually invert K but use other, more efficient means to solve 
for the solution. In a structural design problem, we are not only interested in the deflections 
but also the stresses, which are related to the deflections by the equation, 
 
  σ = Su  (4.22) 
 
where s is a vector of length mand S is a m x p stress-displacement matrix. We are interested 

to find both 
  

∂u
∂xi

and 
 

∂σ
∂xi

. 

4.4.2 The Direct Method 

4.4.2.1 Development 

One way of solving for derivatives in the case of simultaneous equations is called the direct 
method.  
 
Taking the derivative of (4.20), we have 
 

 
  
K ∂u

∂xi

+ ∂K
∂xi

u = ∂f
∂xi

  (4.23) 
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Solving for 
  

∂u
∂xi

we have, 

  

 
   

∂u
∂xi

= K −1 ∂f
∂xi

− ∂K
∂xi

u
⎡

⎣
⎢

⎤

⎦
⎥   (4.24)  

 
Everything on the right hand side of (4.24) can be calculated. The matrix K-1 is known from 
solving (4.21) previously, and so doesn’t need to be computed again—this is where we gain a 
lot of efficiency. If we solve (4.20) by some method that doesn’t involve computing K-1, then 
we can employ that same method to solve (4.24). The vector u has previously been 
computed. The dependence of f and K on x is known or can be found (we may, however, 
wish to use numerical methods to compute these—as mentioned in the section which 

follows). We therefore have everything we need to find 
  

∂u
∂xi

. 

Equation (4.24) gives the derivatives of all displacements with respect to one variable. 
Assuming S is independent of x, we can find the derivatives of the stresses using, 
   

 
  

∂σ
∂xi

= S ∂u
∂xi

  (4.25) 

 
We can combine (4.24) and (4.25) to give, 
   

 
   

∂σ
∂xi

= S K −1 ∂f
∂xi

− ∂K
∂xi

u
⎡

⎣
⎢

⎤

⎦
⎥   (4.26) 

 
To find the derivatives of all stresses with respect to all variables, we would calculate (4.26) 
for each variable. This is like solving the system of equations represented by (4.26) for n 
right hand sides. 

4.4.2.2 A Semi-Analytic Approach 

It may be convenient to use finite difference to find 
  

∂f
∂xi

 or 
  

∂K
∂xi

. That is, we may 

approximate (4.26) by, 
   

 
   

∂σ
∂xi

= S K −1 f (xi + Δxi )− f (xi )
Δxi

−
K(xi + Δxi )−K(xi )

Δxi

u
⎡

⎣
⎢

⎤

⎦
⎥   (4.27) 

 
This may be convenient because the dependence of K or f on x may not be easy to determine 
analytically. For example, in a structural finite element program, the global stiffness matrix is 
assembled from the element stiffness matrices, and the dependence on x may be difficult to 
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keep track of. Computing 
  

∂K
∂xi

 or 
  

∂f
∂xi

using a finite difference method is relatively 

inexpensive; furthermore, the finite difference method will be exact if the elements of K or f 
are linear functions of the design variables, which is usually the case. 

4.4.2.3 Example of the Direct Method 

 Suppose we have the following K matrix and x vector, 
   

 

   

K =

5x1 2(x1 + x2 ) 3x2

2(x1 + x2 ) 8x2 4

3x2 4 15

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

  

   

x =
x1

x2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

  (4.28) 

 
where the current point is 

   
xT = 1 2⎡

⎣
⎤
⎦ . The matrix K is therefore, 

   

 

  

K =
5 6 6
6 16 4
6 4 15

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

  (4.29) 

 
We will also define S and f to be,  

  

 
  
S = 20 10 40

10 30 25
⎡

⎣
⎢

⎤

⎦
⎥   

   
f T = 1 0 4⎡⎣ ⎤⎦   (4.30) 

 

We assume S and f are not functions of x, so 
   

∂f
∂xi

= 0 in (4.26). 

