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Introduction 

 

Vehicle automation and optimization is a rapidly growing and increasingly important research 

field. Rising fuel costs and environmental concerns have directed much of that research towards 

reducing emissions and fuel consumption. This project focuses on studying the fuel consumption 

of a light vehicle over a set two-dimensional distance with randomized stop signs placed along 

the route. The optimal solution will minimize both the vehicle fuel consumption and total time 

required to make the trip. The solution will be compared to a base case where the vehicle 

accelerates rapidly to the speed limit and minimizes only travel time.  

 

Literature Review 

 

Much of our project mirrors work done by Tu Luu et al.[1], but our methods of model creation 

and some optimization objectives differ. The paper uses principles of machine learning to 

process the vehicle information when creating the digital vehicle model. We chose to first model 

our process with semi-empirical methods, taking data first then fitting equations to that data by 

varying parameters within those equations. Our model also used varying parameters with 

changing velocity to account for gear shift rather than utilizing vehicle specific gear ratios as was 

done by Guang and Jin[2]. We found that by changing parameters with set speed ranges, or 

adjusting for the vehicle gear as a function of velocity, allowed us to more accurately model the 

vehicle performance as shown by the data collected. After attempting to implement MHE and 

MPC, however, we found that this initial model was lacking in appropriate model dynamics such 

as the gears and vehicle inertia, so we had to alter which drive-cycle we used and apply a more 

involved approach as was done by our group member Vivian in prior work experience [3]. 

 

[1] Tu Luu, H., Nouvelière, L., & Mammar, S. (2010). Dynamic programming for fuel 

consumption optimization on light vehicle doi://doi.org/10.3182/20100712-3-DE-2013.00097 

[2] Guang, H., & Jin, H. (2019). Fuel consumption model optimization based on    transient 

correction doi://doi.org/10.1016/j.energy.2018.12.067 

[3] Cyber physical modeling of Automotive Control Systems For Engine, Driveline, and Vehicle 

by Uwe Kiencke and Lars Nielsen 

 

 

 

Model Description 

 



Our model was based off the following equations: 

 

𝑚𝑎 = 𝐹𝐸 − 𝐹𝐷 − 𝐹𝐵 − 𝑚𝑔 𝑠𝑖𝑛(𝜃)    (1) 

𝐹𝐷 = 𝐶𝑑 𝑣2                                      (2) 

𝐹𝐸  = 𝑘1𝐺 + 𝑘2/(𝐺 + 1)  +  𝑘3𝐺0.5  (3) 

 

For this simulation, our manipulated variables are the vehicle fuel consumption rate (𝐺) and the 

braking force (𝐹𝐵). The braking force was not required to create the digital twin, but will be 

taken into account when simulating and optimizing the vehicle performance over different 

courses. The constants 𝑘𝑖in Equation 3, the vehicle mass 𝑚 in Equation 1, and the drag 

coefficient 𝐶𝑑 were determined by fitting the data to the model. We found that the constants 

changed depending on the velocity that the vehicle was operating at and will be implemented in 

our model with a method similar to gain scheduling. These values are shown in Table 1 below. 

 

Table 1 

Velocity Range (m/s) Parameter  Value 

 

 

 

 

0 - 14  

𝑚 8.314149 

𝐶𝑑 0.086232 

𝑘1 0.0 

𝑘2 17.94961 

𝑘3 6.852568 

 

 

 

 

14-40 

𝑚 109.4097 

𝐶𝑑 0.241189 

𝑘1 2.651655 

𝑘2 0.0 

𝑘3 8.594629 

 𝑚 64.2855 



 

 

 

40 + 

𝐶𝑑 0.04953 

𝑘1 0.72726 

𝑘2 38.7965 

𝑘3 0.0 

 

Using these values, we were able to fit the following curves to our data: 

 

 
Figure 1 

 

 

 

 
Figure 2 



 
Figure 3 - Model fit to data 

 

Taking these parameters, we were able to produce the following simulated response to a 

hypothetical system with stops added in. We noticed, however, that the modeled approach 

resulted in always driving at the maximum velocity and approaching that velocity at the 



maximum allowable acceleration, which we did not find would lead to an optimal solution as 

seen in Figure 4. 

