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CHAPTER 3 

UNCONSTRAINED OPTIMIZATION 

1. Preliminaries 

1.1. Introduction 

In this chapter we will examine some theory for the optimization of unconstrained functions. 
We will assume all functions are continuous and differentiable. Although most engineering 
problems are constrained, much of constrained optimization theory is built upon the concepts 
and theory presented in this chapter.   

1.2. Notation 

We will use lower case italics, e.g., x, to represent a scalar quantity. Vectors will be 
represented by lower case bold, e.g., x, and matrices by upper case bold, e.g., H.  
 
The set of n design variables will be represented by the n-dimensional vector x. For example, 
previously we considered the design variables for the Two-bar truss to be represented by 
scalars such as diameter, d, thickness, t, height, h; now we consider diameter to be the first 
element, 1x , of the vector x, thickness to be the second element, 2x , and so forth. Thus for 

any problem the set of design variables is given by x.  
 
Elements of a vector are denoted by subscripts. Values of a vector at specific points are 
denoted by superscripts. Typically 0x will be the starting vector of values for the design 
variables. We will then move to 1x , 2x , until we reach the optimum, which will be x*. A 
summary of notation used in this chapter is given in Table 1. 
 

Table 1 Notation 
A  Matrix A x , kx , *x  Vector of design variables, 

vector at iteration k, vector at 
the optimum 

I  Identity matrix 
1 2, ... nx x x  Elements of vector x 

a  Column vector , ks s  Search direction, search 
direction at iteration k 

1, 2,...i i a  Columns of A , , *k    Step length, step length at 
iteration k, step length at 
minimum along search 
direction 

1,2,...i i e  Coordinate vectors 
(columns of I) 

( ), ( ),k kf f fx x Objective function, objective 

evaluated at kx  

,T TA a  transpose 2 2( ),

( ),

k k

k k

f f x

H x H
 

Hessian matrix at kx  

( ), ( ),k kf f f  x x  Gradient of ( )f x , 

gradient evaluated at kx  

A  Determinant of A 
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1k k k  x x x  Difference in x vectors nRx  All vectors which are in n-
dimensional Euclidean space 

1k k kf f  γ  Difference in gradients 

at 1,k kx x  

kN  Direction matrix at kx  

 

1.3. Statement of Problem 

The problem we are trying to solve in this chapter can be stated as, 
 
 Find x,     nRx  
 To Minimize ( )f x  
 

1.4. Gradient Vector 

1.4.1. Definition 

The gradient of ( )f x is denoted ( )f x . The gradient is defined as a column vector of the 
first partial derivatives of f(x): 
 

   

1

2( )

n

f

x

f

xf

f

x

 
  
 

    
 
  
  

x



  

 

1.4.2. Example: Gradient of a Function      

Evaluate the gradient of the function 2 2
1 2 1 1 2 2( ) 6 2 2 3f x x x x x x     x  

 

  1 2

1 2

2 4 3

1 3 2

x x
f

x x

   
     

 If evaluated at 0 2

2

 
  
 

x , 0 4

1
f

 
    

 

 
A very important property of the gradient vector is that it is orthogonal to the function 
contours and points in the direction of greatest increase of a function.  The negative gradient 
points in the direction of greatest decrease. Any vector v which is orthogonal to ( )f x will 

satisfy ( ) 0f Tv x . 
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1.5. Vectors That Point "Downhill" or "Uphill" 

If we have some search direction s, then T fs is proportional to the projection of s onto the 
gradient vector.  We can see this better in Fig. 3.1: 
 

 
Fig. 3.1. Vectors that point uphill or downhill. 

 
As long as T 0 f s , then s points, at least for some small distance, in a direction that 

increases the function (points uphill).  In like manner, if T 0 f s , then s points downhill. 
As an example, suppose at the current point in space the gradient vector is 

( ) [6,1, 2]Tf  kx . We propose to move from this point in a search direction [ 1,1,0]T  s . 

Does this direction go downhill? We evaluate  T

6

= -1, -1,0 1 7

-2

f

 
    
  

s  

 
So this direction would take us downhill, at least for a short step. 

1.6. Hessian Matrix 

1.6.1. Definition 

The Hessian Matrix, H(x) or 2 ( )f x  is defined to be the square matrix of second partial 
derivatives: 
 

  

2 2 2

2
1 1 1

2 2 2

2 2
2 1 2 2

2 2 2

2
1 2

( ) ( )

n n

n

n n n

f f f

x x x x x

f f f

f x x x x x

f f f

x x x x x

   
      
   
 

        
 
 
   
      

H x x





   



 (3.2) 

VALLEY

f

up

up
down

down

tangent
line
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We can also obtain the Hessian by applying the gradient operator on the gradient transpose, 
 

2 2 2

2
1 1 11

2 2 2

2 2
2 2 1 2 2

1 2

2 2 2

2
1 2

( ) ( ) ( ( ) ) , ,...,

n n

T
n

n

n n n n

f f f

x x x x xx

f f f
f f f

xf f x x x x x
x x x

f f f
x x x x x x

    
          
     

                            
       
          

H x x x





    



 

 
The Hessian is a symmetric matrix.  The Hessian matrix gives us information about the 
curvature of a function, and tells us how the gradient is changing. 
 
For simplicity, we will sometimes write kH  instead of ( )kH x . 

1.6.2. Example: Hessian Matrix   

Find the Hessian matrix for the function, 2 2
1 2 1 1 2 2( ) 6 2 2 3f x x x x x x x       

 

 1 2

1 2

2 4 3

1 3 2

x x
f

x x

   
     

, 
2

2
1

4
f

x





 

2

1 2

3
f

x x




 
 

   
2

2 1

3
f

x x




 
 

2

2
2

2
f

x





 

 and the Hessian is: 

   
4 3

3 2

 
  
 

H x  

1.7. Positive and Negative Definiteness 

1.7.1. Definitions 

If for any vector, x, the following is true for a symmetric matrix B, 
 

 
T

T

0 then

0 then

B is positive definite

B is negative definite





x Bx

x Bx
 (3.3) 

1.7.2. Checking Positive Definiteness 

The above definition is not very useful in terms of checking if a matrix is positive definite, 
because it would require that we examine every possible vector x to see if the condition 
given in (3.3) is true.  So, how can we tell if a matrix is positive definite? There are three 
ways we will mention, 
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1. A symmetric matrix B is positive definite if all eigenvalues of B are positive. 

 
2. A symmetric matrix is positive definite if and only if the determinant of each of its 

principal minor matrices is positive. 
 

3. A n n  matrix B  is symmetric and positive definite if and only if it can be written as 
T = B LL where L is a lower triangular matrix with positive diagonal elements. The 

L  matrix can be developed through Choleski decomposition. 
 
The matrix we will be most interested in checking is the Hessian matrix,  H x  

 
What does it mean for the Hessian to be positive or negative definite? If positive definite, it 
means curvature of the function is everywhere positive. This will be an important condition 
for checking if we have a minimum. If negative definite, curvature is everywhere negative. 
This will be a condition for verifying we have a maximum. 

1.7.3. Example: Checking if a Matrix is Positive Definite Using Principal Minor 
Matrices 

Is the matrix given below positive definite? We need to check the determinants of the 
principal minor matrices, found by taking the determinant of a 1x1 matrix along the diagonal, 
the determinant of a 2x2 matrix along the diagonal, and finally the determinant of the entire 
matrix. If any one of these determinants is not positive, the matrix is not positive definite. 
 

  

 

2 3 2

3 5 1

2 1 5

2 3 2
2 3

2 2 0 1 0 3 5 1 5 0
3 5

2 1 5

 
  
   

 
                  

 

 
The determinants of the first two principal minors are positive. However, because the 
determinant of the matrix as a whole is negative, this matrix is not positive definite.  
 
We also note that the eigenvalues are -0.15, 4.06, 8.09. That these are not all positive also 
indicates the matrix is not positive definite. 

1.7.4. Checking Negative Definiteness 

How can we check to see if a matrix is negative definite? There are two ways we will 
mention, 
 

1. A symmetric matrix B is negative definite if all eigenvalues of B are negative. 
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2. A symmetric matrix is negative definite if we reverse the sign of each element and the 
resulting matrix is positive definite. 