The quantities   K −1  and u have already been computed in order to solve (4.21) (we will use 
the inverse for sake of simplicity). They are given by, 
 

 

  

K −1 =
0.767 −0.226 −0.247
−0.226 0.134 0.055
−0.247 0.055 0.151

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

 

  

u =
−0.219
−0.007
0.356

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

 (4.31) 

   
The following can be calculated, 
  

 

   

∂K
∂x1

u =
5 2 0
2 0 0
0 0 0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

−0.219
−0.007
0.356

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
=

−1.110
−0.438

0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

  (4.32) 
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∂K
∂x2

u =
0 2 3
2 8 0
3 0 0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

−0.219
−0.007
0.356

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
=

1.055
−0.493
−0.658

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

  (4.33) 

 

The vector 
  

∂σ
∂x1

is therefore given by, 

  

 
   

∂σ
∂x1

= −S K−1 ∂K
∂x1

u
⎡

⎣
⎢

⎤

⎦
⎥   

 

  

∂σ
∂x1

= − 20 10 40
10 30 25

⎡

⎣
⎢

⎤

⎦
⎥

0.767 −0.226 −0.247
−0.226 0.134 0.055
−0.247 0.055 0.151

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

−1.110
−0.438

0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

  

   

∂σ
∂x1

= − 20 10 40
10 30 25

⎡

⎣
⎢

⎤

⎦
⎥

−0.752
0.192
0.250

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

 

  

 
  

∂σ
∂x1

= 3.137
−4.486

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
  (4.34) 

 
In like manner, 
 

 
   

∂σ
∂x2

= −S K−1 ∂K
∂x2

u
⎡

⎣
⎢

⎤

⎦
⎥  

 

  

∂σ
∂x2

= − 20 10 40
10 30 25

⎡

⎣
⎢

⎤

⎦
⎥

0.767 −0.226 −0.247
−0.226 0.134 0.055
−0.247 0.055 0.151

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

1.055
−0.493
−0.658

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥  

  

∂σ
∂x2

= − 20 10 40
10 30 25

⎡

⎣
⎢

⎤

⎦
⎥

1.083
−0.340
−0.386

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

 

  

 
  

∂σ
∂x2

= −2.805
9.036

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

  (4.35) 
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4.4.3 The Adjoint Method 

4.4.3.1 Development 

There is another way we might approach computing derivatives of simultaneous equations. It 
is called the adjoint method. We will see that the adjoint and the direct methods are 
complementary to each other. 
 
To discuss the adjoint method, we will begin with the equation, 
   

 
   

∂σ
∂x1

= S K −1 ∂f
∂x1

− ∂K
∂x1

u
⎡

⎣
⎢

⎤

⎦
⎥   (4.36) 

For the moment, suppose we are interested in computing just the scalar, 
  

∂σ 1

∂x1

. This can be 

found by taking the first row of the stress-displacement matrix, S, which we will call    s1
T , and 

using it in (4.36), 
   

 

    

∂σ 1

∂x1

= s1
T K −1

!"#
∂f
∂x1

− ∂K
∂x1

u
⎡

⎣
⎢

⎤

⎦
⎥   (4.37) 

 
Let us now consider the term with the brace underneath, i.e.    s1

T K −1 . We note that    s1
T is a 1 x 

p vector, K-1 is a p x p matrix, and their product results in a p length row vector. We will 
define this vector to be the adjoint vector v: 
 
    v1

T = s1
T K −1  (4.38) 

 
If we post-multiply by K: 
 
    v1

TK = s1
T  (4.39) 

 
and take the transpose of both sides, we see that v can be viewed as the solution to the 
following adjoint equations, 
 
    K

T v1 = s1  (4.40) 
 
We need to solve the system of equations represented by (4.40) m times, once for each 
function. With the direct method, we solved a similar system of equations, (4.26), n times, 
once for each variable. If we set    v1

T = s1
T K −1  and substitute it into (4.37) we have, 

   

 
   

∂σ 1

∂x1

= v1
T ∂f

∂x1

− ∂K
∂x1

u
⎡

⎣
⎢

⎤

⎦
⎥   (4.41) 
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And for the next function, 
  

 
   

∂σ 2

∂x1

= v2
T ∂f

∂x1

− ∂K
∂x1

u
⎡

⎣
⎢

⎤

⎦
⎥   

 
Or for all stresses with respect to x1 : 
 

 
   

∂σ
∂x1

= V ∂f
∂x1

− ∂K
∂x1

u
⎡

⎣
⎢

⎤

⎦
⎥    

 
 where   V = SK −1    
 
To apply the adjoint method, we calculate the V matrix and then post multiply this matrix by 
the vector in brackets. This gives us the derivatives of all stresses with respect to one 
variable. We then do this for each variable in turn. As will be shown in a following section, 
the adjoint method results in less computation than the direct method when we have more 
variables than functions. 

