
 Chapter 3: Unconstrained Optimization

 1

CHAPTER 3
UNCONSTRAINED OPTIMIZATION

3.1 Preliminaries

3.1.1 Introduction
In this chapter we will examine some theory for the optimization of unconstrained functions.
We will assume all functions are continuous and differentiable. Although most engineering
problems are constrained, much of constrained optimization theory is built upon the concepts
and theory presented in this chapter.

3.1.2 Notation
We will use lower case italics, e.g., x, to represent a scalar quantity. Vectors will be
represented by lower case bold, e.g., x, and matrices by upper case bold, e.g., H. We consider
vectors to be column vectors; their transpose, e.g. xT, is a row vector.

The set of n design variables will be represented by the n-dimensional vector x. For example,
previously we considered the design variables for the two-bar truss to be represented by
scalars such as diameter, d, thickness, t, height, h; now we consider diameter to be the first
element, 1x , of the vector x, thickness to be the second element, 2x , and so forth. Thus for
any problem the set of design variables is given by x.

Elements of a vector are denoted by subscripts. Values of a vector at specific points are
denoted by superscripts. Typically 0x will be the starting vector of values for the design
variables. We will then move to 1x , 2x , until we reach the optimum, which will be x*. A
summary of notation used in this chapter is given in Table 3.1.

Table 3.1 Notation
A Matrix A x , kx , x* Vector of design variables,

vector at iteration k, vector
at the optimum

I Identity matrix
 x1,x2 ,...,xn Elements of vector x

a Column vector , ks s Search direction, search
direction at iteration k

1,2,...i i =a Columns of A
 α ,α k ,α * Step length, step length at

iteration k, step length at
minimum along search
direction

 A
T ,aT transpose (), (),k kf f fx x Objective function;

objective evaluated at kx
(), (),k kf f fÑ Ñ Ñx x Gradient of ()f x ,

gradient evaluated at
kx

2 2(),
(),

k k

k k

f fÑ Ñx
H x H

Hessian matrix at kx

 Chapter 3: Unconstrained Optimization

 2

 x Magnitude of vector
x, (L2 norm)

x Absolute value of x

1k k k+D = -x x x Difference in
x vectors

nRÎx The vector x is an element
of n-dimensional Euclidean
space

1k k kf f+=Ñ -Ñγ Difference in
gradients at 1,k k+x x

kN Direction matrix at kx

3.1.3 Statement of Problem
The problem we are trying to solve in this chapter can be stated as,

 Find x, nRÎx
 To Minimize ()f x

3.1.4 Gradient Vector

3.1.4.1 Definition

The gradient of ()f x is denoted ()fÑ x . The gradient is defined as a column vector of the first
partial derivatives of f(x):

∇f (x) =

∂ f
∂x1

∂ f
∂x2

∂ f
∂xn

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

 (3.1)

3.1.4.2 Example: Gradient of a Function

Evaluate the gradient of the function 2 2
1 2 1 1 2 2() 6 2 2 3f x x x x x x= - + + + +x

 1 2

1 2

2 4 3
1 3 2

x x
f

x x
- + +é ù

Ñ = ê ú+ +ë û
 If evaluated at 0 2

2
-é ù

= ê ú
ë û

x , 0 4
1

f
-é ù

Ñ = ê ú-ë û

3.1.4.3 Properties of the Gradient Vector
A very important property of the gradient vector is that it is orthogonal to the function
contours and points in the direction of greatest increase of a function. The negative gradient
points in the direction of greatest decrease. The dot product of a vector v which is orthogonal
to ()fÑ x will be zero, i.e. () 0fÑ =Tv x .

 Chapter 3: Unconstrained Optimization

 3

3.1.5 Vectors That Point "Downhill" or "Uphill"

If we have some search direction s, then T fÑs is proportional to the projection of s onto the

gradient vector, which is given by

sT∇f
∇f

. This can be developed from the definition for a

dot product,

 s

T∇f = s ⋅ ∇f cosθ (3.2)

where s , ∇f represent the magnitude of these vectors, and q is the angle in between. If

 s
T∇f > 0 , then the projection onto the gradient is positive and q is < 90 degrees. If s

T∇f < 0 ,
then the projection is negative and q is > 90 degrees. We can see this geometrically in Fig.
3.1:

Fig. 3.1. Vectors that point uphill or downhill.

As long as s

T∇f > 0 , then s points, at least for some small distance, in a direction that
increases the function (points uphill). In like manner, if T 0 fÑ <s , then s points downhill.
As an example, suppose at the current point in space the gradient vector is

 ∇f (xk)T = [6 1 −2] . We propose to move from this point in a search direction

 s
T = [−1 −1 0] . Does this direction go downhill? We evaluate

sT∇f = −1 −1 0⎡
⎣

⎤
⎦

6
1
−2

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
= −7

So this direction would take us downhill, at least for a short step. A little later in this chapter
we will see that this product represents the directional derivative, i.e., the derivative of the
function in this search direction.

VALLEY

Ñf

up

up
down

down

tangent
line

 Chapter 3: Unconstrained Optimization

 4

3.1.6 Hessian Matrix

3.1.6.1 Definition

The Hessian Matrix, H(x) or 2 ()fÑ x , is defined to be the square matrix of second partial
derivatives:

 H(x) =∇2 f (x) =

∂2 f
∂x1

2

∂2 f
∂x1∂x2

 ∂2 f
∂x1∂xn

∂2 f
∂x2∂x1

∂2 f
∂x2

2
 ∂2 f

∂x2∂xn

∂2 f
∂xn∂x1

∂2 f
∂xn∂x2

 ∂2 f
∂xn

2

#

$

%
%
%
%
%
%
%
%
%
%

&

'

(
(
(
(
(
(
(
(
(
(

 (3.3)

We can also obtain the Hessian by applying the gradient operator on the gradient transpose,

H(x) =∇2 f (x) =∇(∇f (x)T) =

∂
∂x1
∂
∂x2

∂
∂xn

#

$

%
%
%
%
%
%
%
%
%
%

&

'

(
(
(
(
(
(
(
(
(
(

∂f
∂x1
, ∂f
∂x2
,..., ∂f

∂xn

#

$
%

&

'
(=

∂2 f
∂x1

2

∂2 f
∂x1∂x2

 ∂2 f
∂x1∂xn

∂2 f
∂x2∂x1

∂2 f
∂x2

2
 ∂2 f

∂x2∂xn

∂2 f
∂xn∂x1

∂2 f
∂xn∂x2

 ∂2 f
∂xn

2

#

$

%
%
%
%
%
%
%
%
%
%

&

'

(
(
(
(
(
(
(
(
(
(

The Hessian is a symmetric matrix. The Hessian matrix gives us information about the
curvature of a function, and tells us how the gradient is changing.

For simplicity, we will sometimes write kH instead of ()kH x .

3.1.6.2 Example: Hessian Matrix

Find the Hessian matrix for the function, 2 2
1 2 1 1 2 2() 6 2 2 3f x x x x x x x= - + + + +

 1 2

1 2

2 4 3
1 3 2

x x
f

x x
- + +é ù

Ñ = ê ú+ +ë û
,

2

2
1

4f
x
¶

=
¶

2

1 2

3f
x x
¶

=
¶ ¶

2

2 1

3f
x x
¶

=
¶ ¶

2

2
2

2f
x
¶

=
¶

 so the Hessian is:

 Chapter 3: Unconstrained Optimization

 5

 ()
4 3
3 2
é ù

= ê ú
ë û

H x

3.1.7 Positive and Negative Definiteness

3.1.7.1 Definitions
If for any vector, x, the following is true for a symmetric matrix B,

xTBx > 0, then B is positive definite

xTBx < 0, then B is negative definite
 (3.4)

3.1.7.2 Checking Positive Definiteness
The above definition is not very useful in terms of checking if a matrix is positive definite,
because it would require that we examine every possible vector x to see if the condition given
in (3.4) is true. So, how can we tell if a matrix is positive definite? There are three ways we
will mention,

1. A symmetric matrix B is positive definite if all eigenvalues of B are positive.

2. A symmetric matrix is positive definite if the determinant of each of its principal
minor matrices is positive.

3. A n n´ symmetric matrix B is positive definite if it can be written as T = B LL where

L is a lower triangular matrix with positive diagonal elements. The L matrix can be
developed through Choleski decomposition.

The matrix we will be most interested in checking is the Hessian matrix, ()H x .

What does it mean for the Hessian to be positive or negative definite? If positive definite, it
means curvature of the function is everywhere positive. This will be an important condition
for checking if we have a minimum. If negative definite, curvature is everywhere negative.
This will be a condition for verifying we have a maximum.

3.1.7.3 Example: Checking if a Matrix is Positive Definite Using Principal Minor
Matrices

Is the matrix given below positive definite? We need to check the determinants of the
principal minor matrices, found by taking the determinant of a 1x1 matrix along the diagonal,
the determinant of a 2x2 matrix along the diagonal, and finally the determinant of the entire
matrix. If any one of these determinants is not positive, the matrix is not positive definite.

 Chapter 3: Unconstrained Optimization

 6

[]

2 3 2
3 5 1
2 1 5

2 3 2
2 3

2 2 0 1 0 3 5 1 5 0
3 5

2 1 5

-é ù
ê ú-ê ú
ê ú- -ë û

-é ù
é ù ê ú= > = > - = - <ê ú ê úë û ê ú- -ë û

The determinants of the first two principal minors are positive. However, because the
determinant of the matrix as a whole is negative, this matrix is not positive definite.

We also note that the eigenvalues are –0.15, 4.06, 8.09. That these are not all positive also
indicates the matrix is not positive definite.

3.1.7.4 Checking Negative Definiteness
How can we check to see if a matrix is negative definite? There are two ways we will
mention,

1. A symmetric matrix B is negative definite if all eigenvalues of B are negative.

2. A symmetric matrix is negative definite if we reverse the sign of each element and the
resulting matrix is positive definite.

Note: A symmetric matrix is not negative definite if the determinant of each of its principal
minor matrices is negative. Rather, in the negative definite case, the signs of the determinants
alternate minus and plus, so the easiest way to check for negative definiteness using principal
minor matrices is to reverse all signs and see if the resulting matrix is positive definite.

It is also possible for a matrix to be positive semi-definite, or negative semi-definite. This
occurs when one or more of the determinants or eigenvalues are equal to zero, and the others
are all positive (or negative, as the case may be). These are special cases we won’t worry
about here.

If a matrix is neither positive definite nor negative definite (nor semi-definite), then it is
indefinite. If using principal minor matrices, note that we need to check both cases before we
reach a conclusion that a matrix is indefinite.

3.1.7.5 Example: Checking if a Matrix is Negative Definite Using Principal Minor
Matrices

Is the matrix given above negative definite? We reverse the signs and see if the resulting
matrix is positive definite:

 Chapter 3: Unconstrained Optimization

 7

[]

2 3 2
3 5 1
2 1 5

2 2 0

- -é ù
ê ú- -ê ú
ê ú-ë û

- = - <

Because the first determinant is negative there is no reason to go further. We also note that
the eigenvalues of the “reversed sign” matrix are not all positive.

Because this matrix is neither positive nor negative definite, it is indefinite.