 
Note: A symmetric matrix is not negative definite if the determinant of each of its 
principal minor matrices is negative. Rather, in the negative definite case, the signs of the 
determinants alternate minus and plus, so the easiest way to check for negative 
definiteness using principal minor matrices is to reverse all signs and see if the resulting 
matrix is positive definite. 

 
It is also possible for a matrix to be positive semi-definite, or negative semi-definite. This 
occurs when one or more of the determinants or eigenvalues are equal to zero, and the others 
are all positive (or negative, as the case may be). These are special cases we won’t worry 
about here. 
 
If a matrix is neither positive definite nor negative definite (nor semi-definite) then it is 
indefinite. If using principal minor matrices, note that we need to check both cases before we 
reach a conclusion that a matrix is indefinite. 

1.7.5. Example: Checking if a Matrix is Negative Definite Using Principal 
Minor Matrices 

Is the matrix given above negative definite? We reverse the signs and see if the resulting 
matrix is positive definite: 

 

 

2 3 2

3 5 1

2 1 5

2 2 0

  
   
  

   

 

Because the first determinant is negative there is no reason to go further. We also note that 
the eigenvalues of the “reversed sign” matrix are not all positive. 

 
Because this matrix is neither positive nor negative definite, it is indefinite. 

1.8. Taylor Expansion 

1.8.1. Definition 

The Taylor expansion is an approximation to a function at a point kx  and can be written in 
vector notation as: 

             T T 21
( )

2
k k k k k kf f f f        x x x x x x x x x x  (3.4) 

If we note that kx x  can be written as kx , and using notation  k kf fx , we can write 

(3.4) more compactly as, 
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    T T1 21

2
k k k k k k kf f f f         x x x   (3.5) 

 
The Taylor expansion allows us to approximate any continuous function as a polynomial in 
terms of its derivatives at the point kx . We can make a linear approximation by taking the 
first two terms of the expansion. We can make a quadratic approximation by taking the first 
three terms of the expansion. 
 

1.8.2. Example: Quadratic Approximation of a Transcendental Function 

Suppose    1/ 2

1 2( )  2 3ln  f x x x  

 

 at  T
[5,4]k x   1/ 2

1
2

3
,Tf x

x
 

   
 

     0.447,0.750
Tkf   

 

 
2

( 3/ 2)
12

1

1

2

f
x

x


 


 
2

1 2

0
f

x x




 
 

2

2 1

=0
f

x x


 

 
2

2 2
2 2

3f

x x

 



 

 

 
( 3/ 2)

1

2
2

1
0

5 0.045 0.02
at

3 4 0.0 0.1880

x

x

                 
  

H x  

 

  1 1
1 2

2 2

5 50.045 0.01
8.631 [0.447 ,0.750] [ 5, 4] 

4 40.0 0.1882

x x
f x x

x x

     
             

x  

 
If we wish, we can stop here with the equation in vector form. To see the equation in scalar 
form we can carry out the vector multiplications and combine similar terms: 
 
  1 28.631 0.447 2.235 0.750 3.000f x x     x  

     1
1 2

2

51
0.045 0.225 , 0.188 0.752

42

x
x x

x

 
         

 

  1 23.396 0.447 0.750f x x   x  

 2 2
1 1 2 2

1
0.045 0.450 1.125 0.188 1.504 3.008

2
x x x x       

  2 2
1 2 1 21.300 0.672 1.502 0.023 0.094f x x x x    x  

 
Evaluating and comparing this approximation to the original: 
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  Tx  Quadratic Actual Error 

[5,4] 8.63 8.63 0.00 

[5,5] 9.28 9.3 0.02 

[6,4] 9.05 9.06 0.01 

[7,6] 10.55 10.67 0.12 

[2,1] 3.98 2.83 -1.15 

[9,2] 8.19 8.08 -0.11 

 
We notice that the further the point gets from the expansion point, the greater the error that is 
introduced. We also see that at the point of expansion the approximation is exact. 
 

2. Properties and Characteristics of Quadratic Functions 

A lot of optimization theory is based on optimizing quadratic functions. It is therefore helpful 
to investigate some of the properties of these functions.  

2.1. Representation 

We can represent a quadratic function three ways—as a scalar equation, a general vector 
equation, and as a Taylor expansion. Although these representations look different, they give 
exactly the same results. For example, consider the equation,  
 
 2 2

1 2 1 1 2 2( ) 6 2 2 3f x x x x x x x       (3.6) 

 
This is a scalar representation of a quadratic.  
 
As a another representation, we can write a quadratic in general vector form, 
 

 
1

( )
2

T Tf a  x b x x Cx  (3.7) 

 
By inspection, the example given in (3.6), in the form of (3.7), is: 
 

 
4 31

( ) 6 [ 2, 1]
3 22

Tf
 

     
 

x x x x  (3.8) 

 
where, 

 1

2

x

x

 
  
 

x  

 
We also observe that C in (3.7) ends up being H. 
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A third form is a Taylor representation, 
 

      T T1

2
k k k k kf f f      x x x H x  (3.9) 

 

We note for (3.6), 1 2

1 2

2 4 3

1 3 2

x x
f

x x

   
     

 and 
4 3

3 2

 
  
 

H  

We will assume a point of expansion, 
2

2
k  
  
 

x ,
4

1
kf

 
    

. (It may not be apparent, but if 

we are approximating a quadratic, it doesn’t matter what point of expansion we assume. The 
Taylor expansion will be exact.) 
 
The example in (3.6), as a Taylor representation, becomes, 
 

 
4 31

( ) 12 [ 4, 1]
3 22

Tf
 

        
 

x x x x  (3.10) 

where, 

 1

2

2

2

x

x

 
    

x  

 
These three representations are equivalent. If we pick the point  1.0, 2.0T x , all three 

representations give 18f  at this point, as you can verify by substitution.  

2.2. Characteristics of Quadratic Functions 

It is useful to note the following characteristics of quadratic equations: 
 

 The equations for the gradient vector of a quadratic function are linear. This makes it 
easy to solve for where the gradient is equal to zero. 

 The Hessian for a quadratic function is a matrix of constants (so we will write as H or 
2 f instead of H(x) or 2 ( )f x ). Thus the curvature of a quadratic is everywhere the 

same. 
 Excluding the cases where we have a semi-definite Hessian, quadratic functions have 

only one stationary point, i.e. only one point where the gradient is zero. 
 Given the gradient and Hessian at some point kx , the gradient at some other point, 

1kx , is given by, 
 

   1 1k k k kf f     H x x  (3.11) 

 
This expression is developed in Section 9.1 of the Appendix by differentiating a Taylor 
expansion in vector form. 
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 Given the gradient some point kx , Hessian, H, and a search direction, s, the optimal 
step length, * , in the direction s is given by, 

 

  
 

*

Tk

T

f



 

s

s Hs
 (3.12) 

 
This expression is derived in Section 9.2 of the Appendix. 
 
 The best methods of optimization are methods of conjugate directions. A method of 

conjugate directions will solve for the optimum of a quadratic function of n variables 
in n steps, providing minimizing steps are taken in each search direction. We will 
learn more about these methods in sections which follow. 

2.3. Examples 

We start with the example, 
 
   2 2

1 2 1 1 2 24 2 4f x x x x x x    x  (3.13) 

 
Since this is a quadratic, we know it only has one stationary point. We note that the Hessian,  
 

 
2 4

4 2

 
   

H  

 
is indefinite (eigenvalues are -2.0 and 6.0). This means we should have a saddle point. The 
contour plots in Fig 3.2 and Fig. 3.3 confirm this. 
 

 
Fig. 3.2 Contour plot of Eq (3.13). 
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Fig. 3.3. 3D contour plot of (3.13). 

 
We will do a second example. Suppose we have the function, 
 
   2 2

1 2 1 1 2 22 4 2f x x x x x x    x  (3.14) 

 

 1 2

1 2

1 8

2 4

x x
f

x x

  
     

 and 
8 1

1 4

 
   

H  

 
By inspection, we see that the determinants of the principal minor matrices are all positive. 
Thus this function should have a min and look like a bowl. The contour plots follow. 
 