4.4.3.2 Example of the Adjoint Method 

We will take our previous example and apply the adjoint method to it. Recalling, 
  

 

  

K −1 =
0.767 −0.226 −0.247
−0.226 0.134 0.055
−0.247 0.055 0.151

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

  

  

u =
−0.219
−0.007
0.356

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

  

 

  
  
S = 20 10 40

10 30 25
⎡

⎣
⎢

⎤

⎦
⎥   

 
We compute   V = SK −1 : 
 

  

  

V = 20 10 40
10 30 25

⎡

⎣
⎢

⎤

⎦
⎥

0.767 −0.226 −0.247
−0.226 0.134 0.055
−0.247 0.055 0.151

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

  

 

  
  
V = 3.219 −0.993 1.644

−5.274 3.116 2.945
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
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We then compute 
   
− ∂K

∂x1

u
⎡

⎣
⎢

⎤

⎦
⎥ . As we did this computation in the previous example, we won’t 

show it here. Combining, 
 
 

  
   

∂σ
∂x1

= −V ∂K
∂x1

u
⎡

⎣
⎢

⎤

⎦
⎥   

 

  

∂σ
∂x1

= − 3.219 −0.993 1.644
−5.274 3.116 2.945

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−1.110
−0.438

0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

  

 

 
  

∂σ
∂x1

= 3.137
−4.486

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

  

   
We now calculate the derivatives with respect to x2: 
  

 

  

∂σ
∂x2

= − 3.219 −0.993 1.644
−5.274 3.116 2.945

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1.055
−0.493
−0.658

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

  

 

 
  

∂σ
∂x2

= −2.805
9.036

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

  

 

4.4.4 Comparison of Direct Method and Adjoint Method 
The direct method is more efficient when we have more functions than variables; the adjoint 
method is more efficient when we have more variables than functions. One case where the 
adjoint method might be preferred is a shape optimization problem, where we may have 
many design variables (the shape variables) and fewer functions (objective and constraints). 
 
To illustrate this difference in efficiency, suppose we have a problem where 
  
 number of variables (n) = 5 
 number of functions (m) = 10 
 number of state variables (p) = 20 
 
For the direct method, we would need to compute the following n times: 
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∂σ
∂xi

= S K−1 ∂f
∂xi

− ∂K
∂xi

u
⎡

⎣
⎢

⎤

⎦
⎥   

 
If we just keep track of the number of multiplies, and we don’t include the computation to 

construct 
   

∂f
∂x1

− ∂K
∂x1

u
⎡

⎣
⎢

⎤

⎦
⎥ , which is used by both methods, we have the following matrices 

being multiplied together, where just their sizes are shown. (Recall that for matrix 
multiplication the number of multiplies is equal to the outer dimension of the first matrix 
times the inner dimension of either matrix times the outer dimension of the second matrix.)
  

 

   

∂σ
∂xi

= 10 x 20⎡⎣ ⎤⎦ 20 x 20⎡⎣ ⎤⎦ 20 x1⎡⎣ ⎤⎦
400multiplies

! "## $##
  

 

   

∂σ
∂xi

= 10 x 20⎡⎣ ⎤⎦ 20 x1⎡⎣ ⎤⎦
200multiplies

! "## $##
  

 
 = 600 multiplies per variable times 5 variables 
 = 3000 total multiplies 
 
For the adjoint method, we would first compute, 
 
 

   
v j

T = s j
T K−1   

 
 

    

v j
T = [1x20][20x20]

400multiplies
! "## $##   

 = 400 multiplies for each function time ten functions 
 = 4000 multiplies 
 
Then for each of these v vectors we need to calculate the dot product below five times, once 
for each variable: 
  

 
  

∂σ j

∂xi

= v j
T ∂f

∂xi

− ∂K
∂xi

u
⎡

⎣
⎢

⎤

⎦
⎥   

 

 

   

∂σ j

∂xi

= 1x 20⎡⎣ ⎤⎦ 20 x1⎡⎣ ⎤⎦
20multiplies

! "## $##
  

 = 100 multiplies per function (for all five variables) times ten functions 
 = 4000 + 1000 
 = 5000 total multiplies 
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Thus we see for this case, where m > n, the direct method is more efficient. If we now reverse 
the problem so we have n = 10, m = 5 (more variables than functions) and p kept the same at 
20, we find the adjoint method requires 3000 multiplies, and the direct method requires 5000 
multiplies. 
 