3.1.8 Taylor Expansion

3.1.8.1 Definition

The Taylor expansion is an approximation to a function at a point kx and can be written in
vector notation as:

f x k+1() = f (x k)+∇f (x k)T x k+1 − x k() + 1

2
x k+1 − x k()T

∇2 f (x k) x k+1 − x k() +… (3.5)

If we note that (x
k+1 − x k) can be written as kDx , and using notation ()k kf f=x , we can

write (3.5) more compactly as,

f k+1 = f k + ∇f k()

T
Δx k +

1
2
Δx k()

T
∇2 f kΔx k +… (3.6)

The Taylor expansion allows us to approximate any continuous function as a polynomial in
terms of its derivatives at the point kx . We can make a linear approximation by taking the
first two terms of the expansion. We can make a quadratic approximation by taking the first
three terms of the expansion.

3.1.8.2 Example: Quadratic Approximation of a Transcendental Function

Suppose () ()1/2
1 2() 2 3ln f x x= +x

 at ()T [5,4]k =x ()1/ 2
1

2

3,Tf x
x

-é ù
Ñ = ê ú

ë û

∇f k()T

= 0.447, 0.750⎡⎣ ⎤⎦

2

(3/ 2)
12

1

1
2

f x
x

-¶
= -

¶

2

1 2

0f
x x
¶

=
¶ ¶

2

2 1

=0f
x x
¶
¶ ¶

2

2 2
2 2

3f
x x
¶ -

=
¶

 Chapter 3: Unconstrained Optimization

 8

()
(3/ 2)
1

2
2

1 0
5 0.045 0.02 at3 4 0.0 0.1880

x

x

-é ù-ê ú -é ù é ùê ú= =ê ú ê ú- -ê ú ë û ë û
ê úë û

H x

() 1 1
1 2

2 2

5 50.045 0.018.631 [0.447,0.750] [5, 4]
4 40.0 0.1882

x x
f x x

x x
- --é ù é ùé ù

» + + - -ê ú ê úê ú- --ë ûë û ë û
x

If we wish, we can stop here with the equation in vector form. To see the equation in scalar
form we can carry out the vector multiplications and combine similar terms:

() 1 28.631 0.447 2.235 0.750 3.000f x x» + - + - +x

() () 1
1 2

2

51 0.045 0.225 , 0.188 0.752
42

x
x x

x
-é ù

- + - +é ù ê úë û -ë û

() 1 23.396 0.447 0.750f x x» + + +x

()2 2
1 1 2 2

1 0.045 0.450 1.125 0.188 1.504 3.008
2

x x x x- + - - + -

() 2 2
1 2 1 21.300 0.672 1.502 0.023 0.094f x x x x» + + - -x

Evaluating and comparing this approximation to the original:

 []Tx Quadratic Actual Error
[5,4] 8.63 8.63 0.00
[5,5] 9.28 9.3 0.02
[6,4] 9.05 9.06 0.01
[7,6] 10.55 10.67 0.12
[2,1] 3.98 2.83 -1.15
[9,2] 8.19 8.08 -0.11

We notice that the further the point gets from the expansion point, the greater the error that is
introduced. We also see that at the point of expansion the approximation is exact.

3.2 Properties and Characteristics of Quadratic Functions
A lot of optimization theory is based on optimizing quadratic functions. It is therefore helpful
to investigate some of the properties of these functions.

 Chapter 3: Unconstrained Optimization

 9

3.2.1 Representation
We can represent a quadratic function three ways—as a scalar equation, a general vector
equation, and as a Taylor expansion. Although these representations look different, they give
exactly the same results. For example, consider the equation,

 2 2

1 2 1 1 2 2() 6 2 2 3f x x x x x x x= - + + + + (3.7)

This is a scalar representation of a quadratic.

As another representation, we can write a quadratic in general vector form,

 1()
2

T Tf a= + +x b x x Cx (3.8)

By inspection, the example given of (3.7), in the form of (3.8), is:

4 31() 6 [2, 1]
3 22

Tf é ù
= + - + ê ú

ë û
x x x x (3.9)

where,

 1

2

x
x
é ù

= ê ú
ë û

x

We also observe that C in (3.8) ends up being H.

A third form is a Taylor representation,

 () () ()T T1
2

k k k k kf f f= + Ñ D + D Dx x x H x (3.10)

We note for (3.7), 1 2

1 2

2 4 3
1 3 2

x x
f

x x
- + +é ù

Ñ = ê ú+ +ë û
 and

4 3
3 2
é ù

= ê ú
ë û

H

We will assume a point of expansion,
2
2

k -é ù
= ê ú
ë û

x , at which
4
1

kf
-é ù

Ñ = ê ú-ë û
. (It may not be

apparent, but if we are approximating a quadratic, it doesn’t matter what point of expansion
we assume. The Taylor expansion will be exact regardless of the point we pick.)

The example of (3.7), as a Taylor representation, becomes,

4 31() 12 [4, 1]
3 22

Tf é ù
= + - - D + D Dê ú

ë û
x x x x (3.11)

where,

 Chapter 3: Unconstrained Optimization

 10

 1

2

2
2

x
x
+é ù

D = ê ú-ë û
x

These three representations are equivalent. If we pick the point

xT = 1.0 2.0⎡

⎣
⎤
⎦ , all three

representations give f =18 , as you can verify by substitution.

3.2.2 Characteristics of Quadratic Functions
It is useful to note the following characteristics of quadratic equations:

• The equations for the gradient vector of a quadratic function are linear. This makes it
easy to solve for where the gradient is equal to zero.

• The Hessian for a quadratic function is a matrix of constants (so we will write as H or
2 fÑ instead of H(x) or 2 ()fÑ x). Thus the curvature of a quadratic is everywhere the

same.
• Excluding the cases where we have a semi-definite Hessian, quadratic functions have

only one stationary point, i.e. only one point where the gradient is zero.
• Given the gradient and Hessian at some point kx , the gradient at some other point,

1k+x , is given by,

 ()1 1k k k kf f+ +Ñ =Ñ + -H x x (3.12)

This expression is developed in the Appendix, Section 3.11.1, by differentiating a Taylor
expansion in vector form.

• Given the gradient at some point kx , Hessian, H, and a search direction, s, the

optimal step length, α
* , in the direction s is given by,

α * = −

∇f k()T
s

sT Hs
 (3.13)

This expression is derived in the Appendix in Section 3.11.2.

• Some of the best methods of optimization are methods of conjugate directions. A

method of conjugate directions will solve for the optimum of a quadratic function of n
variables in n steps, providing minimizing steps are taken in each search direction.
We will learn more about these methods in sections which follow.

3.2.3 Examples
We start with the example,

 () 2 2

1 2 1 1 2 24 2 4f x x x x x x= + + - +x (3.14)

 Chapter 3: Unconstrained Optimization

 11

Since this is a quadratic, we know it only has one stationary point. We note that the Hessian,

2 4
4 2

-é ù
= ê ú-ë û

H

is indefinite (eigenvalues are –0.16 and 6.1). This means we should have a saddle point. The
contour plots in Fig 3.2 and Fig. 3.3 confirm this.

Fig. 3.2 Contour plot of Eq (3.14).

Fig. 3.3. 3D contour plot of (3.14).

We will do a second example. Suppose we have the function,

 () 2 2

1 2 1 1 2 22 4 2f x x x x x x= + + - +x (3.15)

 Chapter 3: Unconstrained Optimization

 12

 1 2

1 2

1 8
2 4

x x
f

x x
+ -é ù

Ñ = ê ú- +ë û
 and

8 1
1 4

-é ù
= ê ú-ë û

H

By inspection, we see that the determinants of the principal minor matrices are all positive.
Thus this function should have a min and look like a bowl. The contour plots follow.

Fig. 3.4. Contour plot for (3.15)

Fig. 3.5 3D contour plot for (3.15)

 Chapter 3: Unconstrained Optimization

 13

3.3 Necessary and Sufficient Conditions for an Unconstrained
Optimum

With some preliminaries out of the way, we are now ready to begin discussing the theory of
unconstrained optimization of differentiable functions. We start with the mathematical
conditions which must hold at an unconstrained, local optimum.

3.3.1 Definitions

3.3.1.1 Necessary Conditions for an Unconstrained Optimum

The necessary conditions for an unconstrained optimum at x* are,

 ∇f (x*) = 0 and f x() be differentiable at x* (3.16)

These conditions are necessary but not sufficient, inasmuch as () 0fÑ =x can apply at a max,
min or a saddle point. However, if at a point () 0fÑ ¹x , then that point cannot be an
optimum.

3.3.1.2 Sufficient Conditions for a Minimum
The sufficient conditions include the necessary conditions but add other conditions such that
we know we have an optimum. For a minimum,

 ∇f (x*) = 0, f x() twice differentiable at x* ,

 plus

∇2 f x*() is positive definite. (3.17)

3.3.1.3 Sufficient Conditions for a Maximum
For a maximum,

 ∇f (x*) = 0, f x() twice differentiable at x* ,

 plus

∇2 f x*() is negative definite. (3.18)

3.3.2 Examples: Applying the Necessary, Sufficient Conditions
Apply the necessary and sufficient conditions to find the optimum for the quadratic function,

 () 2 2

1 1 2 22 4f x x x x= - +x

Since this is a quadratic function, the partial derivatives will be linear equations. We can
solve these equations directly for a point that satisfies the necessary conditions. The gradient
vector is,

 Chapter 3: Unconstrained Optimization

 14

 1 1 2

1 2

2

2 2 0
()

2 8 0

f
x x x

f
x xf

x

¶é ù
ê ú¶ -é ù é ùê úÑ = = =ê ú ê ú- +¶ê ú ë ûë û
ê ú¶ë û

x

When we solve these two equations, we have a solution, 1 0x = , 2 0x = --this is a point where
the gradient is equal to zero. This represents a minimum, a maximum, or a saddle point. At
this point, the Hessian is,

2 2
2 8

-é ù
= ê ú-ë û

H

Since this Hessian is positive definite (eigenvalues are 1.4, 8.6), this must be a minimum.

As a second example, apply the necessary and sufficient conditions to find the optimum for
the quadratic function,

 () 2 2

1 2 1 1 2 24 2 4f x x x x x x= + + - +x

As in example 1, we will solve the gradient equations directly for a point that satisfies the
necessary conditions. The gradient vector is,

 1 1 2

1 2

2

2 4 4 0
4 2 2 0

f
x x x

x xf
x

¶é ù
ê ú¶ - +é ù é ùê ú = =ê ú ê ú- + +¶ê ú ë ûë û
ê ú¶ë û

When we solve these two equations, we have a solution, 1 1.333x = , 2 1.667x = . The Hessian
is,

2 4
4 2

-é ù
= ê ú-ë û

H

The eigenvalues are -2, 6. The Hessian is indefinite. This means this is neither a max nor a
min—it is a saddle point.

Comments: As mentioned, the equations for the gradient of a quadratic function are linear, so
they are easy to solve. Obviously we don’t usually have a quadratic objective, so the
equations are usually not linear. Often we will use the necessary conditions to check a point
to see if we are at an optimum. Some algorithms, however, solve for an optimum by solving
directly where the necessary conditions are satisfied.

 Chapter 3: Unconstrained Optimization

 15

Other algorithms search for the optimum by taking downhill steps and continuing until they
can go no further. In the next section we will study one of the simplest unconstrained
algorithms that steps downhill: steepest descent.

3.4 Steepest Descent with a Quadratic Line Search

3.4.1 Description
One of the simplest unconstrained optimization methods is steepest descent. Given an initial
starting point, the algorithm moves downhill until it can go no further.