 
Fig. 3.4.  Contour plot for (3.14) 
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Fig. 3.5 3D contour plot for (3.14) 
 

3. Necessary and Sufficient Conditions for an Unconstrained 
Optimum 

With some preliminaries out of the way, we are now ready to begin discussing the theory of 
unconstrained optimization of differentiable functions. We start with the mathematical 
conditions which must hold at an unconstrained, local optimum. 

3.1. Definitions 

3.1.1. Necessary Conditions for an Unconstrained Optimum 

The necessary conditions for an unconstrained optimum at *x  are, 
 

 ( *) 0 and  be differentiable at *f f x x x  (3.15) 

 
These conditions are necessary but not sufficient, inasmuch as ( ) 0f x can apply at a max, 
min or a saddle point. However, if at a point ( ) 0f x , then that point cannot be an 
optimum. 

3.1.2. Sufficient Conditions for a Minimum 

The sufficient conditions include the necessary conditions but add other conditions such that 
when satisfied we know we have an optimum. For a minimum,  
 

 ( *) 0,  differentiable at *f f x x x , plus  2 *f x  is positive definite. (3.16) 

3.1.3. Sufficient Conditions for a Maximum 

For a maximum,  
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 ( *) 0,  differentiable at *f f x x x , plus  2 *f x  is negative definite. (3.17) 

3.2. Examples: Applying the Necessary, Sufficient Conditions 

Apply the necessary and sufficient conditions to find the optimum for the quadratic function, 
 
    2 2

1 1 2 22 4f x x x x  x  

 
Since this is a quadratic function, the partial derivatives will be linear equations. We can 
solve these equations directly for a point that satisfies the necessary conditions. The gradient 
vector is, 
 

  1 1 2

1 2

2

2 2 0
( )

2 8 0

f

x x x
f

x xf

x

 
                 
  

x  

 
When we solve these two equations, we have a solution, 1 0x  , 2 0x  --this a point where 

the gradient is equal to zero. This represents a minimum, a maximum, or a saddle point. At 
this point, the Hessian is, 
 

  
2 2

2 8

 
   

H  

 
Since this Hessian is positive definite (eigenvalues are 1.4, 8.6), this must be a minimum. 
 
As a second example, apply the necessary and sufficient conditions to find the optimum for 
the quadratic function, 
 
    2 2

1 2 1 1 2 24 2 4f x x x x x x    x  

 
As in example 1, we will solve the gradient equations directly for a point that satisfies the 
necessary conditions. The gradient vector is, 
 

  1 1 2

1 2

2

2 4 4 0

4 2 2 0

f

x x x

x xf

x

 
                  
  

 

 
When we solve these two equations, we have a solution, 1 1.333x  , 2 1.667x  . The Hessian 

is, 
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2 4

4 2

 
   

H  

 
The eigenvalues are -2, 6. The Hessian is indefinite. This means this is neither a max nor a 
min—it is a saddle point. 
 
Comments: As mentioned, the equations for the gradient for a quadratic function are linear, 
so they are easy to solve. Obviously we don’t usually have a quadratic objective, so the 
equations are usually not linear. Often we will use the necessary conditions to check a point 
to see if we are at an optimum. Some algorithms, however, solve for an optimum by solving 
directly where the gradient is equal to zero. Sequential Quadratic Programming (SQP) is this 
type of algorithm. 
 
Other algorithms search for the optimum by taking downhill steps and continuing until they 
can go no further. The GRG (Generalized Reduced Gradient) algorithm is an example of this 
type of algorithm. In the next section we will study one of the simplest unconstrained 
algorithms that steps downhill: steepest descent. 

 

4. Steepest Descent with a Quadratic Line Search 

4.1. Description 

One of the simplest unconstrained optimization methods is steepest descent.  Given an initial 
starting point, the algorithm moves downhill until it can go no further. 
 
The search can be broken down into stages.  For any algorithm, at each stage (or iteration) we 
must determine two things: 
 

1. What should the search direction be? 
2. How far should we go in that direction? 

 
Answer to question 1:  For the method of steepest descent, the search direction is  f x  

 
Answer to question 2: A line search is performed.  "Line" in this case means we search along a 
direction vector.  The line search strategy presented here, bracketing the function with quadratic 
fit, is one of many that have been proposed, and is one of the most common.  
 
General Approach for each step:  
Given some starting point, kx , we wish to determine, 
 
 1k k   x x s  (3.18) 
 
where s is the search direction vector, usually normalized, and  is the step length, a scalar. 
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We will step in direction s with increasing values of until the function starts to get worse. Then 
we will curve fit the data with a parabola, and step to the minimum of the parabola. 

4.2. Example: Steepest Descent with Line Search 

 Min   2 2 0
1 1 2 22 4 19f x x x x f   x  

 starting at 0 0 03 8 8

1 14 14
f

     
              

x s  

 normalized 0 10.50 3 0.50

0.86 1 0.86


     
             

s x  

 
We will find *, which is the optimal step length, by trial and error. 
 Guess * = .4 for step number 1: 
 

Line 
Search 

Step 
 1 0 0 x x s   f x  

1 0.4 1 3.0 0.50 2.80
.4

1.0 0.86 0.66

      
            

x  13.3 

 
 
We see that the function has decreased; we decide to double the step length and continue 
doubling until the function begins to increase: 
 

Line 
Search 

Step 
 1 0 0 x x s   f x  

2 0.8 1 3.0 0.50 2.60
.8

1.0 0.86 0.31

      
            

x  8.75 

3 1.6 1 3.0 0.50 2.20
1.6

1.0 0.86 0.38

      
             

x  3.74 

4 3.2 1 3.0 0.50 1.40
3.2

1.0 0.86 1.75

      
             

x  9.31 

 
The objective function has started to increase; therefore we have gone too far. 
 
We will cut the change in the last step by half: 
 

5 2.4 1 3.0 0.50 1.80
2.4

1.0 0.86 1.06

      
             

x  3.91 
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A graph of our progress is shown in Fig. 3.6:  
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Fig. 3.6 Progress in the line search shown on a contour plot. 

 
If we plot the objective value as a function of step length as shown in Fig 3.7: 

 
Fig. 3.7 The objective value vs. step length for the line search. 

 

  2 2

1 1 2 2
2 4f x x x x  x
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We see that the data plot up to be a parabola.  We would like to estimate the minimum of this 
curve.  We will curve fit points 2, 5, 3. These points are equally spaced and bracket the 
minimum. 
 
     ||2   ||3   ||5 
Renumbering these points as 1, 2, 3 the minimum of the parabola is given by 
 

   

   
     
  

 

1 3
2

1 2 3

*
2 2

0.8 8.75 3.91
* 1.60

2 8.75 2 3.74 3.91

* 1.97

f f

f f f

  
 

  





    
   


 

   


 19 

 
            where ( ) 3.2f x  
 
When we step back, after the function has become worse, we have four points to choose from 
(points 2, 3, 5, 4). How do we know which three to pick to make sure we don’t lose the bracket 
on the minimum? The rule is this: take the point with the lowest function value (point 3) and the 
two points to either side (points 2 and 5). 
 
In summary, the line search consists of stepping along the search direction until the minimum of 
the function in this direction is bracketed, fitting three points which bracket the minimum with a 
parabola, and calculating the minimum of the parabola.  If necessary the parabolic fit can be 
carried out several times until the change in the minimum is very small (although the  are then 
no longer equally spaced, so the following formula must be used): 
 

 
         
        

2 2 2 2 2 2
1 2 3 2 3 1 3 1 2

1 2 3 2 3 1 3 1 2

*
2

f f f

f f f

        


        

    


      
 20


Each sequence of obtaining the gradient and moving along the negative gradient direction until a 
minimum is found (i.e. executing a line search) is called an iteration. The algorithm consists of 
executing iterations until the norm of the gradient drops below a specified tolerance, indicating 
the necessary conditions have been met. 
 

As shown in Fig. 3.7, at * , 0
df

d
 . The process of determining * will be referred to as 

taking a minimizing step, or, executing an exact line search. 