Notice how inexpensive it is to add derivatives of additional variables to the adjoint method. 
Adding another variable only requires the calculation of a dot product. In the above example, 
this would add 20 multiplies to the 5000 we already have. Indeed, 80% of the computation of 
the example is associated with creating the v vectors and these are not a function of the 
number of variables. 

4.4.5 The Total Derivative 

4.4.5.1 Development 

In this section we will extend the ideas of the previous sections a little further to introduce 
the concept of a total derivative. 
 
As mentioned in Section 4.4, it is often the case that as part of computing analysis functions 
we need to drive a set of equations to zero. For example, in our structural analysis problem, 
we could write (4.20) as, 
   
  Ku− f = 0   (4.42) 
 
Recall that the vector u represents the state variables. In general, we will refer to equations 
such as (4.42) as the residual equations and we solve for the state variables to drive the 
residuals to zero. We are interested in the derivatives of the independent variables, x, that 
take into account the presence of state variables. 
 
To keep things simple, we will consider that we have only one function, f, of interest. We 
will write, 
    f = f (x,u(x))   (4.43) 
 
where the notation u(x) acknowledges that the state variables are implicit functions of the 
independent variables. That is, as the independent variables change, the state variables must 
change as well to keep the residuals at zero. 
 
Differentiating (4.43), 
  

 
   

df
dxi

= ∂ f
∂xi

+ ∂ f
∂uj

∑
duj

dxi

= ∂ f
∂xi

+∇f (u)T du
dxi

  (4.44) 

  
The vector of residuals will likewise include u (as before, a vector of length p) as a function 
of x: 
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   r(x,u(x)) = 0   (4.45) 
 
Taking the derivative with respect to xi gives, 
   

 
  

dr
dxi

= ∂r
∂xi

+ ∂r
∂u

du
dxi

  (4.46) 

 

where 
 
∂r
∂u

is a square matrix, i.e.,   

   

 

    

∂r
∂u

=

∂r1

∂u1

!

∂r1

∂u2

!

…
∂r1

∂up

!

∂rp

∂u1

∂rp

∂u2

…
∂rp

∂up

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

   (4.47) 

 

We note in (4.46) that 
   

dr
dxi

= 0  because the residual equations should be zero everywhere, 

and this implies the derivatives are also zero. (This is perhaps not obvious, and it is certainly 
not the case that just because a function is zero at some point, its derivatives are zero. This 
condition is a result of the functions being zero everywhere.) Thus we can write, 
   

 
   

du
dxi

= − ∂r
∂u

⎡

⎣⎢
⎤

⎦⎥

−1
∂r
∂xi

  (4.48) 

 
Substituting into (4.44) gives the total derivative, 
   

 
   

df
dxi

= ∂ f
∂xi

−∇f (u)T ∂r
∂u

⎡

⎣⎢
⎤

⎦⎥

−1
∂r
∂xi

 (4.49) 

 
What is the meaning of the total derivative? The total derivative takes into account the 
change in the state variables required to keep the residuals at zero. 

4.4.5.2 Structural Example 

Let’s apply (4.49) to our structural example. We have, 
  
   f =σ 1   

  r = Ku− f = 0  
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    σ 1 = s1
T u   

 
We also note, 

 
  

∂r
∂xi

= ∂K
∂xi

u− ∂f
∂xi

⎡

⎣
⎢

⎤

⎦
⎥ ; 

 
∂r
∂u

= K ;    ∇f (u)T = s1
T  

 

Also 
  

∂ f
∂xi

= 0  since we assume S is not a function of x. Putting these into (4.49) gives, 

 

 
   

∂σ 1

∂x1

= s1
T K −1 ∂f

∂x1

− ∂K
∂x1

u
⎡

⎣
⎢

⎤

⎦
⎥   

 
which is the same as (4.37). 