The search can be broken down into stages. For any algorithm, at each stage (or iteration) we
must determine two things:

1. What should the search direction be?
2. How far should we go in that direction?

Answer to question 1: For the method of steepest descent, the search direction is ()f-Ñ x

Answer to question 2: A line search is performed. "Line" in this case means we search along a
direction vector. The line search strategy presented here, bracketing the function with quadratic
fit, is one of many that have been proposed, and is one of the most common. Later in the chapter
we will look at other line search methods.

General Approach for each step:
Given some starting point, kx , we wish to determine,

 1k k a+ = +x x s (3.19)

where s is the search direction vector, usually normalized, and a is the step length, a scalar.

We will step in direction s with increasing values of a until the function begins to increase.
Then we will curve fit the data with a parabola, and step to the minimum of the parabola.

3.4.2 Example: Steepest Descent with Quadratic Line Search

 Min () 2 2 0
1 1 2 22 4 19f x x x x f= - + =x

 starting at 0 0 03 8 8
1 14 14

f
-é ù é ù é ù

= -Ñ = =ê ú ê ú ê ú- -ë û ë û ë û
x s

 normalized 0 10.50 3 0.50
0.86 1 0.86

a
-é ù é ù é ù

= = +ê ú ê ú ê ú- -ë û ë û ë û
s x

For generality, we will find a*, the optimal step length, by trial and error, although, since this is a
quadratic, we could compute it directly using (3.13).

 Chapter 3: Unconstrained Optimization

 16

 Guess a* = .4 for step number 1:

Line
Search

Step
a 1 0 0a= +x x s ()f x

1 0.4 1 3.0 0.50 2.80
.4

1.0 0.86 0.66
- -é ù é ù é ù

= + =ê ú ê ú ê ú-ë û ë û ë û
x 13.3

We see that the function has decreased; we decide to double the step length and continue
doubling until the function begins to increase:

Line
Search

Step
a 1 0 0a= +x x s ()f x

2 0.8 1 3.0 0.50 2.60
.8

1.0 0.86 0.31
- -é ù é ù é ù

= + =ê ú ê ú ê ú-ë û ë û ë û
x 8.75

3 1.6 1 3.0 0.50 2.20
1.6

1.0 0.86 0.38
- -é ù é ù é ù

= + =ê ú ê ú ê ú- -ë û ë û ë û
x 3.74

4 3.2 1 3.0 0.50 1.40
3.2

1.0 0.86 1.75
- -é ù é ù é ù

= + =ê ú ê ú ê ú- -ë û ë û ë û
x 9.31

The objective function has started to increase—we have gone too far.

We will cut the change in the last step by half:

5 2.4 1 3.0 0.50 1.80
2.4

1.0 0.86 1.06
- -é ù é ù é ù

= + =ê ú ê ú ê ú- -ë û ë û ë û
x 3.91

A graph of our progress is shown in Fig. 3.6:

 Chapter 3: Unconstrained Optimization

 17

4.00

-
.0002.00-

x1 AXIS
2.00 6.004.00

2
4

6
8

10
12

14 16 18
20

4.006.00
4.00-
- -

2.00-

2.00

0.00

Fig. 3.6 Progress in the line search shown on a contour plot.

If we plot the objective value as a function of step length, as shown in Fig 3.7, we have,

 Fig. 3.7 The objective value vs. step length for the line search.

We see that the data plot up to be a parabola. We would like to estimate the minimum of this
curve. We will curve fit points 2, 5, 3. These points are equally spaced and bracket the minimum.

 f (x) = x1
2 − 2x1x2 + 4x2

2

() 2 2
1 1 2 22 4f x x x x= - +x

f-Ñ

Start point (-3,1)

5th point (-1.8,-1.06)

Line Search Example

2

4

6

8

10

12

14

0 1 2 3 4

Step Length

O
bj

ec
tiv

e
Va

lu
e 2 2y 19.0794 16.1386x 4.0897x R 1.00= - + =

 1

2

3

4

5

4

a*

 Chapter 3: Unconstrained Optimization

 18

 ||2 ||3 ||5
Renumbering these points as a1, a2, a3 the minimum of the parabola is given by

α * =α 2 +
Δα f α1()− f α3()⎡⎣ ⎤⎦

2 f α1()− 2 f α 2() + f α3()⎡⎣ ⎤⎦

α * = 1.60+
0.8() 8.75− 3.91⎡⎣ ⎤⎦

2 8.75− 2 3.74() + 3.91⎡⎣ ⎤⎦
α * = 1.97

 (3.20)

 where () 3.2f =x

When we step back, after the function has become worse, we have four points to choose from
(points 2, 3, 5, 4). How do we know which three to pick to make sure we don’t lose the bracket
on the minimum? The rule is this: take the point with the lowest function value (point 3) and the
two points to either side (points 2 and 5).

In summary, the line search consists of stepping along the search direction until the minimum of
the function in this direction is bracketed, fitting three points which bracket the minimum with a
parabola, and calculating the minimum of the parabola. If necessary the parabolic fit can be
carried out several times until the change in the minimum is very small (although the a are then
no longer equally spaced, so the following formula must be used):

α * =

f α1() α 2
2 −α3

2() + f α 2() α3
2 −α1

2() + f α3() α1
2 −α 2

2()
2 f α1() α 2 −α3() + f α 2() α3 −α1() + f α3() α1 −α 2()⎡⎣ ⎤⎦

 (3.21)

Each sequence of obtaining the gradient and moving along the negative gradient direction until a
minimum is found (i.e. executing a line search) is called an iteration. The algorithm consists of
executing iterations until the norm of the gradient drops below a specified tolerance, indicating
the necessary conditions have been met.

As shown in Fig. 3.7, at α
* , 0df
da

= . The process of determining α
* will be referred to as taking

a minimizing step, or, executing an exact line search.

3.4.3 Pros and Cons of Steepest Descent
Steepest descent has several advantages. It usually makes good progress when far from the
optimum (in the above example the objective decreased from 19 to 3 in the first iteration), and it
is very simple to implement. It always goes downhill. It is also guaranteed to converge to a local
optimum if enough steps are taken.

However, if the function to be minimized is eccentric, convergence of steepest descent can be
very slow, as indicated by the following theorem from Luenberger and Ye [4].

 Chapter 3: Unconstrained Optimization

 19

THEOREM. Convergence of Steepest Descent. For a quadratic function, if we take enough
steps, the method of steepest descent converges to the unique minimum point x* of f. If we
define the error in the objective function at the current value of x as,

E(x) = 1

2
x − x*()T

H x − x*() (3.22)

there holds at every step k,

() ()
2

1

where
Largest eigenvalue of
Smallest eigenvalue of

k kA aE E
A a

A
a

+ -æ ö£ ç ÷+è ø

=
=

x x

H
H

 (3.23)

Thus if A=50 and a=1, we have that the error at the k+1 step is only guaranteed to be less than
the error at the k step by,

Ek+1 ≤ 49

51
⎛
⎝⎜

⎞
⎠⎟

2

Ek

and thus the error may be reduced very slowly.

“Roughly speaking, the above theorem says that the convergence rate of steepest descent is
slowed as the contours of f become more eccentric. If a A= , corresponding to circular contours,
convergence occurs in a single step. Note, however, that even if 1n - of the n eigenvalues are
equal and the remaining one is a great distance from these, convergence will be slow, and hence
a single abnormal eigenvalue can destroy the effectiveness of steepest descent.”

As an example, the function,

 2 2

1 2f x x= +

has equal eigenvalues of (2, 2) and circular contours. Steepest descent converges in one step, as
shown in Fig. 3.8. However, consider the function,

 f = 2x1

2 +8x2
2

which has eigenvalues of (4, 16). Even though the contours are only mildly eccentric, the zigzag
pattern of steepest descent is clearly evident in Fig 3.9.

 Chapter 3: Unconstrained Optimization

 20

Steepest Descent on Circular Function

5

5

5

10

10

10
15

15

15

15

20

20

20

20

2025

25

25

25

25

30

30

30

30

-5 -4 -3 -2 -1 0 1 2 3 4 5
x1

-5

-4

-3

-2

-1

0

1

2

3

4

5

x2

Fig. 3.8. Steepest Descent on function with circular contours.

Steepest Descent on Eccentric Function

5

5

10

10

10
10

10

10

20

20
20

20

30

30

30

30

45

45

45

45

60

60

60

60

75
75

75 75

-5 -4 -3 -2 -1 0 1 2 3 4 5
x1

-4

-3

-2

-1

0

1

2

3

4

x2

Fig. 3.9. Steepest Descent on a mildly eccentric function.

 Chapter 3: Unconstrained Optimization

 21

3.5 The Directional Derivative

It is sometimes useful to calculate df
da

 along some search direction s. From the chain rule for

differentiation,

 = i

i

dxdf f
d x da a

æ ö¶ æ ö
ç ÷ç ÷¶ è øè ø

å

Noting that 1k k a+ = +x x s , or, for a single element of vector x, 1k k k

i i ix x sa+ = + , we have

i
i

dx s
da

= , so

 Ti
i

i i

dxdf f f s f
d x d xa a

æ ö æ ö¶ ¶æ ö= = =Ñç ÷ ç ÷ç ÷¶ ¶è øè ø è ø
å å s (3.24)

As an example, we will find the directional derivative, df
da

, for the problem given in Section

3.4.2 above, at a =0. From (3.24): []T 0.5
8 14 16.04

0.86
df f
da

é ù
=Ñ = - = -ê ú-ë û

s

This gives us the change in the function for a small step in the search direction, i.e.,

 dff
d

a
a

D » D (3.25)

If 0.01aD = , the predicted change is 0.161. The actual change in the function is 0.160.

Equation (3.24) is the same equation for checking if a direction goes downhill, given in
Section 3.1.4. Before we just looked at the sign; if negative we knew we were going
downhill. Now we see that the value represents the expected change in the function for a

small step in the search direction s. If, for example, the value of
0

df
d aa =

is less than some

epsilon, we could terminate the line search, because the predicted change in the objective
function is below a minimum threshold.

Another important value of df
da

occurs at α
* . If we locate the minimum exactly, then

 ()T1

*

0k kdf f
d a aa

+

=

= Ñ =s (3.26)

As we have seen in examples, when we take a minimizing step we stop where the search
direction is tangent to the contours of the function. Thus the gradient at this new point is
orthogonal to the previous search direction.

 Chapter 3: Unconstrained Optimization

 22

3.6 Newton’s Method

3.6.1 Derivation
Another classical method we will study is called Newton's method. It simply makes a
quadratic approximation to a function at the current point and solves for where the necessary
conditions (to the approximation) are satisfied. Starting with a Taylor series:

 () ()T T1 1
2

k k k k k k kf f f+ = + Ñ D + D Dx x H x (3.27)

Since the gradient and Hessian are evaluated at k, they are just a vector and matrix of constants.
Taking the gradient (See the Appendix),

 1k k k kf f+Ñ =Ñ + DH x

and setting 1 0kf +Ñ = , we have,

 k k kfD = -ÑH x
Solving for Dx :
 () 1k k kf

-
D = - Ñx H (3.28)

Note that we have solved for a vector, i.e. Dx , which has both a step length and direction.

3.6.2 Example: Newton's Method

We wish to optimize the function, () 2 2
1 1 2 22 4f x x x x= - +x from the point 0 3

1
-é ù

= ê ú
ë û

x .