4.3. Pros and Cons of Steepest Descent 

Steepest descent has several advantages. It usually makes good progress when far from the 
optimum (in the above example the objective decreased from 19 to 3 in the first iteration), and it 
is very simple to implement. It always goes downhill. It is also guaranteed to converge to a local 
optimum if enough steps are taken. 
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However, if the function to be minimized is eccentric, convergence of steepest descent can be 
very slow, as indicated by the following theorem from Luenberger.1 
 
THEOREM. Convergence of Steepest Descent.  For a quadratic function, if we take enough 
steps, the method of steepest descent converges to the unique minimum point *x  of f.  If we 
define the error in the objective function at the current value of x as, 
 

     T1
( ) * *

2
E   x x x H x x   (3.21) 

 
there holds at every step k,  
 

 

   
2

1

where

Largest eigenvalue of

Smallest eigenvalue of

k kA a
E E

A a

A

a

     




x x

H

H

 (3.22) 

 
Thus if A=50 and a=1, we have that the error at the k+1 step is only guaranteed to be less than 
the error at the k step by, 

 
2

1 49

51
k kE E    

 
 

 
and thus the error may be reduced very slowly. 
 
“Roughly speaking, the above theorem says that the convergence rate of steepest descent is 
slowed as the contours of f become more eccentric.  If a A , corresponding to circular contours, 
convergence occurs in a single step.  Note, however, that even if 1n   of the n eigenvalues are 
equal and the remaining one is a great distance from these, convergence will be slow, and hence 
a single abnormal eigenvalue can destroy the effectiveness of steepest descent.” 
 
The above theorem is based on a quadratic function. If we have a quadratic, and we do rotation 
and translation of the axes, we can eliminate all of the linear and cross product terms. We then 
have only the pure second order terms left. The eigenvalues of the resulting Hessian are equal to 
twice the coefficients of the pure second order terms. Thus the function, 
 
 2 2

1 2f x x   

 
would have equal eigenvalues of (2, 2) and would represent the circular contours as mentioned 
above, shown in Fig. 3.8. Steepest descent would converge in one step. Conversely the function,  
 

                                                 
1 Luenberger and Ye, Linear and Nonlinear Programming, Third Edition, 2008 
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 2 2
1 250f x x   

 
has eigenvalues of (100, 2). The contours would be highly eccentric and convergence of steepest 
descent would be very slow. A contour plot of this function is given in Fig 3.9, 
 

 
Fig. 3.8. Contours of the function, 2 2

1 2f x x  .  

 

 
Fig. 3.9. Contours of the function, 2 2

1 250f x x  . Notice how the contours have 

been “stretched” out. 
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5. The Directional Derivative 

It is sometimes useful to calculate 
df

d
 along some search direction s.  From the chain rule 

for differentiation, 
 

 = i

i

dxdf f

d x d 
   
     

   

 
Noting that 1k k   x x s , or, for a single element of vector x, 1k k k

i i ix x s   , we have 

i
i

dx
s

d
 , so 

 Ti
i

i i

dxdf f f
s f

d x d x 
                 

  s  (3.23) 

 

As an example, we will find the directional derivative,
df

d
, for the problem given in Section 

4.2 above, at  =0. From (3.23):  T 0.5
8 14 16.04

0.86

df
f

d
 

       
s  

This gives us the change in the function for a small step in the search direction, i.e., 
 

 
df

f
d




    (3.24) 

If 0.01  , the predicted change is 0.1604. The actual change in the function is 0.1599.  
 
Equation (3.23) is the same equation for checking if a direction goes downhill, given in 
Section 1.4. Before we just looked at the sign; if negative we knew we were going downhill. 
Now we see that the value has meaning as well: it represents the expected change in the 

function for a small step. If, for example, the value of  
0

df

d  

 is less than some epsilon, we 

could terminate the line search, because the predicted change in the objective function is 
below a minimum threshold. 
 

Another important value of 
df

d
occurs at * . If we locate the minimum exactly, then 

 

  T1

*

0k kdf
f

d  




  s  (3.25) 

 
As we have seen in examples, when we take a minimizing step we stop where the search 
direction is tangent to the contours of the function. Thus the gradient at this new point is 
orthogonal to the previous search direction. 
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6. Newton’s Method 

6.1. Derivation 

Another classical method we will briefly study is called Newton's method.  It simply makes a 
quadratic approximation to a function at the current point and solves for where the necessary 
conditions (to the approximation) are satisfied.  Starting with a Taylor series: 
 

     T T1 1

2
k k k k k k kf f f       x x H x  (3.26) 

 
Since the gradient and Hessian are evaluated at k, they are just a vector and matrix of constants. 
Taking the gradient (Section 9.1),  
 
 1k k k kf f    H x  
 
and setting 1 0kf   ,  we have, 
 

 k k kf  H x  
Solving for x : 

   1k k kf


   x H   (3.27) 

 
Note that we have solved for a vector, i.e. x , which has both a step length and direction. 

6.2. Example: Newton's Method 

We wish to optimize the function,   2 2
1 1 2 22 4f x x x x  x  from the point 0 3

1

 
  
 

x . 

At this point 0 8

14
f

 
   

 
 and the Hessian is, 

2 2

2 8

 
   

H .  The Hessian inverse is given 

by: 
0.6667 0.16667

0.16667 0.16667

 
 
 

.  Thus 
0.6667 0.16667 8 3

0.16667 0.16667 14 1

     
             

x  

 

So,  1 0 3 3 0

1 1 0

     
               

x x x  
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Fig. 3.10. The operation of Newton’s method. 

6.3. Pros and Cons of Newton's Method 

We can see in the above example Newton’s method solved the problem in one step. This is 
true in general: Newton’s method will drive to the stationary point of a quadratic in one step. 
On a non-quadratic, if we are near an optimum, Newton’s method will drive very close to the 
optimum in one step. 
 
However we should note some drawbacks. First, it requires second derivatives. Normally we 
compute derivatives numerically, and computing second derivatives is computationally 
expensive, on the order of 2n function evaluations, where n is the number of design variables.  
 
The derivation of Newton’s method solved for where the gradient is equal to zero. The 
gradient is equal to zero at a min, a max or a saddle, and nothing in the method differentiates 
between these. Thus Newton’s method can diverge, or fail to go downhill (indeed, not only 
not go downhill, but go to a maximum!). This is obviously a serious drawback.  

7. Quasi-Newton Methods 

7.1. Introduction 

Let’s summarize the pros and cons of Newton's method and Steepest Descent: 
Pros Cons 

Steepest 
Descent 

Always goes downhill 
Always converges 
Simple to implement 

Slow on eccentric functions 

Newton’s 
Method 

Solves quadratic in one step. Very 
fast when close to optimum on non 
quadratic. 

Requires second derivatives,  
Can diverge 

  2 2
1 1 2 22 4f x x x x  x

3

1

 
    

x  
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We want to develop a method that starts out like steepest descent and gradually becomes 
Newton's method, doesn't need second derivatives, doesn't have trouble with eccentric 
functions and doesn't diverge!  Fortunately such methods exist.  They combine the good 
aspects of steepest descent and Newton's method without the drawbacks. These methods are 
called quasi-Newton methods or sometimes variable metric methods. 
 
In general we will define our search direction by the expression 
 
 ( )f  s N x   (3.28) 
 
where N will be called the “direction matrix.” 
 
If N I , then ( ) Steepest Descent f  s x  
 
If -1N H , then  1 Newton's Methodf   s H x  

 
If N is always positive definite, then s always points downhill. To show this, our criterion for 
moving downhill is: 
 T 0f s  
Or, 
 T 0f s  (3.29) 
 
Substituting (3.28) into (3.29): 
 

  T 0f f   N  (3.30) 

 
Since N is positive definite, we know that any vector which pre-multiplies N and post-
multiplies N will result in a positive scalar. Thus the quantity within the parentheses is 
always positive; with the negative sign it becomes always negative, and therefore always 
goes downhill. 
 

7.2. A Rank One Hessian Inverse Update 

7.2.1. Development 

In this section we will develop one of the simplest updates, called a “rank one” update 
because the correction to the direction matrix, N, is a rank one matrix (i.e., it only has one 
independent row or column). We first start with some preliminaries. 
 