 

 

 

 

Figure 4 - Results for horizon control 

 

This solution was due to our incorrect parameters derived from few datasets and missing a term 

for the forces on the car. The parameters determined were from a single drive cycle. However, 

when tested on other drive cycle data that was collected, the fit was bad and no parameters or 

velocity windows could be found to improve the fit. Furthermore, the data gathering method was 

flawed in that exact data could not be obtained since these measurements were made by taking 

data points from a rotating dial indicator. This led to bad readings when the car switched from 

decelerating/maintaining velocity to acceleration since the dial’s fuel consumption reading is 



delayed which led to the model have low fuel consumption with high acceleration. The rolling 

resistance and gear ratio of a car had also been ignored since it was assumed these terms may 

merge with the drag coefficient and be accounted for with the inclusion of the velocity windows 

for different parameters. Due to the delayed fuel consumption meter and difficulty in 

determining velocity windows for the current vehicle and data, it was concluded a model based 

on a more valid source (industrial data) would be used. The model equations were modified to 

account for gear change and rolling resistance as shown in Eqns. 4 

 
Figure 3 shows the model of the vehicle running on a driving cycle with a proportional integral 

controller. As seen in the figure, the gear can change more than one level in the model so to fix 

this, the vehicles inertia will be taken into account and if the model becomes too convoluted, a 

time delay on gear changing will be added. Furthermore, the pedal position will be related to fuel 

consumption with empirical data. This model will be implemented into the horizon control with 

objectives minimize final time and minimize overall fuel consumption. This will similarly be 

done with model predictive control. 



Figure 5 - Model of a motorcycle with proportional integral control 

 

Preliminary results from the new model are promising. We will continue to work on developing 

a good relationship between engine speed and fuel consumption, but in the meantime we 

integrated the more recent model equations with our optimizer. For the optimization calculations, 

we assumed a linear relationship between the accelerator (pedal) and the fuel consumption. 

Figures 6 and 7 show two results predicted by the optimization code.  

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6 - Preliminary 

results of updated model being run with no speed limit. 

Figure 7 - Preliminary results of updated model being run with a 25 m/s speed limit 



 

These results are promising because we see that the ‘optimal’ solution is no longer to accelerate 

as quickly as possible. Along with those mentioned above, notable changes to our model in this 

version include the addition of a gear box, an accelerator pedal, and a brake pedal. 

 

Parameter Estimation and Discussion 

 

To tune our controller, we first needed to have a method of estimating model parameters based 

on system data. We decided to implement Moving Horizon Estimation (MHE) into our model 

over a ten second horizon. The moving parameters we are estimating are the gear the vehicle is 

in based on velocity and fuel consumption performance, the gear efficiency, and a factor to 

account for the braking resistance if velocity is less than 0.1.  

 

First Attempts 

 

We first attempted to implement model the vehicle as it was with all its gears switching, brake 

logic and other defining equations. This led to a model predictive controller with over 200 

degrees of freedom since there were many integer choices that went into the developing gear 

logic, velocity logic and brake logic. 

 

We then attempted to implement the MHE with a simplified system assuming a first order 

process. Due to complications with the solver and non-convergence issues, we were not able to 

successfully compile a solution, but we suspect that the issue came from inconsistencies in how 

our model “creating” the data treated engine resistance when the accelerator pedal was not being 

pressed and the MHE system lacking relationships to account for this resistance. We decided it 

would be more valuable to go straight into implementing the MHE with our full system.  

 

Successful Solution 

 

Figure 8 shows our successful solution for estimating the moving parameters over the horizon. 

Notice how closely our model fits the data over the entire time span. There are some instances 

where the model proves physically incorrect, such as when the velocity goes negative when 

approaching a zero velocity. The data shows the vehicle stopping at these points, but our 

estimator gave parameters leading to the vehicle moving backwards, which would not physically 

happen unless the vehicle were put in reverse. This is assumed to be insignificant and will be 

modified with the controller to just make it a zero velocity if it would otherwise be negative. This 

negative velocity is likely due to the brake fudge factor which is meant to be 1 when the velocity 

is greater than 0.1 and 0 when the opposite is true. This switch is meant to stop the braking from 

turning into a reverse gear. This factor also takes care of engine braking that the simulation 

includes as well as engine box and vehicle inertia effects on the gears. Since these would either 



introduce mixed integers or a state space problem, we decided we would hold off to add these 

features and decide whether the effects were significant enough to add in (or when we would 

have time). 

 

The model has been modified to limit the MHE solver to only select parameters that would yield 

velocities greater than zero. An issue with this MHE is the parameters vary a lot with the noise as 

seen in Figure 2. This is a difficult issue to resolve since the WMODEL should not be increased 

and DMAX limited too much since the parameters are meant to change when the velocity of the 

car changes. These variations appear to be the cause of an incorrect calculation of the engine 

speed. The parameter for gear does not ever change from 0 and so the engine speed is always 

read at 1000 when it should vary up to 9000. We are not sure how to force the controller to do 

so, but one possibly is start adding some mixed integer choices where it is a certain gear for 

specified velocities. This would increase the complexity of the MHE with 15 mixed integers and 

likely would make this estimator obsolete as it would take more than 0.1 seconds to solve.  