At this point 0 8
14

f
-é ù

Ñ = ê ú
ë û

 and the Hessian is,
2 2
2 8

-é ù
= ê ú-ë û

H . The Hessian inverse is given

by:
0.6667 0.16667
0.16667 0.16667
é ù
ê ú
ë û

. Thus
0.6667 0.16667 8 3
0.16667 0.16667 14 1

-é ù é ù é ù
D = - =ê ú ê ú ê ú-ë û ë û ë û
x

So, 1 0 3 3 0
1 1 0
-é ù é ù é ù

= +D = + =ê ú ê ú ê ú-ë û ë û ë û
x x x

This step is shown in Fig. 3.10.

 Chapter 3: Unconstrained Optimization

 23

4.006.00
-4.00
- -

-2.00

2.00

0.00

4.00

-
.0002.00-

x1 AXIS
2.00 6.004.00

2
4 6 8

10 12 14 16
1820

Fig. 3.10. The operation of Newton’s method.

3.6.3 Pros and Cons of Newton's Method
We can see in the above example Newton’s method solved the problem in one step. This is
true in general: Newton’s method will drive to the stationary point of a quadratic in one step.
On a non-quadratic, if we are near an optimum, Newton’s method will drive very close to the
optimum in one step.

However we should note some drawbacks. First, it requires second derivatives. Computing
second derivatives can be computationally expensive and we typically avoid this if we can.

Second, the derivation of Newton’s method solved for where the gradient is equal to zero.
The gradient is equal to zero at a min, a max or a saddle, and nothing in the method
differentiates between these. Thus Newton’s method can diverge, or fail to go downhill
(indeed, not only not go downhill, but go to a maximum). This is obviously a serious
drawback.

3.7 Quasi-Newton Methods

3.7.1 Introduction
Let’s summarize the pros and cons of Newton's method and Steepest Descent:
 Pros Cons

Steepest
Descent

Always goes downhill
Always converges
Simple to implement

Slow on eccentric functions

Newton’s
Method

Solves quadratic in one step. Very
fast when close to optimum on non-
quadratic.

Requires second derivatives,
Can diverge

() 2 2
1 1 2 22 4f x x x x= - +x

3
1

é ù
D = ê ú-ë û
x

 Chapter 3: Unconstrained Optimization

 24

We want to develop a method that starts out like steepest descent and gradually becomes
Newton's method, doesn't need second derivatives, doesn't have trouble with eccentric
functions and doesn't diverge. Fortunately such methods exist. They combine the good
aspects of steepest descent and Newton's method without the drawbacks. These methods are
called quasi-Newton methods.

In general we will define our search direction by the expression

 ()f= - Ñs N x (3.29)

where N will be called the “direction matrix.”

If =N I , then () Steepest Descent f= -Ñ ®s x

If -1=N H , then ()1 Newton's Methodf-= - Ñ ®s H x

If N is always positive definite, then s always points downhill. To show this, our criterion for
moving downhill is:

 T 0fÑ <s
Or,
 T 0fÑ <s (3.30)

Substituting (3.29) into (3.30):

 ()T 0f f- Ñ Ñ <N (3.31)

Since N is positive definite, we know that any vector which pre-multiplies N and post-
multiplies N will result in a positive scalar. Thus the quantity within the parentheses is
always positive; with the negative sign it becomes always negative, and therefore always
goes downhill.

3.7.2 A Rank One Hessian Inverse Update

3.7.2.1 Development
In this section we will develop one of the simplest quasi-Newton methods. This method
updates the direction matrix N at every iteration with new information. It is called a “rank
one” update because the update to the direction matrix is a rank one matrix (i.e., it only has
one independent row or column). We first give some preliminaries.

Starting with a Taylor series:

 () ()T T1 1
2

k k k k k kf f f+ = + Ñ D + D Dx x H x (3.32)

 Chapter 3: Unconstrained Optimization

 25

where 1k k k+D = -x x x

The gradient is given by,

 1k k kf f+Ñ =Ñ + DH x (3.33)
Defining:
 k 1k kf f+=Ñ -Ñγ (3.34)
then we have,
 -1k k k kor= D = Dγ H x H γ x (3.35)

Equation (3.35) is very important: it shows that for a quadratic function, the inverse of the
Hessian matrix (1-H) maps differences in the gradients to differences in x. The relationship
expressed by (3.35) is called the Newton condition.

We will make the direction matrix satisfy this relationship. However, since we can only
calculate kγ and kDx after the line search, we will make

 1k k k+ = DN γ x (3.36)

This expression is called the quasi-Newton condition. It is “quasi” in that it involves k+1 for
N instead of k. Expression (3.36) involves more unknowns (the elements of 1k+N) than
equations, so how do we solve for 1k+N ?

One of the simplest possibilities is:

 1 Tk k a+ = +N N uu (3.37)

where we update the direction matrix with a correction which is of the form Tauu , which is a
rank one symmetric matrix.

If we substitute (3.37) into (3.36), we have,

 Tk k k ka+ = DN γ uu γ x (3.38)
or

auuTγ k

scalar
 = Δx k − Nkγ k() (3.39)

Noting that T ku γ is a scalar, then u must be proportional to ()k k kD -x N γ . Since any change
in length can be absorbed by a, we will set

 ()k k k= D -u x N γ (3.40)

 Chapter 3: Unconstrained Optimization

 26

Substituting (3.40) into (3.39):

a Δx k −Nkγ k()
vector

! "## $##
Δx k −Nkγ k()

T
γ k

scalar
! "## $##

= Δx k −Nkγ k()
vector

! "## $##
 (3.41)

For this to be true,

a Δx k −Nkγ k()
T
γ k

scalar
! "### $###

=1

so

()T

1
k k k k

a =
D -x N γ γ

 (3.42)

Substituting (3.42) and (3.40) into (3.37) gives the expression we need:

()()

()

T

1
T

k k k k k k
k k

k k k k

+
D - D -

= +
D -

x N γ x N γ
N N

x N γ γ
 (3.43)

Equation (3.43) allows us to get a new direction matrix in terms of the previous matrix and
differences in x and the gradient vector. We then use this to get a new search direction
according to (3.29).

3.7.2.2 Example: Rank One Hessian Inverse Update

We wish to minimize the function () 2 2
1 1 2 22 4f x x x x= - +x

starting from 0 03 8
1 14

f
- -é ù é ù

= Ñ =ê ú ê ú
ë û ë û

x

We let 0 1 0
0 1
é ù

= ê ú
ë û

N so the search direction is

 0 0 0f f= - Ñ = -Ñs N

We normalize the search direction to be: 0 0.496
0.868

é ù
= ê ú-ë û

s

We execute a line search in this direction (using, for example, a quadratic fit) and stop at

 1 12.030 2.664
0.698 1.522

f
- -é ù é ù

= Ñ =ê ú ê ú- -ë û ë û
x

Then 0 1 0 2.030 3.000 0.970

0.698 1.000 1.698
- -é ù é ù é ù

D = - = - =ê ú ê ú ê ú- -ë û ë û ë û
x x x

 Chapter 3: Unconstrained Optimization

 27

 0 1 0 2.664 8.000 5.336

1.522 14.000 15.522
f f

- -é ù é ù é ù
=Ñ -Ñ = - =ê ú ê ú ê ú- -ë û ë û ë û

γ

and 0 0 0 0.970 1 0 5.336 4.366
1.698 0 1 15.522 13.824

-é ù é ù é ù é ù
D - = - =ê ú ê ú ê ú ê ú- -ë û ë û ë û ë û
x N γ

()()

()

[]

[]

T0 0 0 0 0 0

T0 0 0 0

4.366
4.366 13.824

13.824
5.336

4.366 13.824
15.522

Ta

-é ù
-ê úD - D - ë û= =

é ùD - - ê ú-ë û

x N γ x N γ
uu

x N γ γ

19.062 60.364
60.364 191.158

237.932

-é ù
ê ú-ë û=

-

0.080 0.254
0.254 0.803
-é ù

= ê ú-ë û

 1 0 Ta= +N N uu

 1 1 0 0.080 0.254
0 1 0.254 0.803

-é ù é ù
= +ê ú ê ú-ë û ë û

N

 1 0.920 0.254
0.254 0.197
é ù

= ê ú
ë û

N

New search direction:

 1 0.920 0.254 2.664
0.254 0.197 1.522

-é ù é ù
= - ê ú ê ú-ë û ë û

s

2.837
0.975
é ù

= ê ú
ë û

When we step in this direction, using again a line search, we arrive at the optimum

 ()2 20 0
0 0

fé ù é ù
= Ñ =ê ú ê ú
ë û ë û

x x

 Chapter 3: Unconstrained Optimization

 28

At this point we are done. However, if we update the direction matrix one more time, we find
it has become the inverse Hessian. We will explain how this happens in the next section.

 1 2 1 0 2.030 2.030
0 0.698 0.698

-é ù é ù é ù
D = - = - =ê ú ê ú ê ú-ë û ë û ë û
x x x

 1 2 1 0 2.664 2.664

0 1.524 1.524
f f

-é ù é ù é ù
=Ñ -Ñ = - =ê ú ê ú ê ú-ë û ë û ë û

γ

Δx1 −N1γ1() = 2.030
0.698

⎡

⎣
⎢

⎤

⎦
⎥− 0.920 0.254

0.254 0.197

⎡

⎣
⎢

⎤

⎦
⎥ 2.664

1.524

⎡

⎣
⎢

⎤

⎦
⎥

= 2.030
0.698

⎡

⎣
⎢

⎤

⎦
⎥− 2.838

0.977

⎡

⎣
⎢

⎤

⎦
⎥= −0.808

−0.279

⎡

⎣
⎢

⎤

⎦
⎥

()()
()

[]

[]

T1 1 1 1 1 1
T

T1 1 1 1

0.808
0.808 0.279

0.253 0.0880.279
2.664 0.088 0.030

0.808 0.279
1.524

a

-é ù
- -ê úD - D - - -- é ùë û= = = ê ú- -é ù ë ûD - - - ê ú

ë û

x N γ x N γ
uu

x N γ γ

N2 = N1 + auuT = 0.920 0.254

0.254 0.197
⎡

⎣
⎢

⎤

⎦
⎥ +

−0.253 −0.088
−0.088 −0.030

⎡

⎣
⎢

⎤

⎦
⎥ =

0.667 0.166
0.166 0.167

⎡

⎣
⎢

⎤

⎦
⎥ = H−1

3.7.2.3 The Hereditary Property
The hereditary property is an important property of all update methods. The hereditary
property states that not only will 1k+N satisfy (3.36), but

1

1 1 1

1 2 2

1 1 1

k k k

k k k

k k k

k k n k n

+

+ - -

+ - -

+ - + - +

= D

= D

= D

= D

N γ x
N γ x
N γ x
N γ x

 (3.44)

where n is the number of variables. That is, (3.36) is not only satisfied for the current step, but for
the last n-1 steps. Why is this significant? Let's write the relationship of (3.44) as follows:

Nk+1 γ k ,γ k−1,γ k−2 . . . γ k−n+1⎡

⎣
⎤
⎦= Δx k ,Δx k−1,Δx k−2 ,…,Δx k−n+1⎡

⎣
⎤
⎦

 Chapter 3: Unconstrained Optimization

 29

Let the matrix defined by the columns of g be denoted by G, and the matrix defined by
columns of Dx be denoted by DX . Then,

 1k+ = DN G X

If γ

k …γ k−n+1 are independent, and if we have n vectors, i.e. G is a square matrix, then the
inverse for G exists and is unique and,

 1 1k+ -= DN XG (3.45)

is uniquely defined.