Starting with a Taylor series: 

    T T1 1

2
k k k k k kf f f       x x H x  (3.31) 
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where  1k k k  x x x  
 
the gradient is given by, 
 
  1k k kf f    H x  (3.32) 
and defining:   
 k 1k kf f  γ   (3.33) 
we have, 
 -1k k k kor   γ H x H γ x  (3.34) 
 
Equation (3.34) is very important: it shows that for a quadratic function, the inverse of the 
Hessian matrix ( 1H ) maps differences in the gradients to differences in x. The relationship 
expressed by (3.34) is called the Newton condition.  
 
We will make the direction matrix satisfy this relationship.  However, since we can only 
calculate kγ  and kx  after the line search, we will make 
 
 1k k k  N γ x   (3.35) 
 
This expression is sometimes called the quasi-Newton condition. It is “quasi” in that it 
involves k+1 for N instead of k. Equation (3.35) involves more unknowns (the elements of 

1kN ) than equations, so how do we solve for 1kN ? 
 
One of the simplest possibilities is: 
 
 1 Tk k a  N N uu   (3.36)  
 
Where we will “update” the direction matrix with a correction which is of the form Tauu , 
which is a rank one symmetric matrix. 
 
If we substitute (3.36) into (3.35), we have, 
 
 Tk k k ka  N γ uu γ x   (3.37) 
or 

   T k k k k

scalar

a   uu γ x N γ  (3.38) 

 

Noting that T ku γ  is a scalar, then u must be proportional to  k k k x N γ .  Since any change 

in length can be absorbed by a, we will set 
 

  k k k  u x N γ   (3.39) 

 
Substituting (3.39) into (3.38): 
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     Tk k k k k k k k k k

scalar

a       x N γ x N γ γ x N γ


 (3.40) 

For this to be true, 

  T
1k k k ka   x N γ γ  

so 

 
 T

1
k k k k

a 
 x N γ γ

  (3.41) 

 
Substituting (3.41) and (3.39) into (3.36) gives the expression we need: 
 

 
  

 

T

1
T

k k k k k k

k k

k k k k


   

 
 

x N γ x N γ
N N

x N γ γ
 (3.42) 

 
Equation (3.42) allows us to get a new direction matrix in terms of the previous matrix and 
the difference in x and the gradient. We then use this to get a new search direction according 
to (3.28). 

7.2.2. Example: Rank One Hessian Inverse Update 

We wish to minimize the function   2 2
1 1 2 22 4f x x x x  x  

starting from 0 03 8

1 14
f

    
     
   

x  

We let 0 1 0

0 1

 
  
 

N  so the search direction is 

 0 0 0f f    s N  

We normalize the search direction to be: 0 0.496

0.868

 
   

s  

We execute a line search in this direction (using, for example, a quadratic fit) and stop at 
 

 1 12.030 2.664

0.698 1.522
f

    
         

x  

 

Then 0 1 0 2.030 3.000 0.970
 

0.698 1.000 1.698

      
                

x x x  

 

 0 1 0 2.664 8.000 5.336
   

1.522 14.000 15.522
f f

      
                

γ  
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and 0 0 0 0.970 1 0 5.336 4.366

1.698 0 1 15.522 13.824

       
                   

x N γ  

 

 
  

 

 

 

T0 0 0 0 0 0

T0 0 0 0

4.366
4.366 13.824

13.824

5.336
4.366 13.824

15.522

Ta

 
       

      

x N γ x N γ
uu

x N γ γ
 

 

 

19.062 60.364

60.364 191.158

237.932

 
  


 

 

 
0.080 0.254

0.254 0.803

 
   

 

 
 1 0 Ta N N uu  
 

 1 1 0 0.080 0.254

0 1 0.254 0.803

   
       

N  

 

 1 0.920 0.254

0.254 0.197

 
  
 

N  

 
New search direction:  
 

 1 0.920 0.254 2.664

0.254 0.197 1.522

   
        

s  

 

 
2.837

0.975

 
  
 

 

 
When we step in this direction, using again a line search, we arrive at the optimum 
 

  2 20 0

0 0
f

   
     
   

x x  

 
At this point we are done. However, if we update the direction matrix one more time, we find 
it has become the inverse Hessian. 
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 1 2 1 0 2.030 2.030

0 0.698 0.698

     
               

x x x  

 

 1 2 1 0 2.664 2.664

0 1.524 1.524
f f

     
               

γ  

 

 

 1 1 1 2.030 0.920 0.254 2.664

0.698 0.254 0.197 1.524

2.030 2.838 0.808

0.698 0.977 0.279

     
        

     

     
            

x N γ

 

 
 

  
 

 

 

T1 1 1 1 1 1

T
T1 1 1 1

0.808
0.808 0.279

0.253 0.0880.279

2.664 0.088 0.030
0.808 0.279

1.524

a

 
                       

 

x N γ x N γ
uu

x N γ γ
 

 
                            

 12 1 T 0.920 0.254 0.253 0.088 0.667 0.166

0.254 0.197 0.088 0.030 0.166 0.167
a       

                
N N uu H  

 

7.2.3. The Hereditary Property 

The hereditary property is an important property of all update methods. The hereditary 
property states that not only will 1kN  satisfy (3.35) , but 
 

 

1

1 1 1

1 2 2

1 1 1

k k k

k k k

k k k

k k n k n



  

  

    

 

 

 

 

N γ x

N γ x

N γ x

N γ x

 (3.43) 

 
where n is the number of variables. That is, (3.35) is not only satisfied for the current step, but for 
the last n-1 steps. Why is this significant?  Let's write this relationship of (3.43) as follows: 
 

 1 1 2 1 1 2 1, ,  . . . , , , ,k k k k k n k k k k n                  N γ γ γ γ x x x x  

 
Let the matrix defined by the columns of  be denoted by G, and the matrix defined by 
columns of x be denoted by X . Then, 
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 1k  N G X  
 
If 1k k n γ γ are independent, and if we have n vectors, i.e. G is a square matrix, then the 
inverse for G exists and is unique and 
 
 1 1k  N XG  (3.44) 

 
is uniquely defined. 
 
Since the Hessian inverse satisfies (3.44) for a quadratic function, then we have the important 
result that, after n updates the direction matrix becomes the Hessian inverse for a quadratic 
function. This implies the quasi-Newton method will solve a quadratic in no more than n+1 
steps. The proof that our rank one update has the hereditary property is given in the next 
section. 

7.2.4. Proof of the Hereditary Property for the Rank One Update 

THEOREM.  Let H be a constant symmetric matrix and suppose that 0 1, , , k  x x x  and 
0 1,  , ,  kγ γ γ  are given vectors, where , 0,1,2, ,i i i k  γ H x  , where  k n . Starting 

with any initial symmetric matrix 0N , let  

 
  

 

T

1
T

k k k k k k

k k

k k k k


   

 
 

x N γ x N γ
N N

x N γ γ
 (3.45)   

then 
 1  fork i i i k   N γ x  (3.46) 
 
PROOF. The proof is by induction. We will show that if (3.46) holds for previous direction 
matrix, it holds for the current direction matrix. We know that at the current point, k, the 
following is true, 
 
 1k k k  N γ x   (3.47) 
 
because we enforced this condition when we developed the update.  Now, suppose it is true 
that, 
 
 for -1k i i i k  N γ x  (3.48) 
 
i.e. that the hereditary property holds for the previous direction matrix. We can post multiply 
(3.45) by iγ , giving, 

 
  

 

T

1
T

k k k k k k i

k i k i

k k k k


   

 
 

x N γ x N γ γ
N γ N γ

x N γ γ
 (3.49) 
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To simplify things, let 
 

 T

k k k

k

k k k k

 


 

x N γ
y

x N γ γ
 so that we can write (3.49) as, 

 

  T1k i k i k k k k i    N γ N γ y x N γ γ  (3.50) 

 
We can distribute the transpose on the last term, and distribute the post multiplication iγ  to 
give (Note: Recall that when you take the transpose inside a product, the order of the product 

is reversed; also because N is symmetric, T N N  thus:    T Tk k i k k iN γ γ γ N γ ), 

 

    T T1k i k i k k i k k i       
N γ N γ y x γ γ N γ  (3.51) 

 
Since we have assumed (3.48) is true, we can replace k iN γ  with ix : 
 

    T T1k i i k k i k i         
N γ x y x γ γ x  (3.52) 

 
Now we examine the term in brackets.  We note that, 
 

        T T T Tk i k i k i k i        γ x H x x x H x x γ  (3.53) 

 
So the term in brackets in (3.52) vanishes, giving, 
 
 1k i i for i k   N γ x   (3.54) 
 
Thus, if the hereditary property holds for the previous direction matrix, it holds for the 
current direction matrix.  When 0k  , condition (3.47) is all that is needed to have the 
hereditary property for the first update, 1N .  The second update, 2N , will then have the 
hereditary property since 1N  does, and so on. 
 