4.4.5.3 The Total Derivative: Direct vs. Adjoint 

We can view the direct or adjoint methods as a different way to group terms in (4.49). If we 
group terms as, 

 
    

df
dxi

= ∂ f
∂xi

−∇f (u)T ∂r
∂u

⎡

⎣⎢
⎤

⎦⎥

−1
∂r
∂xi

φ! "# $#

 (4.50) 

 
Then we have, 
  

  
   

df
dxi

= ∂ f
∂xi

−∇f (u)Tφ  (4.51) 

 
where we can view f as a solution to the following set of equations: 
 

 
  

∂r
∂u

φ = ∂r
∂xi

 (4.52) 

 
and we are using the direct method for solution. If we group terms as, 
 

 

    

df
dxi

= ∂ f
∂xi

−∇f (u)T ∂r
∂u

⎡

⎣⎢
⎤

⎦⎥

−1

ψ
! "## $##

∂r
∂xi

 (4.53) 

Equation (4.49) becomes, 
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df
dxi

= ∂ f
∂xi

−ψ ∂r
∂xi

 (4.54) 

 
where y is the solution to the following adjoint equations, 
 

 
   

∂r
∂u

⎡

⎣⎢
⎤

⎦⎥

T

ψ = ∇f (u)   (4.55) 

 
and we are using the adjoint method to obtain derivatives. 

4.5 Algorithmic Differentiation 

4.5.1 Description 
Algorithmic or Automatic Differentiation (AD) is based on applying the chain rule for 
differentiation to a computer program. This approach involves no approximation error and is 
relatively easy to implement in a computer language supporting object-oriented 
programming; however, it does require that the analysis code be modified and executed in an 
environment which supports AD. It can also involve significant computation. 
 
A good overview of this subject is given by Naumann [19]. We also direct the interested 
reader to the website www.autodiff.org which has open source software packages for C/C++, 
Fortran, Python, Java, Julia, and MATLAB among others. 
 
There are two approaches to AD, which are somewhat similar to the direct and adjoint 
methods in computing analytic derivatives of simultaneous equations. These are the forward 
and reverse methods. We will focus here on the forward method, which is the most common 
and easiest to understand. 
 
In a computer environment, we often do a series of calculations where the result of one 
calculation feeds into another. As we calculate these intermediate values, we could also 
calculate derivatives that “feed forward” into other calculations. 
 
For example, suppose we wish to evaluate, 
 
   f = x2 exp(3x)  at   x =2 
 
using a computer program. We could compute the function in one line, but we could also 
break it up into several steps: 
 

x = 2; 
f1 = 3*x; 
f2 = exp(f1); 
f3 = x^2; 
f4 = f3*f2; 
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The table below shows the sequence of values for both functions and derivatives (x = 2), 

where we use the notation 
 
′f = df

dx
: 

 
Function Value Derivative Value 
 x  2   ′x = 1 1 

  f1 = 3x  6 
  ′f1 = 3 ′x  3 

  f2 = exp( f1)  403.43 
  ′f2 = exp( f1) ′f1  1210.29 

  f3 = x2  4 
  ′f3 = 2x ′x  4 

  f4 = f3 * f2  1613.7 
  ′f4 = f3 ′f2 + f2 ′f3  6454.9 

 
We see that not only can the calculation of current function values be based on prior 
calculations, but the calculation of current derivatives can be based on prior derivative 
calculations. With AD, we compute derivatives automatically as we compute functions. 
 
To reinforce the overall concept, we quote from Martins et al. [16], “AD applies the chain 
rule for every single line in the [computer] program….In it simplest form, each function in 
[a] sequence depends only on the inputs and the functions that have been computed earlier in 
the sequence, as expressed in the functional dependence.” There is a caveat, however: “We 
assume that all of the loops in the program are unrolled, and therefore no variables are 
overwritten and each variable only depends on earlier variables in the sequence. Later, when 
we explain how AD is implemented, it will become clear that this assumption is not 
restrictive…” 
 
In the next section, we will show how an AD environment can be implemented in MATLAB. 