Since the Hessian inverse satisfies (3.44) for a quadratic function, then we have the important
result that, after n updates the direction matrix becomes the Hessian inverse for a quadratic
function. This implies the quasi-Newton method will solve a quadratic in no more than n+1
steps.

3.7.2.4 The Hereditary Property for the Rank One Update
In this section we will show the Hereditary property holds for a specific example. The
general proof is given in the Appendix.

Suppose we look at the first two updates of a problem. The quasi-Newton condition requires
that,
 N

1γ 0 = Δx0 (3.46)
as well as,
 N

2γ 1 = Δx1

The question is, is the following true (as suggested by the Hereditary property)?

 N

2γ 0 = Δx0 (3.47)

The second update is given by,

N2 = N1 +
Δx1 − N1γ 1() Δx1 − N1γ 1()T

Δx1 − N1γ 1()T
γ 1

 (3.48)

We can post multiply (3.48) by γ

0 , giving,

N2γ 0 = N1γ 0 +
Δx1 − N1γ 1() Δx1 − N1γ 1()T

γ 0

Δx1 − N1γ 1()T
γ 1

 (3.49)

 Chapter 3: Unconstrained Optimization

 30

To simplify things, let

y1 =
Δx1 − N1γ 1()

Δx1 − N1γ 1()T
γ 1

 so that we can write (3.49) as,

N2γ 0 = N1γ 0 + y1 Δx1 − N1γ 1()T

γ 0 (3.50)

We can distribute the transpose on the last term, and distribute the post multiplication γ

0 to
give,1

N2γ 0 = N1γ 0 + y1 Δx1()T

γ 0 − γ 1()T
N1γ 0⎡

⎣⎢
⎤
⎦⎥

 (3.51)

Replacing N
1γ 0 with Δx0 :

N2γ 0 = Δx0 + y1 Δx1()T

γ 0 − γ 1()T
Δx0⎡

⎣⎢
⎤
⎦⎥

 (3.52)

Now we examine the term in brackets. We note that,

γ 1()T

Δx0 = HΔx1()T
Δx0 = Δx1()T

HΔx0 = Δx1()T
γ 0 (3.53)

So the term in brackets in (3.52) vanishes, giving the desired result,

 N

2γ 0 = Δx0 (3.54)

This result, although specific to this example, holds in general for the last n updates, as given
in (3.44).

From the numerical example in that last section we had,

N2 = 0.667 0.166

0.166 0.167
⎡

⎣
⎢

⎤

⎦
⎥ γ 0 = 5.336

−15.522
⎡

⎣
⎢

⎤

⎦
⎥ Δx0 = 0.970

−1.698
⎡

⎣
⎢

⎤

⎦
⎥

Within round-off, (3.54) is satisfied for this data.

3.7.3 Conjugacy

3.7.3.1 Definition
Quasi-Newton methods are also methods of conjugate directions. A set of search directions,
0 1, ,..., ks s s are said to be conjugate with respect to a square, symmetric matrix, H, if,

1 Recall that when you take the transpose inside a product, the order of the product is reversed; also because N

is symmetric, T =N N . Thus:

N1γ 1()T
γ 0 = γ 1()T

N1γ 0),

 Chapter 3: Unconstrained Optimization

 31

 () 0

Tk i =s Hs for all i k¹ (3.55)

A set of conjugate directions possesses an important property: If minimizing line searches are
used along each conjugate direction, a method of conjugate directions is guaranteed to
minimize a quadratic function of n variables in at most n steps. Himmelblau [5] indicates the
excellent convergence properties of quasi-Newton methods on general functions may be due
more to their conjugate direction properties than to their ability to approximate the Hessian
inverse. Because of the importance of conjugate directions, we will prove two results here.

PROPOSITION. If H is positive definite and the set of non-zero vectors 0 1 1, ,..., n-s s s are
conjugate to H, then these vectors are linearly independent.

PROOF. Suppose we have constants, ia , 0,2,..., 1i n= - such that

 0 0 1 1 1 1... ...k k n na a a a - -+ + + + + =s s s s 0 (3.56)

Now we multiply each term by ()Tks H :

α 0 sk()T
Hs0

=0

+α 1 sk()T
Hs1

=0

+ ...+α k sk()T
Hsk

positive

+ ...+α n−1 sk()T
Hsn−1

=0

= 0 (3.57)

From conjugacy, all of the terms except ()Tk k ka s Hs are zero. Since H is positive definite,

then the only way for this remaining term to be zero is for ka to be zero. In this way we can
show that for (3.57) to be satisfied all thea coefficients must be zero. This is the definition of
linear independence.

3.7.3.2 Conjugate Direction Theorem
We will now show that a method of conjugate directions will solve a quadratic function in n
steps, if minimizing steps are taken.

THEOREM. Let 0 1 1, ,..., n-s s s be a set of non-zero H conjugate vectors, with H a positive
definite matrix. For the function,

 () () () ()T T1 1 1 11
2

k k k k k k k k kf f f+ + + += + Ñ - + - -x x x x H x x (3.58)

the sequence,
 1k k k ka+ = +x x s (3.59)
with,

()
()

Tk k
k

Tk k

f
a

Ñ
= -

s

s Hs
 (3.60)

 Chapter 3: Unconstrained Optimization

 32

converges to the unique solution, H(x* − x k) = −∇f k after n steps, that is x* = xn .

Note: In the discussion which follows, recall that in general for the function (3.58),

 ()1 1k k k kf f+ +Ñ =Ñ + -H x x

and at the optimum,

0 = ∇f k + H x* − x k() (3.61)

PROOF. Based on (3.59) above we note that,

 1 0 0 0a= +x x s

Likewise for 2x :

 2 1 1 1 0 0 0 1 1a a a= + = + +x x s x s s

Or, in general

x k − x0() =α 0s0 +α 1s1 + ...+α k−1sk−1 (3.62)

After n steps, we can write the optimum (assuming the directions are independent, which we
just showed) as,

 ()* 0 0 0 1 1 1 1... ...k k n na a a a - -- = + + + + +x x s s s s (3.63)

The rest of the proof is focused on determining the a coefficients in (3.63). Because the s
vectors are conjugate directions, when we multiply both sides of (3.63) by ()Tks H , we have,

sk()T
H x* − x0() =α 0 sk()T

Hs0

=0

+α 1 sk()T
Hs1

=0

+ ...+α k sk()T
Hsk

positive

+ ...+α n−1 sk()T
Hsn−1

=0

which allows us to solve for ka :

()

()

* 0()
Tk

k
Tk k

a
-

=
s H x x

s Hs
 (3.64)

Unfortunately (3.64) is in terms of x*, which we presumably don’t know. However, if we
multiply (3.62) by ()Tks H , we have,

 Chapter 3: Unconstrained Optimization

 33

sk()T
H x k − x0() =α 0 sk()T

Hs0

=0

+α 1 sk()T
Hs1

=0

+ ...+α k−1 sk()T
Hsk−1

=0

 (3.65)

which gives,
 () 0() 0

Tk k - =s H x x (3.66)

Substituting this result into (3.64), we have

()

()

*()
Tk k

k
Tk k

a
-

=
s H x x

s Hs
 (3.67)

So far we have not enforced any condition that associates x* with an optimum. We do so
now. Recalling that H(x* − x k) = −∇f k at the optimum, we can write ka as,

()
()

Tk k
k

Tk k

f
a

Ñ
= -

s

s Hs

which is identical with (3.60).

We notice that (3.60) is the same as the minimizing step we derived in the Appendix. Thus
the conjugate direction theorem relies on taking minimizing steps.

3.7.3.3 Quasi-Newton Methods and Conjugacy
We stated earlier that quasi-Newton methods are also methods of conjugate directions. Thus
for the example given in Section 7.3, we should have,

 ()0 1 0

T
=s Hs

Substituting the search directions and Hessian of that problem,

 [] 2. 2. 2.837
0.496 0.868 0.0017

2. 8. 0.975
-é ù é ù

- =ê ú ê ú-ë û ë û

Within the round-off of the data, we see this is verified.

It can be shown that any quasi-Newton method that has the hereditary property is also a
method of conjugate directions. This is shown in the Appendix.

3.7.3.4 Some Insight into Conjugacy
As discussed by Nocedal and Wright [13] and Fletcher [6], there is an interesting graphical
interpretation of the properties of conjugate directions. If the Hessian in (3.58) is a diagonal

 Chapter 3: Unconstrained Optimization

 34

matrix, the contours of the function are aligned with the coordinate directions. We can
optimize the function by conducting minimizing line searches along the coordinate
directions, each one in turn, as shown in Fig. 3.11.

However, if the Hessian is not a diagonal matrix, the strategy of minimizing along the
coordinate directions no longer works. In order to use such a method, we must first transform
the Hessian into a diagonal matrix and then minimize along new, transformed coordinate
directions.

Successive Minimizations in Coordinate Directions

5

5

10

10

10
10

10

10

20

20
20

20

30

30

30

30

45

45

45

45

60

60

60

60

75
75

75 75

-5 -4 -3 -2 -1 0 1 2 3 4 5
x1

-4

-3

-2

-1

0

1

2

3

4

x2

Fig. 3.11. For a Hessian comprised of a diagonal matrix, the function
contours are aligned with the coordinate axes. The function can be
optimized by minimizing along each coordinate axis in turn.

Suppose we have the quadratic function,

φ(x) = bT x + 1

2
xT Ax (3.68)

where A is a symmetric, positive definite, but not diagonal matrix. If we define S as an n x n
matrix given by,

 S = [s0 ,s1,...,sn−1]

where the vectors s are conjugate with respect to A, and we define a new set of variables,

 x̂ = S−1x (3.69)

The quadratic function (3.68) becomes,

 Chapter 3: Unconstrained Optimization

 35

φ(Sx̂) = (STb)T x̂ + 1

2
x̂T (ST AS)T x̂

From the definition of conjugacy (3.55) all of the cross-product terms of the matrix

 S
T AS disappear, leaving us with a diagonal matrix, so we can find the optimum of φ by

conducting a minimizing step along the coordinate directions given by x̂ . By (3.69), the ith
coordinate direction in x̂ -space corresponds to the si direction in x space.

Another result of conjugacy is that at the k+1 step,

 ()1 0 for all
Tk if i k+Ñ = £s (3.70)

Equation (3.70) indicates 1) that the current gradient is orthogonal to all the past search
directions, and 2) at the current point we have zero slope with respect to all past search
directions, i.e.,

 0 for alli

f i k
a
¶

= £
¶

meaning we have minimized the function in the “subspace” of the previous directions.