7.3. Conjugacy 

7.3.1. Definition 

Quasi-Newton methods are also methods of conjugate directions. A set of search directions, 
0 1, ,..., ks s s  are said to be conjugate with respect to a square, symmetric matrix, H, if, 

  

   0
Tk i s Hs  for all i k  (3.55) 
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A set of conjugate directions possesses an important property: If minimizing line searches 
are used along each conjugate direction, a method of conjugate directions is guaranteed to 
minimize a quadratic function of n variables in at most n steps. Himmelblau indicates the 
excellent convergence properties of quasi-Newton methods on general functions may be due 
more to their conjugate direction properties than to their ability to approximate the Hessian 
inverse.2 Because of the importance of conjugate directions, we will prove two results here. 
 
PROPOSITION.  If H is positive definite and the set of non-zero vectors 0 1 1, ,..., ns s s  are 
conjugate to H, then these vectors are linearly independent. 
 
PROOF. Suppose we have constants, i , 0, 2,..., 1i n   such that 
 
 0 0 1 1 1 1... ...k k n n          s s s s 0  (3.56) 
 

Now we multiply each term by  Tks H : 

  

        0 0 1 1 1 1

0 0 0

... ...
T T T Tk k k k k n k n

positive

     

  

     s Hs s Hs s Hs s Hs 0
   

 (3.57) 

 

From conjugacy, all of the terms except  Tk k k s Hs  are zero. Since H is positive definite, 

then the only way for this remaining term to be zero is for k  to be zero. In this way we can 
show that for (3.57) to be satisfied all the coefficients must be zero. This is the definition of 
linear independence. 

7.3.2. Conjugate Direction Theorem 

We will now show that a method of conjugate directions will solve a quadratic function in n 
steps, if minimizing steps are taken. 
 
THEOREM.  Let 0 1 1, ,..., ns s s  be a set of non-zero H conjugate vectors, with H a positive 
definite matrix. For the function,  

        T T1 1 1 11

2
k k k k k k k k kf f f         x x x x H x x  (3.58) 

the sequence, 
  1k k k k  x x s  (3.59) 
with, 

  
 
 

Tk k

k
Tk k

f



 

s

s Hs
 (3.60) 

 

   1 1k k k kf f     H x x  

                                                 
2 Himmelblau, Applied Nonlinear Programming, p. 112. 
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converges to the unique solution, *( )k kf  H x x , after n steps, that is *n x x . 
 
PROOF. Based on (3.59) above we note that, 
 
  1 0 0 0 x x s  
 
Likewise for 2x : 
 
  2 1 1 1 0 0 0 1 1      x x s x s s  
 
Or, in general 
 

   0 0 0 1 1 1 1...k k k        x x s s s  (3.61) 

 
After n steps, we can write the optimum (assuming the directions are independent, which we 
just showed) as, 
 

   * 0 0 0 1 1 1 1... ...k k n n           x x s s s s  (3.62) 

 

Multiplying both sides of (3.62) by  Tks H , we have, 

 

           * 0 0 0 1 1 1 1

0 0 0

... ...
T T T T Tk k k k k k n k n

positive

     

  

      s H x x s Hs s Hs s Hs s Hs
   

 

Solving for k : 

  
 

 

* 0( )
Tk

k
Tk k





s H x x

s Hs
 (3.63) 

 
Unfortunately (3.63) is in terms of x*, which we presumably don’t know. However, if we 

multiply (3.61) by  Tks H , we have, 

 

          0 0 0 1 1 1 1

0 0 0

...
T T T Tk k k k k k k    

  

    s H x x s Hs s Hs s Hs
  

 (3.64) 

 
which gives, 

    0( ) 0
Tk k  s H x x  (3.65) 

 
Substituting this result into (3.63), we have 
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 

 

*( )
Tk k

k
Tk k





s H x x

s Hs
 (3.66) 

 
Noting that *( )k kf  H x x is the solution to (3.58), we can solve for the k  as, 
 

 
 
 

Tk k

k
Tk k

f



 

s

s Hs
 

 
which is identical with (3.60). 
 
We notice that (3.60) is the same as the minimizing step we derived in Section 9.2. Thus the 
conjugate direction theorem relies on taking minimizing steps. 

7.3.3. Examples 

We stated earlier that quasi-Newton methods are also methods of conjugate directions. Thus 
for the example given in Section 7.3, we should have, 
 

  0 1 0
T

s Hs  

 
Substituting the search directions and Hessian of that problem, 
 

   2. 2. 2.837
0.496 0.868 0.0017

2. 8. 0.975

   
       

 

 
Within the round-off of the data, we see this is verified. 
 
In the previous problem we only had two search directions. Let’s look at a problem where we 
have three search directions so we have more conjugate relationships to examine. We will 
consider the problem,  Min 2 2 2

1 1 2 2 3 32 4 4 8 2f x x x x x x      . 

 

Starting from 0 0 0

2 6 0.172

3 28 0.802

3 20 0.573

f

     
              
          

x s  

 
We execute a line search in the direction of steepest descent (normalized as 0s  above), stop 
at *  and determine the new point and gradient. We calculate the new search direction using 
our rank 1 update, 
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  1 1 1

1.079 4.157 4.251

1.300 6.401 3.320

0.072 7.714 8.657

f

     
               
           

x s  

 
We go through this cycle again, 
 

 2 2 2

0.019 2.038 2.107

0.473 0.218 0.056

2.229 0.917 0.474

f

     
               
           

x s  

 
After stepping in the above direction we arrive at the optimum, 
 

 3 3

1.000 0.000

0.500 0.000

2.000 0.000

f

   
         
      

x  

 
Since we have used a method of conjugate directions, 2s should be conjugate to 1s and 0s . 
We will check this: 

  0 2T
s Hs  

2 0 0 2.107

0.172 0.802 0.573 0 8 0 0.056 0.0023

0 0 4 0.474

   
           
      

 

  1 2T
s Hs  

2 0 0 2.107

4.251 3.320 8.657 0 8 0 0.056 0.0127

0 0 4 0.474

   
         
      

 

 

7.3.4. Some Insight into Conjugacy 

As we did in section 4.3, we will define the “error” in the objective at the current value of x 
as, 

     T1
( ) * *

2
E   x x x H x x  

 
We can rewrite this expression as, 
 

    1
( ) * *

2
TE   α α α S HS α α  (3.67) 

 
Where S is a matrix with columns, 0 1 1, ,..., ns s s . If the s vectors are conjugate then (3.67) 
reduces to, 
 



 Chapter 3: Unconstrained Optimization 

 34 

 
1

2

0

1
( ) ( *)

2

n
i i

i

E d 




 α  

 

where   ( )Ti i id  s Hs . ( )E α  can then be minimized by choosing *i  , i.e., by making 

exact line searches. Quoting Fletcher,3 “Thus conjugacy implies a diagonalizing 
transformation TS HS of H to a new coordinate system, α , in which the variables are 
decoupled. A conjugate direction method is then the alternating variables method applied in 
this new coordinate system.” The “alternating variables” method referred to is just a method 
where the optimum is found with respect to one variable, holding the rest constant, and then 
a second variable, etc. Usually such a scheme would not work well. Conjugate directions are 
such that the i ’s are decoupled so it does work here. 
 