4.5.2 An AD Scheme for MATLAB 
To implement a relatively simple, yet quite powerful scheme for AD in MATLAB, we will 
take advantage of object-oriented programming and define x to be an object that has both a 
value and a derivative. As we perform operations on x such as addition, division, 
exponentiation, etc., we will redefine these operators using operator overloading so they do 
both value and derivative computations. We begin with an overview of the definition of a 
class called “valder” (from value/derivative) which we will create. All of the programming 
which follows in this section is taken from Neidinger [20]. 
 
 
classdef valder 
   properties 
      val  %function value 
      der  %derivative value or gradient vector 
   end  
   methods 
      function obj = valder(a,b)... 
      function vec = double(obj)... 
      function h = plus(u,v)... 
      function h = uminus(u)... 
      function h = minus(u,v)... 
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      function h = mtimes(u,v)... 
      function h = mrdivide(u,v)... 
      function h = mpower(u,v)... 
      function h = exp(u)... 
      function h = log(u)... 
      function h = sqrt(u)... 
      function h = sin(u)... 
      etc. 
   end 
end 
 

For clarity individual functions have not been displayed. None of the functions is longer than 
seven lines, however, and some are only one line. For example, here is the function for 
exp(u): 
 
      function h = exp(u) 
         %VALDER/EXP overloads exp of a valder object argument 
         h = valder(exp(u.val), exp(u.val)*u.der); 
      end  

 
A complete listing of the valder class with functions is given in the Appendix to this 
chapter. 
 
Now suppose we wish to evaluate our example function of  f = x2 exp(3x)  at  x =2, 
 
Below is one version of MATLAB code to do this. We begin by making x a valder object. 
The first argument is the value; the second argument is the derivative (the derivative of x is 
just 1). Since x is a valder object, all the operations after the first line are computed with the 
functions from the class definition. 
 
Code: 
 
>> x = valder(2,1); 
>> f1 = 3*x; 
>> f2 = exp(f1); 
>> f3 = x^2; 
>> f4 = f3*f2 
 

Results: 
 
f4 =  
 
  valder with properties: 
 
    val: 1.6137e+03 
    der: 6.4549e+03 
 

Or we could do everything in one line: 
 
>> x =valder(2,1); 
>> f = x^2 * exp(3 * x) 
 
f =  
 
  valder with properties: 
 
    val: 1.6137e+03 
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    der: 6.4549e+03 

 
We can understand better what is happening relative to operator overloading by referring to 
MATLAB documentation. A listing of some of the basic operators gives: 
 
plus   Addition 
uplus  Unary plus 
minus  Subtraction 
uminus  Unary minus 
times  Element-wise multiplication 
rdivide Right array division 
ldivide Left array division 
power  Element-wise power 
mtimes  Matrix Multiplication 
mrdivide Solve systems of linear equations xA = B for x 
mldivide Solve systems of linear equations Ax = B for x 
mpower  Matrix power 
Etc. 
 
Futher explanation of one of these (we will choose “plus”) as given in the documentation is 
helpful: 
 
plus, + 
 
Addition 
 
Syntax 
C = A + B 
C = plus(A,B) 
 
Description 
C = A + B adds arrays A and B and returns the result in C. 
 
C = plus(A,B) is an alternate way to execute A + B, but is rarely used. It enables 
operator overloading for classes. 
 

The last sentence is key: “C = plus(A,B) is an alternate way to execute A + B, but is 
rarely used. It enables operator overloading for classes.” 
 
Thus, if MATLAB is operating on objects of class valder, and it encounters a plus sign 
(“+”), it executes the addition in accordance with the definition of “plus” as given in valder: 
 
      function h = plus(u,v) 
         %VALDER/PLUS overloads addition + with at least one valder object argument 
         if ~isa(u,'valder') %u is a scalar (u is not of class 'valder') 
            h = valder(u+v.val, v.der); 
         elseif ~isa(v,'valder') %v is a scalar (v is not of class 'valder') 
            h = valder(u.val+v, u.der); 
         else 
            h = valder(u.val+v.val, u.der+v.der); 
         end 
      end 

 
We can see by this code that the valder definition of “+” not only executes addition for the 
function values, but also computes the derivative when two functions are added together 
(which results in adding the derivative values together). In this manner both function values 
and derivatives are carried along as the program executes. 
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4.5.3 Extending the Program to Multiple Variables 
It may not be obvious (at least it wasn’t to me!) that the above code can be extended to the 
situation of multiple variables with no changes. If we have multiple variables, meaning we 
have gradient vectors instead of just single derivatives, we just supply a vector of derivative 
values when we declare something to be the valder class. For example, 
 
X1 = valder(2,[1,0]); 
X2 = valder(3,[0,1]); 
 

The first statement makes X1 an object of valder class with a beginning value of 2 and a 
partial derivative with respect to X1 of 1 and with respect to X2 of 0. Similarly for variable 
X2: its starting value is 3; the partial derivatives are 0 and 1. 
 