3.7.4 Rank 2 Updates

3.7.4.1 The DFP Method
Although the rank one update does have the hereditary property (and is a method of conjugate
directions), it does not guarantee that at each stage the direction matrix, N, is positive definite.
It is important that the update remain positive definite because this insures the search direction
will always go downhill. It has been shown that (3.43) is the only rank one update which
satisfies the quasi-Newton condition. For more flexibility, rank 2 updates have been proposed.
These are of the form,

 1 T Tk k a b+ = + +N N uu vv (3.71)

If we substitute this into the quasi-Newton condition,

 1k k k+ = DN γ x (3.72)
we have,
 T Tk k k k ka b+ + = DN γ uu γ vv γ x (3.73)

There are a number of possible choices for u and v. One choice is to try,

 ,k k k= D =u x v N γ (3.74)

Substituting (3.74) into (3.73),

 Chapter 3: Unconstrained Optimization

 36

Nkγ k + aΔx k Δx k()T
γ k

scalar

+ bNkγ k Nkγ k()T
γ k

scalar

= Δx k (3.75)

In (3.75) we note that the dot products result in scalars. If we choose a and b such that,

 ()T 1k ka D =x γ and ()T 1k k kb = -N γ γ (3.76)

Equation (3.73) becomes,

 k k k k k k+D - = DN γ x N γ x (3.77)

and is satisfied.

Combining (3.76), (3.74) and (3.71), the update is,

()

()
()

()

T T

1
T T

k k k k k k
k k

k k k k k

+
D D

= + -
D

x x N γ N γ
N N

x γ N γ γ
 (3.78)

Or, with some rearranging, as it is more commonly given,

()

()
()

()

T T

1
T T

k k k k k k
k k

k k k k k

+
D D

= + -
D

x x N γ γ N
N N

x γ γ N γ
 (3.79)

Davidon [7] was the first one to propose this update. Fletcher and Powell [8] further
developed his method; thus this method came to be known as the Davidon-Fletcher-Powell
(DFP) update. This update has the following properties,

For quadratic functions:
1. It has the hereditary property; after n updates, 1n -=N H .
2. It is a method of conjugate directions and therefore terminates after at most n

steps.

For general functions (including quadratics):

3. The direction matrix N remains positive definite if we do exact line searches.
This guarantees the search direction points downhill at every step.

The DFP update was popular for many years. As mentioned, we need to take a minimizing
step to insure N stays positive definite. The DFP method is more sensitive to errors in a* than
the BFGS update, described in the next section, and can degrade if a* is not accurate.

 Chapter 3: Unconstrained Optimization

 37

3.7.5 The Broyden Fletcher Goldfarb Shanno (BFGS) Update
The most widely used update today is known as the Broyden [9], Fletcher [10], Goldfarb [11],
Shanno [12] or “BFGS” update, suggested by all four authors independently in 1970. It is also
a rank 2 update. It has the same properties as the DFP update but does not require a
minimizing step to remain positive definite, but only requires ΔxTγ > 0 . (If for a particular
step this condition is not met, the update is skipped.) It also works better for inaccurate line
searches. This update is,

()
()

()
()

() ()
()

T T T T

1
T T T1

k k k k k k k k k k k
k k

k k k k k k

+
æ öæ öD D D + Dç ÷ç ÷= + + -
ç ÷ç ÷D D Dè øè ø

γ N γ x x x γ N N γ x
N N

x γ x γ x γ
 (3.80)

This update is currently considered to be the best update for use in optimization. It is the
update inside MATLAB, Excel and many other optimization packages.

3.7.6 Comments About Quasi-Newton Methods
The quasi-Newton methods explained here combine the advantages of steepest descent and
Newton’s method without the disadvantages. They start out as steepest descent, which works
well far from the optimum, and gradually become Newton’s method, which works well near
the optimum. They do this without requiring the evaluation of second derivatives, which can
be computationally expensive. By insuring the update is positive definite, the search direction
will always go downhill.

Note that these methods use information the previous methods “threw away.” Quasi-Newton
methods use differences in gradients and differences in x to estimate second derivatives
according to (3.35). This allows information from previous steps to correct (or update) the
current step.

3.7.7 Hessian Updates Vs. Hessian Inverse Updates
All of the updates we have presented so far are updates for the Hessian Inverse. We can
easily develop updates for the Hessian itself, as will be required for the SQP and IP
algorithms, starting from the condition

 k k k= Dγ H x (3.81)

instead of ()1 k k k- = DH γ x which we used before. The BFGS Hessian approximation ((3.80)
is the Hessian inverse approximation) is given by,

()

()
()

()

T T

1
T T

k k k k k k
k k

k k k k k

+
D D

= + -
D D D

γ γ H x x H
H H

γ x x H x
 (3.82)

 Chapter 3: Unconstrained Optimization

 38

You will note that this looks a lot like the DFP Hessian inverse update but with H
interchanged with N and g interchanged with Dx. In fact these two formulas are said to be
complementary to each other.

3.8 The Conjugate Gradient Method

3.8.1 Definition
There is one more method we will learn, called the Conjugate Gradient method. We will
present the results for this method primarily because it is almost as simple as steepest descent
but is a method of conjugate directions, making it much more powerful. Because it uses very
little storage, it is often used in large-scale problems.

The search direction for conjugate gradient is given by,

 1 1–k kf b+ += Ñ +s sk k (3.83)

Where b k , a scalar, is given by

()
()

1 1k k
k

k k

f f

f f
b

+ +Ñ Ñ
=

Ñ Ñ

T

T (3.84)

We will motivate the theory behind this formula and solve for b by developing it for the
second step (given that the first step is steepest descent) i.e.,

 s

0 = −∇f (x0)

 s

1 = −∇f (x1)+ β 0s0 (3.85)

For a method of conjugate directions,

 (s

0)T Hs1 = 0 (3.86)

We know for a quadratic function,

 ∇f 1 −∇f 0 =H(x1 −x0) =Hα 0s0

taking the transpose (and recognizing that HT = H),

 (∇f 1 −∇f 0)T = (x1 − x0)T H =α 0(s0)T H

post multiplying by H−1 ,

 Chapter 3: Unconstrained Optimization

 39

 (∇f 1 −∇f 0)T H−1 = (x1 −x0)T =α 0(s0)T

from which we can write,

(s0)T =

(∇f 1 −∇f 0)T H−1

α 0 (3.87)

Substituting (3.87) and (3.85) into (3.86) gives,

(∇f 1 −∇f 0)T H−1

α 0

⎡

⎣
⎢

⎤

⎦
⎥H(−∇f 1 + β 0s0) = 0 (3.88)

We can multiply both sides by α 0 so it drops out, and the Hessian inverse and Hessian
combine to give the identity matrix. Thus we are left with,

 (∇f 1 −∇f 0)T (−∇f 1 −β∇f 0) = 0

If we take a minimizing step, α* , then the cross products of (3.88) disappear and we have,

β =
∇f 1()

T
∇f 1

∇f 0()
T
∇f 0

 (3.89)

3.8.2 Example: Conjugate Gradient Method

We will optimize our usual function, 2 2
1 1 2 22 4f x x x x= - +

starting from 0 03 8
1 14

f
- -é ù é ù

= Ñ =ê ú ê ú
ë û ë û

x

We take a minimizing step in the negative gradient direction and stop at

 1 12.03 2.664
0.7 1.522

f
- -é ù é ù

= Ñ =ê ú ê ú- -ë û ë û
x

Now we calculate b 0 as

()
()

[]

[]

1 1
0

0 0

2.664
2.664 1.522

1.522 9.413 0.0362
8 260

8 14
14

f f

f f
b

-é ù
- - ê úÑ Ñ -ë û= = = =

-é ùÑ Ñ - ê ú
ë û

T

T

 Chapter 3: Unconstrained Optimization

 40

We calculate the new search direction as,

 1 1 0 2.664 8 2.954
0.0362

1.522 14 1.015
f b

-é ù é ù é ù
= -Ñ + = - + =ê ú ê ú ê ú- -ë û ë û ë û

s s

when we step in this direction, we arrive at the optimum, 2 20 0
0 0

fé ù é ù
= Ñ =ê ú ê ú
ë û ë û

x

The main advantage of the conjugate gradient method, as compared to quasi-Newton
methods, is computation and storage. The conjugate gradient method only requires that we
store the last search direction and last gradient, instead of a full matrix.

Although both conjugate gradient and quasi-Newton methods will optimize quadratic
functions in n steps, on non-quadratic problems quasi-Newton methods are better. Further,
small errors can build up in the conjugate gradient method so some researchers recommend
restarting the algorithm periodically (such as every n steps) to be steepest descent.

3.9 Inexact Line Searches
Up until now we have used a line search with a quadratic fit to try to locate the minimum of
the objective function in the search direction. If desired, we could refit the quadratic estimate
several times to try to locate the exact minimum.

However, if we are far away from the optimum, so that we have lots of iterations ahead of us,
then finding the minimum precisely is not very efficient. We incur significant expense to find
the minimum for the current step only to move away from it. It would be useful to have
methods that allow us to be “sloppy” in our line search until we are close to the optimum.

3.9.1 Sufficient Decrease
Several criteria define what it means to have a sufficient decrease in the objective. If this
condition is met, we terminate the line search and start a new iteration. All of these criteria
require the following decrease in the objective function,

f (x k+1) ≤ f (x k)+ c1α
k ∇f k()T

sk

direct . deriv.
! "# $#

 (3.90)

where c1 is a constant (between 0 and ½; Nocedal and Wright [13] indicate a typical value is
quite small: 1 e-4) and the term in brackets is the directional derivative. This condition states
that a new point, to be acceptable, must be less than the starting value of the objective plus a
fraction of the step length times the directional derivative (note that the directional derivative
is negative). This expression is also known as the Armijo condition.

This condition is necessary but not sufficient. In particular it prohibits large steps but not
very small ones. This can be seen in Fig. 3.12. Expression (3.90) would allow all steps
between 0 and aa.

 Chapter 3: Unconstrained Optimization

 41

Fig. 3.12. Function values for various step lengths for an example function.
After Biegler [14].

To preclude very small steps, we have three possible criteria:

 ∇f (x k+1)T sk ≥ c2∇f (x k)T sk (3.91)

where c2 ∈(c1,1) . This statement requires the slope at the proposed point to be greater than
some fraction of the slope at the beginning point. Since the slope at the starting point is
negative (we are going downhill), this requires the slope to be more shallow or flatter than at
the starting point, as it might be as we get close to the minimum in the search direction.
Equations (3.90) and (3.91) are known as the Wolfe conditions. These conditions limit
acceptable step lengths to be between aw and aa in the figure.

The strong Wolfe conditions are even more restrictive,

∇f (x k+1)T s ≤ c2 ∇f (x k)T sk (3.92)

Here we are taking the absolute value of the slopes and restricting an acceptable step to have
a negative or positive slope less than the absolute value of the slope at the starting point. This
restricts the step to be in a bowl. This would require the step to be between aw and asw (note
that the absolute value of the slope at aw should equal the absolute value of the slope at asw.)

Finally we have the Goldstein conditions. These require (3.90) to be met and,

 Chapter 3: Unconstrained Optimization

 42

 f (x k)+ (1− c1)α k∇f (x k)T sk ≤ f (x k+1) (3.93)

The condition given by (3.93) keeps the proposed step from being too small by setting a
minimum acceptable step length, as shown in the figure. When combined with (3.90) we can
write the Goldstein conditions as,

 f (x k)+ (1− c1)α k∇f (x k)T sk ≤ f (x k+1) ≤ f (x k)+ c1α

k∇f (x k)T sk

In terms of Fig. 3.11, these conditions require the step to be between ag and aa. The
Goldstein conditions are easier to check than the Wolfe conditions because they do not
involve evaluating the directional derivative at the proposed point.