As we show in Section 9.3, another result of conjugacy is that at the k+1 step,  
 

 1 0 for all
Tk if i k  s  (3.68) 

 
Equation (3.68) indicates 1) that the current gradient is orthogonal to all the past search 
directions, and 2) at the current point we have zero slope with respect to all past search 
directions, i.e.,  
 

 0 for all
i

f
i k




 


 

 
meaning we have minimized the function in the “subspace” of the previous directions. As an 
example, for the three variable function of Section 7.5, 2f  should be orthogonal to 0s and 

1s : 

  2 0T
f s  

0.172

2.038 0.218 0.917 0.802 0.0007

0.573

 
    
  

 

  2 1T
f s  

4.251

2.038 0.218 0.917 3.320 0.0013

8.657

 
    
  

 

7.4. Rank 2 Updates 

7.4.1. The DFP Method 

Although the rank one update does have the hereditary property (and is a method of conjugate 
directions), it does not guarantee that at each stage the direction matrix, N, is positive definite.  
It is important that the update remain positive definite because this insures the search 

                                                 
3 R. Fletcher, Practical Methods of Optimization, Second Edition, 1987, pg. 26. 
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direction will always go downhill. It has been shown that (3.42) is the only rank one update 
which satisfies the quasi-Newton condition. For more flexibility, rank 2 updates have been 
proposed. These are of the form, 
 
 1 T Tk k a b   N N uu vv  (3.69) 
 
If we substitute this into the quasi-Newton condition, 
 
 1k k k  N γ x  (3.70) 
we have, 
 T Tk k k k ka b   N γ uu γ vv γ x  (3.71) 
 
There are a number of possible choices for u and v. One choice is to try, 
 
 ,k k k  u x v N γ  (3.72) 
 
Substituting (3.72) into (3.71), 
  

    T Tk k k k k k k k k k k

scalar scalar

a b     N γ x x γ N γ N γ γ x
 

 (3.73) 

 
In (3.73) we note that the dot products result in scalars. If we choose a and b such that, 
 

  T
1k ka  x γ  and  T

1k k kb  N γ γ  (3.74) 

 
Equation (3.71) becomes, 
 
 k k k k k k    N γ x N γ x  (3.75) 
 
and is satisfied. 
 
Combining (3.74), (3.72) and (3.69), the update is, 
 

 
 

 
 

 

T T

1
T T

k k k k k k

k k

k k k k k


 

  


x x N γ N γ
N N

x γ N γ γ
 (3.76) 

 
Or, with some rearranging, as it is more commonly given, 
 

 
 

 
 

 

T T

1
T T

k k k k k k

k k

k k k k k


 

  


x x N γ γ N
N N

x γ γ N γ
 (3.77) 
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Davidon4 was the first one to propose this update. Fletcher and Powell further developed his 
method;5 thus this method came to be known as the Davidon-Fletcher-Powell  (DFP) update. 
This update has the following properties, 
 

For quadratic functions: 
1. it has the hereditary property; after n updates, 1n N H . 
2. it is a method of conjugate directions and therefore terminates after at most n 

steps. 
 
For general functions (including quadratics): 

3. the direction matrix N remains positive definite if we do exact line searches. 
This guarantees the search direction points downhill at every step. This 
property is proved in the next section. 

 

7.4.2. Proof the DFP Update Stays Positive Definite 

THEOREM.  If   0
Tk x γ  for all steps of the algorithm, and if we start with any symmetric, 

positive definite matrix, 0N , then the DFP update preserves the positive definiteness of 
kN for all k. 

 
PROOF.  The proof is inductive. We will show that if kN is positive definite, k+1N is also. 
From the definition of positive definiteness, 
 
 T 1 0k z N z  for all 0z  
 
For simplicity we will drop the superscript k on the update terms. From (3.66), 
 

 
T T

T 1 T T T
T T

1

2 3

k k

term

term term

     
        

x x Nγγ N
z N z z N z z z z z

x γ γ Nγ
 

 (3.78) 

 
We need to show that all the terms on the right hand side are positive. We will focus for a 
moment on the first and third terms on the right hand side. Noting that N can be written as 

TN LL via Choleski decomposition, and if we substitute T T T, a L z a z L , 
T T T, b L γ b γ L the first and third terms are, 

 

 
 2TT

T T T
T T

 
   

 

a bNγγ N
z Nz z z a a

γ Nγ b b
 (3.79) 

 
The Cauchy-Schwarz inequality states that for any two vectors, x and y, 

                                                 
4 W. C. Davidon, USAEC Doc. ANL-5990 (rev.) Nov. 1959 
5 R. Fletcher and M. J. D. Powell, Computer J. 6: 163, 1963 
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 2T

T
T


x y

x x
y y

   thus  
 2T

T
T

0 
a b

a a
b b

 (3.80) 

 
So the first and third terms of (3.78) are positive. Now we need to show this for the second 
term, 
 

  
 2TT T T

T
T T T

    
     

z xx x z x x z
z z

x γ x γ x γ
 (3.81) 

 
The numerator of the right-most expression is obviously positive. The denominator can be 
written, 
 

        T T T TT 1 1

1 2

k k k k k k k k

term term

f f f f            x γ x x s s
 

 (3.82) 

The second term in (3.82),  Tk kfs , is negative if the search direction goes downhill which 

it does if kN is positive definite, and with the minus sign is therefore positive. The first term 

in (3.82),  T 1k kf s , can be positive or negative; however, it is zero if we are at *; thus 

the entire expression in (3.82) is positive if we take a minimizing step, *. 
 
We have now shown that all three terms of (3.78) are positive if we take a minimizing step. 
Thus, if kN  is positive definite, 1kN is positive definite, etc. 
 

7.4.3. DFP Update: Closing Remarks 

The DFP update was popular for many years.  As mentioned, we need to take a minimizing 
step to insure N stays positive definite.  Recall that we find * using a parabolic fit; on non-
quadratics there is usually some error here.  We can reduce the error by refitting the parabola 
several times as we obtain more points in the region of *.  However, this requires more 
function evaluations.  The DFP method is more sensitive to errors in * than the BFGS 
update, described in the next section, and can degrade if * is not accurate. 

7.5. The Broyden Fletcher Goldfarb Shanno (BFGS) Update 

The current "best" update is known as the Broyden, Fletcher, Goldfarb, Shanno or “BFGS” 
update, suggested by all four authors independently in 1970.  It is also a rank 2 update. It has 
the same properties as the DFP update but is less sensitive to errors in *.  This means we can 
be “sloppy” in our line search when we are far away from the optimum and the method still 
works well.  This update is, 
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 
 

 
 

   
 

T T T T

1
T T T1

k k k k k k k k k k k

k k

k k k k k k


           
      

γ N γ x x x γ N N γ x
N N

x γ x γ x γ
 (3.83) 

 
This update is currently considered to be the best update for use in optimization. It is the 
update inside OptdesX, Excel and many other optimization packages. 

7.6. Comments About Quasi-Newton Methods 

The quasi-Newton methods explained here combine the advantages of steepest descent and 
Newton’s method without the disadvantages. They start out as steepest descent, which works 
well far from the optimum, and gradually become Newton’s method, which works well near 
the optimum. They do this without requiring the evaluation of second derivatives. By 
insuring the update is positive definite, the search direction will always go downhill. 
 
Note that these methods use information the previous methods “threw away.” Quasi-Newton 
methods use differences in gradients and differences in x to estimate second derivatives 
according to (3.34). This allows information from previous steps to correct (or update) the 
current step. 
 
As mentioned, quasi-Newton methods are also methods of conjugate directions. This is 
shown in Section 9.4. 

7.7. Hessian Updates Vs. Hessian Inverse Updates 

All of the updates we have presented so far are updates for the Hessian Inverse.  We can 
easily develop updates for the Hessian itself, as will be required for the SQP algorithm, 
starting from the condition 
 
 k k k γ H x   (3.84) 
 

instead of  1 k k k  H γ x  which we used before.  The BFGS Hessian approximation 

(Equation (3.83) is the Hessian inverse approximation) is given by, 
 

 
 

 
 

 

T T

1
T T

k k k k k k

k k

k k k k k


 

  
  

γ γ H x x H
H H

γ x x H x
 (3.85) 

 
You will note that this looks a lot like the DFP Hessian inverse update but with H 
interchanged with N and  interchanged with x.  In fact these two formulas are said to be 
complementary to each other.   
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8. The Conjugate Gradient Method 

8.1. Definition 

There is one more method we will learn, called the conjugate gradient method. We will 
present the results for this method primarily because it is an algorithm used in Microsoft 
Excel. 
 