Let’s illustrate the multi-variable case by applying AD to the two-bar truss problem, where 
we have height and diameter as design variables, and with the usual functions of weight, 
stress, buckling and deflection. 
 
Code for this follows:  
 
%This routine calls the analysis program for the two-bar truss 
%which automatically computes derivatives 
 
%Set initial values of variables 
x1 = 30; 
x2 = 3; 
 
%Call the analysis routine 
[Functions, Jacobian] = twobarAD(x1,x2); 
 
%Print values 
Functions 
Jacobian 
 
 

A listing of the twobarAD function follows: 
 
function [F, J] = twobarAD(x1, x2) 
%This function computes function values and derivatives 
%for the two-bar truss using AD as given by Neidinger 
%SIAM Review, Vol. 52, No. 3, pp. 543-563 
 
wdth = 60.; thik = 0.15; 
dens = 0.3; modu = 30000.; load = 66.; 
 
%make height and diameter design variable objects of class valder 
hght = valder(x1,[1,0]); 
diam = valder(x2,[0,1]); 
 
% compute intermediate functions 
leng = ((wdth/2.)^2 + hght^2)^0.5; 
area = pi * diam * thik; 
iovera = (diam^2 + thik^2) / 8.; 
 
% compute functions 
wght = 2. * dens * area * leng; 
strs = load * leng / (2. * area * hght); 
buck = (pi^2 * modu * iovera / (leng^2)); 
buckcon = strs - buck; 
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defl = load * leng^3 / (2. * modu * area * hght^2); 
 
F = [wght.val, strs.val, buckcon.val, defl.val]; 
J = [wght.der; strs.der; buckcon.der; defl.der]; 
 

When we execute this code (and, of course, have the valder class definition in the same 
folder), we get: 
 
Functions = 
 
   35.9874   33.0116 -152.5062    0.0660 
 
Jacobian = 
 
    0.5998   11.9958 
   -0.5502  -11.0039 
    5.6337 -134.3739 
   -0.0011   -0.0220 

 
where the rows of the Jacobian matrix are gradient vectors for the individual functions. 
 
The simplicity and power of what has been done here are striking. By adding a little over one 
hundred lines of code, and taking advantage of object-oriented programming and operator 
overloading, we have been able, with the addition of a few lines to the analysis routine, to 
convert our analysis code from giving functions only to computing functions and gradients. 
And what we have done is quite general and could be applied to other analysis routines. 
 
We should discuss a little bit about accuracy, implementation and efficiency. AD methods 
are highly accurate—as accurate as the function computation. They require that the analysis 
software support AD. In terms of efficiency, each partial derivative requires roughly the 
same amount of computation as computing the original function, so the analysis software can 
take several times longer to execute. 
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4.6 Summary Comparison of Methods 
In the table below we summarize the pros and cons of the methods we have presented in this 
chapter. 
 
Method Generality Accuracy Efficiency Comments 
Finite 
Difference 

High Low to 
Medium 

Medium to 
Low 

Can be used on any 
differentiable model 

Complex step Medium High Medium Must be able to modify 
the analysis code 

Automatic 
differentiation 

Medium High Medium Must be able to modify 
the analysis code 

Analytic 
Differentiation 
of Simultaneous 
Equations 

Medium High High Must be able to modify 
the analysis code 

4.7 Appendix 

4.7.1 Listing of Valder.m 
The following listing, created by Richard Neidinger [20], contains many, but not all routines 
for basic operators in order to implement Automatic Differentiation in MATLAB using 
objects. 
 