3.9.2 Global Convergence of Line Search Methods

For a method where s = −(Bk)−1∇f k with B a positive definite matrix, and α
k that satisfies

the Wolfe or Goldstein conditions, it can be shown that a sequence of iterations will converge
to a point where the norm of the gradient goes to zero. This is based on a theorem by
Zoutendick [15].

3.9.3 A Backtracking Strategy
If we are using a quasi-Newton or Newton method, we often will begin with α = 1 . If the
Wolfe condition (3.90) is not met we then cut back the step size until it is. We don’t always
have to check the second condition because we are starting with a long step. Alternately, we
can check the Goldstein conditions.

3.10 Trust Region Methods

3.10.1 Introduction
In the unconstrained methods we have studied so far, we used a line search to determine how
far to go in some particular direction. The direction was independent of the step length. With
trust region methods, the search direction can change as a function of the step length.
Nocedal and Wright [13] explain, “Trust region methods define a region around the current
point within which they trust the model to be an adequate representation of the objective
function, and then choose the step to be the approximate minimizer of the model in this
region. In effect, they choose the direction and length of the step simultaneously. If a step is
not acceptable, they reduce the size of the region and find a new minimizer. In general, the
direction of the step changes whenever the size of the trust region is altered.”

This additional freedom gives trust region methods superior convergence properties over line
search methods. However, the computational expense for the trust region calculations may
exceed that for line search iterations.

Choosing the size of the trust region is an important part of the method. If the region is too
small, progress towards the optimum is delayed. If the region is too large, the approximate

 Chapter 3: Unconstrained Optimization

 43

model may not be an adequate representation of the actual function, and the step will be
inaccurate, also delaying progress.

The trust region problem can be stated as,

 Find Δx to,

 Min

fa (x k + Δx) = f (x k)+∇f (x k)T Δx + 1

2
ΔxTBkΔx (3.94)

 s.t.
Δx ≤ ΔTR

As before, Δx is a vector with a magnitude and direction. The matrix B is either ∇

2 f (x k) or
a quasi-Newton approximation. Thus we can state the problem as, “Minimize a quadratic
approximation of the objective subject to a constraint that the magnitude (L2 norm) of the
step is less than the trust region, ΔTR . Depending on how good the approximation is, we will
expand or contract the trust region iteration by iteration.

Fig. 3.13 shows how the search direction and step length both change as we change the size
of the trust region. The circles with dashed lines show the trust region radius. The arrows
show the optimal step for a particular radius. The solid contours are the contours of the
quadratic approximation we are trying to minimize.

Trust Region Optimization Example

1 3 6

12 1220 20

30

30 50

50

50

75

75

75

100

100

100

130

130

130

-10 -8 -6 -4 -2 0 2 4 6 8 10
x1

-10

-8

-6

-4

-2

0

2

4

6

8

10

x2

Fig. 3.13. Illustration of how step length and direction change with trust region size.

 Chapter 3: Unconstrained Optimization

 44

3.10.2 Solution
The trust region problem is an optimization problem which must be solved once each
iteration. Based on the theory for the exact solution to (3.94) (see Biegler [14]), it can be
shown that if the trust region is larger than the distance to the minimum of the
approximation, the search direction is given by the Newton step, s = −B−1∇f . When the trust
region is small relative to the Newton step, the search direction becomes steepest descent,

 s = −∇f (x k) . For cases in between, but still assuming the trust region is less than the distance

to the minimum (i.e.

Δx* = ΔTR), the optimal search direction is somewhere between these

two cases. Based on Fig. 3.13, Fig. 3.14 shows how the optimal steps trace out an arc
between steepest descent and the Newton step.

Fig. 3.14. Arc of optimal step and search direction for various trust region sizes.
When the trust region approaches zero, the search direction is the negative gradient.

Solving the exact problem requires an iterative process. To reduce computation, approximate
methods are often used. One such method is referred to as the dogleg method. The dogleg
method approximates the arc of Fig. 3.12 with two limiting steps: the “Cauchy step,”
explained below, and the Newton step, Δx N = −B−1∇f . In between, we use a linear
combination of these two steps where they are blended together such that the step length is
equal to the trust region, ΔTR . This dogleg method is shown in Fig. 3.15.

The Cauchy step is given by,

ΔxC = −

∇f (x k)T ∇f (x k)
∇f (x k)T Bk∇f (x k)

⎡

⎣
⎢

⎤

⎦
⎥∇f (x k) if ∇f TB∇f > 0 (3.95)

or,

ΔxC = −
ΔTR

k

∇f (x k)
∇f (x k) otherwise (3.96)

 Chapter 3: Unconstrained Optimization

 45

The term in brackets in (3.95) is a scalar. If we consider the search direction to be s = −∇f k ,

then we see that this scalar can be written as,

α* = −

∇f k()
T

s

sTBs
, i.e. it is equal to the

minimizing step length in this direction (see (3.13)). If ∇f TB∇f is not positive, then the
Cauchy step is the normalized steepest descent search direction with a step length equal to
the trust region, as given by (3.96).

Fig. 3.15. The steps of the dogleg and exact methods for various trust region sizes.
The dogleg steps are a linear combination of the Cauchy step and the Newton step.

The trust region algorithm using the dogleg method can be summarized as follows,

1. Solve the trust region problem (3.94) using the follow equations,

 Δx k = Δx N if

ΔTR ≥ Δx N

Δx k =

ΔTR
k

ΔxC

ΔxC if
ΔTR ≤ ΔxC

 Otherwise,
 Δx k =ηΔx N + (1−η)ΔxC

 where Δx N is the Newton step, ΔxC is the Cauchy step, and

η =
−(Δx N −ΔxC)T ΔxC + ((Δx N −ΔxC)T ΔxC)2 + (ΔTR

2 − ΔxC

2
) Δx N −ΔxC

2⎡
⎣⎢

⎤
⎦⎥

1/2

Δx N −ΔxC

2

This value of η results in a step length of magnitude

Δx k equal to ΔTR

k

2. Compute the ratio, r, of the actual change in the function to the predicted change in
the function. This ratio is given by,

 Chapter 3: Unconstrained Optimization

 46

ρ k =

f (x k)− f (x k + Δx k)()
fa (x k)− fa (x k + Δx k)()

Note that it is possible for this ratio to be negative (actual function got worse) or
greater than one (actual improvement was greater than predicted).

3. If

ρ k <

1
4

, then

ΔTR

k+1 <
1
4
ΔTR

k

else if

ρ k >

3
4

 and

Δx k = ΔTR

k , then ΔTR
k+1 = Min(2ΔTR

k ,Δmax)

else ΔTR

k+1 = ΔTR
k

4. If ρ

k > β , then x k+1 = x k +Δx k
else x k+1 = x k

5. Continue until convergence is reached (
∇f < ε).

In the above, the constant β has a value between 0 and ¼ . The values of ¼ and ¾ used
above are typical values. The parameter Δmax is the maximum limit on the trust region.

3.10.3 Example
We will apply the trust region method to the non-quadratic problem,

 Min () 4 2 2 2

1 2 1 2 1 12 2 5f x x x x x x= - + + - +x

starting at the point x

T = [−1, 4] . A contour plot of the problem is shown in Fig. 3.16.

 Chapter 3: Unconstrained Optimization

 47

Contours for Trust Region Problem

5

5

5
8

8

8

8

11

11

11

11

14

14

14

14
14

17

17

17

17

17

20

20

20

20

20

23

23

23

23

23

26

26

26 26

29

29 29

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2
x1

-1

0

1

2

3

4

5

6

x2

Fig. 3.16 Contour plot for example problem.

We begin with a Hessian set to the identity matrix and use the BFGS update. The table below
shows the progress of the algorithm for the first 12 steps. In the table, we compare the
approximate solution using the dogleg method to the exact solution of the trust region
problem. The exact solution was obtained using fmincon in MATLAB. The beginning trust
region was somewhat arbitrarily set to be the norm of the Newton step divided by 8. This
turned out to be 1.25. From step 5 on, the Newton step was smaller than the trust region.

Trust Region Example Approximate Exact

 Iter x1 x2 f Δx1 Δx2 Δx1 Δx2 ρ

Δx Comments

1 -1.000 4.000 17 -1.00 -0.750 -1.00 -0.750 0.29 1.25 = trust region
2 -2.000 3.250 13.56 0.993 -0.759 0.941 -0.823 0.55 1.25 = trust region
3 -1.006 2.491 10.21 0.297 -1.214 0.333 -1.205 1.29 1.25 = trust region
4 -0.709 1.277 7.52 0.784 -1.840 0.667 -1.886 0.79 2.00 = max trust reg
5 0.075 -0.563 5.17 -0.022 0.292 -0.022 0.291 1.40 0.29 = Newton step
6 0.052 -0.271 4.97 0.293 0.279 0.293 0.279 1.53 0.41 = Newton step
7 0.345 0.008 4.44 0.451 0.286 0.450 0.286 0.97 0.53 = Newton step
8 0.796 0.295 4.15 0.026 0.342 0.026 0.342 1.14 0.34 = Newton step
9 0.822 0.637 4.03 0.131 0.250 0.131 0.249 1.23 0.28 = Newton step
10 0.953 0.888 4.002 0.041 0.095 0.041 0.094 1.12 0.10 = Newton step
11 0.995 0.983 4.000 0.005 0.016 0.004 0.016 0.99 0.01 = Newton step
12 0.999 0.999 4.000 0.001 0.001 0.000 0.000 0.86 0.001 = Newton step

The steps of the table are shown graphically in Fig. 3.17. Note that from step 5 onwards,
where the step to the optimum of the model was smaller than the radius of the trust region,
we have just shown the optimum (Newton) step. Fig. 3.18 shows the path of fmincon.

 Chapter 3: Unconstrained Optimization

 48

Example of Trust Regions

5

5

5

8

8

8

8

11

11

11

11

11

14

14

14

14

14

17

17

17

17

17

17

20

20

20

20

20

20
23

23

23

23

23 23
26

26

26

26

26

29

29

29

29

29
-4 -3 -2 -1 0 1 2 3

x1

-1

0

1

2

3

4

5

6

x2

Fig. 3.17. The steps of the algorithm, showing the trust regions.

Fmincon Path

5

5

5

8

8

8

8

11

11

11

11

11

14

14

14

14

14

17

17

17

17

17

17

20

20

20

20

20

20
23

23

23

23

23 23
26

26

26

26

26

29

29

29

29

29

-4 -3 -2 -1 0 1 2 3
x1

-1

0

1

2

3

4

5

6

x2

Fig. 3.18 The path of fmincon for ten steps.

 Chapter 3: Unconstrained Optimization

 49

3.10.4 Comparison of Trust Region to Exact Line Search
Trust regions, which allow the search direction and step length to change together, should be
more efficient than methods that keep the search direction fixed while changing the step
length. However, this gain in efficiency to be balanced against the property that when paired
with exact line searches, quasi-Newton methods solve a quadratic function of n variables in n
steps. The BFGS method loses this property when inexact line searches are used. Also,
methods using exact line searches will tend to take fewer iterations, with more function calls
per iteration. If derivatives are being evaluated numerically (since we take derivatives each
iteration), the gain in efficiency of the Trust Region method may be canceled out by the
computation required to take more derivatives. In the table below we provide some very
limited data comparing the two.

In the table, the number of objective function evaluations (“Obj Evals”) and gradient
evaluations (“Grad Evals”) are given. Gradients were evaluated analytically; if these had
been done numerically, using, for example, a finite forward different scheme requiring one
evaluation per partial derivative, then the total evaluations would be given by “Total Evals.”