The conjugate gradient method is built upon steepest descent, except a correction factor is 
added to the search direction. The correction makes this method a method of conjugate 
directions. For the conjugate direction method, the search direction is given by, 
 
 1 1–k kf    s sk k  (3.86) 
 
Where  k , a scalar, is given by 
 

 
 
 

1 1k k

k

k k

f f

f f


  


 

T

T  (3.87) 

 

8.2. Example: Conjuage Gradient Method 

We will optimize our usual function, 2 2
1 1 2 22 4f x x x x    

 

starting from 0 03 8

1 14
f

    
     
   

x  

 
We take a minimizing step in the negative gradient direction and stop at  
 

 1 12.03 2.664

0.7 1.522
f

    
         

x  

 
Now we calculate  0  as 
 

 
 
 

 

 

1 1

0

0 0

2.664
2.664 1.522

1.522 9.413
0.0362

8 260
8 14

14

f f

f f


 
         

     
 

T

T  

 
We calculate the new search direction as, 
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 1 1 0 2.664 8 2.954
0.0362

1.522 14 1.015
f 

     
                 

s s  

 

when we step in this direction, we arrive at the optimum, 2 20 0

0 0
f

   
     
   

x  

The main advantage of the conjugate gradient method, as compared to quasi-Newton 
methods, is computation and storage. The conjugate gradient method only requires that we 
store the last search direction and last gradient, instead of a full matrix. Thus this method is a 
good one to use for large problems (say with 500 variables).  
 
Although both conjugate gradient and quasi-Newton methods will optimize quadratic 
functions in n steps, on real problems quasi-Newton methods are better. Further, small errors 
can build up in the conjugate gradient method so some researchers recommend restarting the 
algorithm periodically (such as every n steps) to be steepest descent. 

9. Appendix 

9.1. The Gradient of a Quadratic Function in Vector Form 

We define the coordinate vector to be, 
 

 

0

1 A single 1 in the position

0

th
i i

 
 
 
  
 
 
  

e





 (3.88) 

 
We note that i ix  e  so 

 

 
 
 

T
1 2

1 2

,   , ,  

,   , ,  

n

n

x x x    

 

x

e e e I




 (3.89) 

 
Suppose we have a linear function: 
 
   Tf a x b x  

 

then       T T

1
2

 
term

term

f a a     x b x b x


 

For the first term, since a is a constant, 0a  . Looking at the second term, from the rule for 
differentiation of a product, 
 

     T T T    b x b x x b  
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but T T Tand   b 0 x I  
 

Thus     Tf a  x b x   

     T T0    b x x b    

  0 0   Ib    
   b   (3.90) 
 
Now suppose we have a quadratic function of the form: 

 

  T T1

2
q a  x b x x Hx  (3.91) 

 
We wish to evaluate the gradient in vector form. We will do this term by term, 
  

     T T1

2
q a    x b x x Hx  

 
Applying the results from a linear function, 
 

 
     

 

T T

T

1

2
1

0
2

q a    

   

x b x x Hx

b x Hx

 

So we only need to evaluate the term,  T1

2
 x Hx .  If we split this into two vectors, i.e. 

,   u x v Hx , then  
 

     T T T    x Hx x v v x  

 

We know  T  x v IHx Hx , so we must only evaluate     TT  v x Hx x . We can 

write, 

  T T T T
1 2 = [  ,  , , ]r r rnHx h x h x h x  

 
where T

1rh  represents the first row of H, T
2rh represents the second row, and so forth.  

Applying the gradient operator, 
 

        T T T T
1 2 ,  , , r r rn

      Hx h x h x h x 

From the previous result for Tb x , we know that T
ri ri h x h  since rih  is a vector constant.  

Therefore, 
 



 Chapter 3: Unconstrained Optimization 

 42 

 
   T

1 2

T

,   , ,  r r rn 



Hx h h h

H


 

Returning now to the gradient of the expression,   T T1

2
q a  x b x x Hx   

    T T1

2
q a

      
 

x b x x Hx  

     TT1
0

2
    b x H Hx x   

  T1

2
  b H H x    

  b Hx   (3.92) 
 

If the quadratic we are approximating is a Taylor expansion, 
  

    T T1 1

2
k k k k k k kf f f       x x H x  

 
Then (3.92) is: 
 
 1k k k kf f    H x  (3.93)   
  

9.2. Optimal Step Length for Quadratic Function 

In this section we will derive (3.12). If we start with a Taylor expansion, 
 

    T T1 1

2
k k k k k kf f f       x x H x  (3.94) 

 
When we do a line search, 
 

k  x s  (3.95)  
 

Substituting (3.95) into (3.94) gives 
 

    T T1 1

2
k k kf f f       s s H s  

 
If we take the derivative of this expression with respect to  (a scalar), 
 

  
1

T T
k

kdf
f

d






  s s Hs  (3.96) 

 
Setting the derivative equal to zero and solving for  gives: 
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 T

*
k

T

f



 

s

s Hs
 (3.97) 

 

9.3. Proof that a Method of Conjugate Directions Minimizes the Current 
Subspace 

THEOREM.  A conjugate direction method is such that each 1kx  is the minimizer in the 
subspace generated by 0x  and the directions, 0 1, ,..., ks s s , i.e. 

1 0 0,1,...,k i i i k   x x s . 

 
We wish to show that, 
 

 1 0 for all 
Tk if i k  s  (3.98) 

 
which indicates that we have zero slope along any search direction in the subspace generated 
by 0x and the search directions 0 1, ,..., ks s s , i.e.,  
 

 0 for all
i

f
i k




 


 

 
PROOF.  The proof by induction. Given the usual expression for the gradient of a Taylor 
expansion, 
 
 1k k kf f    H x   
 
Which we will write as, 
 
 1k k kf f     Hs  (3.99) 
 
If we multiply both sides by ks  
 

      1 0
T T Tk k k k k kf f     s s s Hs  

 
By definition of k this is true for i=k. For i<k, 
 

      1

1 2

T T Ti k i k i k

term term

f f    s s s Hs
 

 

 
Term 1 vanishes by the induction hypothesis, while term 2 vanishes from the definition of 
conjugate directions. 
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9.4. Proof that an Update with the Hereditary Property is Also a Method of 
Conjugate Directions 

THEOREM.  An update with the hereditary property and exact line searches is a method of 
conjugate directions and therefore terminates after m n iterations on a quadratic function. 
 
We assume that the hereditary property holds for 1,2,...,k m  
 

1 for allk i i i k   N γ x  (3.100) 
 

We need to show that conjugacy holds as well, 
 

 k 0 for all 1
T i i k  s Hs  (3.101) 

 
The proof is by induction. We will show that if ks is conjugate then 1ks  is as well, i.e.,  
 

  k+1 0 for all
T i i k s Hs  (3.102) 

 
We note that 
  
 1 1 1k k kf    s N  (3.103) 
 
by definition of the quasi-Newton method. Or taking the transpose, 
 

    1 1 1T Tk k kf    s N  (3.104) 

 
Substituting (3.104) into (3.102); 
 

    k+1 1 1 for all
T Ti k k if i k    s Hs N Hs  (3.105) 

 
Also, 

 
i i

i
i i 


 
H x γ

Hs  

 
so (3.105) becomes, 
 

    1 1

k+1 for all

Tk k i
T i

i

f
i k



 
  

N γ
s Hs  (3.106) 

 
From the hereditary property we have 1k i i i k   N γ x , so (3.106) can be written, 
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    1

k+1 0 for all

Tk i
T i

i

f
i k



  
    
 
 

x
s Hs  

 
The term in brackets is zero for all values of 1,2,..., 1i k   from the assumption the 
previous search direction was conjugate which implies (3.98). It is zero for i k  from the 
definition of * . Thus if we have conjugate directions at k, and the hereditary property 
holds, we have conjugate directions at k+1. 
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