 

Figure 8 - Model performance data with estimated gear parameters vs noiseless data 
 



Figure 9 - Model performance data with estimated gear parameters vs noisy data (±1 with 

occasional ±2.5) 
 

 

 

Control and Optimization Results and Discussion 

 

Using an improved MHE model by estimating velocity with a first order process with dead time, 

the model was able to better predict velocity, engine speed, engine torque and fuel consumption 

rate as seen with Figure 10. The engine gears, integer values, were approximated by a cubic 

spline function of velocity. The engine speed and torque were already cubic splines and engine 

torque had a sign function to decide between the engine torque or brake torque. The fuel flow 

was approximated by a basic spline as a function of torque and engine speed. 

 



 
Figure 10 - FOPDT model of car velocity 

 

This model was then input into a MPC to reach certain distances and stop with a constant speed 

limit. At first, the goal was to minimize final time every 100 meters, but this resulted in too many 

degrees of freedom and failed a lot. The MPC was then configured to minimize the distance 

between itself and the goal as well as take in consideration the fuel consumption. Since this did 

not lend itself well to new goal inputs, the final model has the position as a controlled variable 

that aims to reach the goal with an objective function minimizing the integral of the fuel usage. 

Once it passes the goal and has a velocity below 0.1 m/s, a new set point is given and the process 

repeats. There is a very high weight for exceeding the setpoint high since the goals are treated as 

stop signs. Also, in the case of MPC failure, the model would lightly step on the brakes and stop 

accelerating. This model unfortunately is very unstable and depends heavily on the weight values 

assigned to being below or above the set point and how much it wants to save fuel. As seen with 

Figure 11, it is possible that the weight set point must change depending on the goal it needs to 

reach since it reaches the first and second set point, but it does not attempt to reach the third set 

point. Also, this model predictive controller is currently not viable since to simulate 15 seconds 

takes around 30 minutes. Due to this long run time, it was difficult to get significant results for 

how much fuel the MPC saves. Figure 11 shows the model traveling to 10 meters and stopping 

then travels to 50 meters and stops and then fails to proceed to 100 meters. This example was 

tested without the fuel minimizer. 



 
Figure 11 - MPC of a vehicle without fuel minimization 

 

The MPC fails quite a bit and creates some disturbances when the accelerator suddenly goes to 

zero and braking begins. Also the MHE makes some serious errors at times as well. This is 

possibly due to erroneous guess values and the lack of tuning performed on these parameters so 

far. We do not understand why the controller does not attempt to accelerate to meet the last set 

point since the only objective in this model is from the set points. It may be due to the MHE 

giving bad values that would indicate no acceleration would occur if the acceleration pedal were 

pressed. There are other tests where the model completely ignores the set point high and cruises 

through the stop sign and does not brake as seen in Figure 12. Again this depends on the weights 

assigned to the SPHI, SPLO or objective function, but it may be due to the fuel objective 

function overrides the control variable objectives and thus the vehicles does not brake or the 

MPC keeps failing and sends it a low braking value. The latter is the case for Figure 12. There 

was one trial that worked well with the fuel optimizer as seen in Figure 13. Unfortunately, due to 

the short distance it travels, it is difficult to notice a large difference in fuel consumption. 

However, compared to the non fuel optimizing MPC, the acceleration and braking periods seems 

to be longer. None use less that 100% of the allowed usage though. Strangely, the fuel optimizer 

brakes at times when attempting to accelerate to a higher velocity. In all, this MPC has a lot of 

work to be done. First, it must be determined how to reliably solve the MPC and have it attempt 

to reach the next set point. This has many points of investigation such as the MHE values, 

possibly changing weights, and also considering using a different objective method such as a 

objective function.  



 
Figure 12 - Fuel optimizer MPC malfunctioning 

 

Another point would be to make the drive more realistic such as adding a DMAX high to the 

variables to prevent from moving from 100 to 0 back up to 100 and also adding changing speed 

limits or road grade. This would need to be done after the MPC works reliably.  

 

 
Figure 13 - MPC of a vehicle with fuel optimization 

 

 

 

 

Conclusions 



 

Using our final model, we were able to minimize both fuel consumption and travel time over a 

predetermined course. Even this model, however, did have some limitations, namely that it 

would become unstable if the simulation time was increased to allow for further future 

prediction. In the future, we could determine an optimal horizon to look back to as well to get 

even better parameter for our vehicle model.  

 

 