Name # Vars Exact

Obj.
Evals

Exact
Grad.
Evals
(Iterations)

Exact
Total
Evals
(including
gradient)

Trust
Region
Obj.
Evals.

Trust
Region
Grad.
Evals
(Iterations)

Trust
Total
Evals
(including
gradient)

Quad 1 2 21 3 27 7 7 21
Quad 2 2 23 3 29 8 8 24
Rosenbrock 2 134 22 178 37 37 111
4th order 2 54 8 70 16 16 48
Rosenbrock 3 178 32 274 47 47 188
Quad 3 3 36 4 48 18 18 72
Raydan 1
(exp)

4 42 7 70 16 16 80

Raydan 1
(exp)

8 60 10 140 31 31 279

The table shows that for functions of two variables, trust region methods are somewhat
more efficient. For functions for four or more variables exact line searches are somewhat
more efficient if we are taking gradients numerically using a finite forward difference. Of
course, the efficiency of both methods relies on a number of things, such as any heuristics
employed and the values of constants used (such as max trust region size, etc.) that are
specific to a particular implementation scheme.

 Chapter 3: Unconstrained Optimization

 50

3.11 Appendix

3.11.1 The Gradient of a Quadratic Function in Vector Form
We define the coordinate vector to be,

ei =

0

1

0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

← A single 1 in the ith position

We note that i ixÑ = e so

∇xT = ∇x1 ,…, ∇xn
⎡⎣ ⎤⎦

= e1 ,…, en
⎡⎣ ⎤⎦= I

Suppose we have a linear function:

 () Tf a= +x b x
then

∇f x() =∇ a+ bTx() = ∇a
term1
! +∇ bTx()

term 2
"#$ %$

For the first term, since a is a constant, 0aÑ = . Looking at the second term, from the rule for
differentiation of a product,

 () () ()T T TÑ = Ñ + Ñb x b x x b

but T T TandÑ = Ñ =b 0 x I

Thus () ()Tf aÑ =Ñ +Ñx b x

 () ()T T0= + Ñ + Ñb x x b
 0 0= + + Ib
 = b

Now suppose we have a quadratic function of the form:

 () T T1
2

q a= + +x b x x Hx

 Chapter 3: Unconstrained Optimization

 51

We wish to evaluate the gradient in vector form. We will do this term by term,

 () () ()T T1
2

q aÑ =Ñ +Ñ + Ñx b x x Hx

Applying the results from a linear function,

() () ()

()

T T

T

1
2

10
2

q aÑ =Ñ +Ñ + Ñ

= + + Ñ

x b x x Hx

b x Hx

So we only need to evaluate the term, ()T1
2
Ñ x Hx . If we split this into two vectors, i.e.

, = =u x v Hx , then
 () () ()T T TÑ = Ñ + Ñx Hx x v v x

We know ()TÑ = =x v IHx Hx , so we must only evaluate () ()()TTÑ = Ñv x Hx x . We can

write,

Hx()T

 = [hr1
T x , hr 2

T x ,…, hrn
T x]

Applying the gradient operator,

∇ Hx()T
= hr1, hr 2 ,…, hrn⎡⎣ ⎤⎦
= HT

Returning now to the gradient of the expression, () T T1
2

q a= + +x b x x Hx

 () ()T T1
2

q a æ öÑ =Ñ +Ñ +Ñç ÷
è ø

x b x x Hx

 () (){ }TT10
2

= + + Ñ +Ñb x H Hx x

 ()T1
2

= + +b H H x

 = +b Hx (3.97)

If the quadratic we are approximating is a Taylor expansion,

 () ()T T1 1
2

k k k k k k kf f f+ = + Ñ D + D Dx x H x

Then (3.97) is:

 1k k k kf f+Ñ =Ñ + DH x (3.98)

 Chapter 3: Unconstrained Optimization

 52

3.11.2 Optimal Step Length for Quadratic Function
In this section we will derive (3.12). If we start with a Taylor expansion,

 () ()T T1 1
2

k k k k k kf f f+ = + Ñ D + D Dx x H x (3.99)

When we do a line search,

 k aD =x s (3.100)

Substituting (3.100) into (3.99) gives

 () ()T T1 1
2

k k kf f f a a a+ = + Ñ +s s H s

If we take the derivative of this expression with respect to a (a scalar),

 ()
1 T T

k
kdf f

d
a

a

+

= Ñ +s s Hs (3.101)

Setting the derivative equal to zero and solving for a gives:

α * = −

∇f k()T
s

sT Hs
 (3.102)

3.11.3 Proof of the Hereditary Property for the Rank One Update

THEOREM. Let H be a constant symmetric matrix and suppose that Δx0 , Δx1,…, Δx k and

 γ
0 , γ1,…, γ k are given vectors, where γ

i =HΔx i , i = 0,1,…,k , where k n< . Starting with
any initial symmetric matrix 0N , let

()()

()

T

1
T

k k k k k k
k k

k k k k

+
D - D -

= +
D -

x N γ x N γ
N N

x N γ γ
 (3.103)

then
 1 fork i i i k+ = D £N γ x (3.104)

PROOF. The proof is by induction. We will show that if (3.104) holds for previous direction
matrix, it holds for the current direction matrix. We know that at the current point, k, the
following is true,

 1k k k+ = DN γ x (3.105)

 Chapter 3: Unconstrained Optimization

 53

because we enforced this condition when we developed the update. Now, suppose it is true
that (notice the superscript on N is k, not k+1),

 for -1k i i i k= D £N γ x (3.106)

i.e., that the hereditary property holds for the previous direction matrix. We can post multiply
(3.103) by iγ , giving,

()()

()

T

1
T

k k k k k k i
k i k i

k k k k

+
D - D -

= +
D -

x N γ x N γ γ
N γ N γ

x N γ γ
 (3.107)

To simplify things, let
()

()T
k k k

k

k k k k

D -
=

D -

x N γ
y

x N γ γ
 so that we can write (3.107) as,

 ()T1k i k i k k k k i+ = + D -N γ N γ y x N γ γ (3.108)

We can distribute the transpose on the last term, and distribute the post multiplication iγ to
give,
 () ()T T1k i k i k k i k k i+ é ù= + D -ê úë û

N γ N γ y x γ γ N γ (3.109)

Since we have assumed (3.106) is true, we can replace k iN γ with iDx :

 () ()T T1k i i k k i k i+ é ù= D + D - Dê úë û
N γ x y x γ γ x (3.110)

Now we examine the term in brackets. We note that,

 () () () ()T T T Tk i k i k i k iD = D D = D D = Dγ x H x x x H x x γ (3.111)

So the term in brackets in (3.110) vanishes, giving,

 N

k+1γ i = Δx i for i ≤ k −1 (3.112)

and since (3.105) is satisfied by definition for the update, i.e, for i=k, we have

 N

k+1γ i = Δx i for i ≤ k (3.113)

Thus, if the hereditary property holds for the previous direction matrix, it holds for the
current direction matrix. The expression (3.105) is all that is needed to have the hereditary
property for the first update, 1N . The second update, 2N , will then have the hereditary
property since 1N does, and so on.

 Chapter 3: Unconstrained Optimization

 54

3.11.4 Proof that an Update with the Hereditary Property is Also a Method of
Conjugate Directions
THEOREM. An update with the hereditary property and exact line searches is a method of
conjugate directions and therefore terminates after m n£ iterations on a quadratic function.

We assume that the hereditary property holds for 1,2,...,k m=

 1 for allk i i i k+ = D £N γ x (3.114)

We need to show that conjugacy holds as well,
 ()k 0 for all 1

T i i k= £ -s Hs (3.115)

The proof is by induction. We will show that if ks is conjugate then 1k+s is as well, i.e.,

 ()k+1 0 for all

T i i k= £s Hs (3.116)

We note that

 1 1 1k k kf+ + += - Ñs N (3.117)

by definition of the quasi-Newton method. Or taking the transpose,

 () ()1 1 1T Tk k kf+ + += - Ñs N (3.118)

Substituting (3.118) into (3.117);

 () ()k+1 1 1 for all

T Ti k k if i k+ += - Ñ £s Hs N Hs (3.119)

Also,

i i

i
i ia a
D

= =
H x γHs

so (3.119) becomes,

 () ()1 1
k+1 for all

Tk k i
T i

i

f
i k

a

+ +Ñ
= - £

N γ
s Hs (3.120)

From the hereditary property we have 1k i i i k+ = D £N γ x , so (3.106) can be written,

 Chapter 3: Unconstrained Optimization

 55

 () ()1k+1 0 for all
Tk i

T i
i

f
i k

a

+é ùÑ D
ê ú= - = £
ê ú
ë û

x
s Hs

The term in brackets is zero for all values of 1,2,..., 1i k= - from the assumption the previous
search direction was conjugate. It is zero for i k= from the definition of *a . Thus if we
have conjugate directions at k, and the hereditary property holds, we have conjugate
directions at k+1.

3.11.5 Proof the DFP Update Stays Positive Definite

THEOREM. If () 0
TkD >x γ for all steps of the algorithm, and if we start with any symmetric,

positive definite matrix, 0N , then the DFP update preserves the positive definiteness of
kN for all k.

PROOF. The proof is inductive. We will show that if kN is positive definite, k+1N is also.
From the definition of positive definiteness,

 T 1 0k+ >z N z for all 0¹z

For simplicity we will drop the superscript k on the update terms. From (3.66),

zTNk+1z = zTNkz
term1
 + zT ΔxΔxT

ΔxTγ
⎛
⎝⎜

⎞
⎠⎟

z

term 2

− zT Nγγ TN
γ TNγ

⎛
⎝⎜

⎞
⎠⎟

z

term 3

 (3.121)

We need to show that all the terms on the right hand side are positive. We will focus for a
moment on the first and third terms on the right hand side. Noting that N can be written as

T=N LL via Choleski decomposition, and if we substitute T T T,= =a L z a z L ,
T T T,= =b L γ b γ Lthe first and third terms are,

()2TT

T T T
T T

æ ö
- = -ç ÷

è ø

a bNγγ Nz Nz z z a a
γ Nγ b b

 (3.122)

The Cauchy-Schwarz inequality states that for any two vectors, x and y,

()2T

T
T³
x y

x x
y y

 thus
()2T

T
T 0- ³
a b

a a
b b

 (3.123)

So the first and third terms of (3.78) are positive. Now we need to show this for the second
term,

 Chapter 3: Unconstrained Optimization

 56

()2TT T T

T
T T T

Dæ öD D D D
= =ç ÷D D Dè ø

z xx x z x x zz z
x γ x γ x γ

 (3.124)

The numerator of the right-most expression is obviously positive. The denominator can be
written,

ΔxTγ = Δx k()T
∇f k+1 − Δx k()T

∇f k = α sk()T
∇f k+1

term1

−α sk()T
∇f k

term 2

 (3.125)

The second term in (3.125), ()Tk kfÑs , is negative if the search direction goes downhill

which it does if kN is positive definite, and with the minus sign is therefore positive. The first
term in (3.125), ()T 1k kfa +Ñs , can be positive or negative; however, it is zero if we are at a*;

thus the entire expression in (3.125) is positive if we take a minimizing step, a*.

We have now shown that all three terms of (3.121) are positive if we take a minimizing step.
Thus, if kN is positive definite, N

k+1 is positive definite, etc.