classdef valder 
   % VALDER class implementing Automatic Differentiation by operator overloading. 
   % Computes first order derivative or multivariable gradient vectors by 
   % starting with a known simple valder such as x=valder(3,1) and  
   % propagating it through elementary functions and operators.  
   % by Richard D. Neidinger 10/23/08 
   properties 
      val  %function value 
      der  %derivative value or gradient vector 
   end  
   methods 
      function obj = valder(a,b) 
         %VALDER class constructor; only the bottom case is needed. 
         if nargin == 0 %never intended for use. 
            obj.val = []; 
            obj.der = []; 
         elseif nargin == 1 %c=valder(a) for constant w/ derivative 0. 
            obj.val = a; 
            obj.der = 0; 
         else 
            obj.val = a; %given function value 
            obj.der = b; %given derivative value or gradient vector 
         end 
      end 
      function vec = double(obj) 
         %VALDER/DOUBLE Convert valder object to vector of doubles. 
         vec = [ obj.val, obj.der ]; 
      end 
      function h = plus(u,v) 
         %VALDER/PLUS overloads addition + with at least one valder object argument 
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         if ~isa(u,'valder') %u is a scalar (u is not of class 'valder') 
            h = valder(u+v.val, v.der); 
         elseif ~isa(v,'valder') %v is a scalar (v is not of class 'valder') 
            h = valder(u.val+v, u.der); 
         else 
            h = valder(u.val+v.val, u.der+v.der); 
         end 
      end 
      function h = uminus(u) 
         %VALDER/UMINUS overloads negation with at least 1 valder object argument 
         h = valder(-u.val, -u.der); 
      end 
      function h = minus(u,v) 
         %VALDER/MINUS overloads subtraction with at least 1 valder object argument 
         if ~isa(u,'valder') %u is a scalar (u is not of class 'valder') 
            h = valder(u-v.val, -v.der); 
         elseif ~isa(v,'valder') %v is a scalar (v is not of class 'valder') 
            h = valder(u.val-v, u.der); 
         else 
            h = valder(u.val-v.val, u.der-v.der); 
         end 
      end 
      function h = mtimes(u,v) 
         %VALDER/MTIMES overloads mult.(*) with at least one valder object argument 
         if ~isa(u,'valder') %u is a scalar (u is not of class 'valder') 
            h = valder(u*v.val, u*v.der); 
         elseif ~isa(v,'valder') %v is a scalar (v is not of class 'valder') 
            h = valder(v*u.val, v*u.der); 
         else 
            h = valder(u.val*v.val, u.der*v.val + u.val*v.der); 
         end 
      end 
      function h = mrdivide(u,v) 
         %VALDER/MRDIVIDE overloads div.(/)with at least one valder object argument 
         if ~isa(u,'valder') %u is a scalar (u is not of class 'valder') 
            h = valder(u/v.val, (-u*v.der)/(v.val)^2); 
         elseif ~isa(v,'valder') %v is a scalar (v is not of class 'valder') 
            h = valder(u.val/v, u.der/v); 
         else 
            h = valder(u.val/v.val, (u.der*v.val-u.val*v.der)/(v.val)^2); 
         end 
      end 
      function h = mpower(u,v) 
         %VALDER/MPOWER overloads power ^ with at least one valder object argument 
         if ~isa(u,'valder') %u is a scalar (u is not of class 'valder') 
            h = valder(u^v.val, u^v.val*log(u)*v.der); 
         elseif ~isa(v,'valder') %v is a scalar (v is not of class 'valder') 
            h = valder(u.val^v, v*u.val^(v-1)*u.der); 
         else 
            h = exp(v*log(u)); %call overloaded log, * and exp 
         end 
      end 
      function h = exp(u) 
         %VALDER/EXP overloads exp of a valder object argument 
         h = valder(exp(u.val), exp(u.val)*u.der); 
      end 
      function h = log(u) 
         %VALDER/LOG overloads natural logarithm of a valder object argument 
         h = valder(log(u.val), (1/u.val)*u.der); 
      end 
      function h = sqrt(u) 
         %VALDER/SQRT overloads square root of a valder object argument 
         h = valder(sqrt(u.val), u.der/(2*sqrt(u.val))); 
      end 
      function h = sin(u) 
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         %VALDER/SIN overloads sine with a valder object argument 
         h = valder(sin(u.val), cos(u.val)*u.der); 
      end 
      function h = cos(u) 
         %VALDER/COS overloads cosine of a valder object argument 
         h = valder(cos(u.val), -sin(u.val)*u.der); 
      end 
      function h = tan(u) 
         %VALDER/TAN overloads tangent of a valder object argument 
         h = valder(tan(u.val), (sec(u.val))^2*u.der); 
      end 
      function h = asin(u) 
         %VALDER/ASIN overloads arcsine of a valder object argument 
         h = valder(asin(u.val), u.der/sqrt(1-u.val^2)); 
      end 
      function h = atan(u) 
         %VALDER/ATAN overloads arctangent of a valder object argument 
         h = valder(atan(u.val), u.der/(1+u.val^2)); 
      end 
   end 
end 

 
 
 


