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1

Abstract

We simulate and optimize an aquaponics system by integrating three separate models found
within the literature, namely a model of lettuce growth in a hydroponics system, of bacteria
population dynamics, and of fish dynamics.

We first perform sensitivity and control experiments on the lettuce model, which essen-
tially is the control of a hydroponics system. We found that as long as these parameters
are not extreme, plant growth is fairly insensitive to chosen values. Thus we can fix both
at nominal values and perform reasonable analyses. We did find, however, that nitrogen
uptake was somewhat more sensitive to these values. We also, given fixed temperature and
solar radiation levels, use dynamic optimization to choose the optimal fertilizer application
rate that maximizes plant growth while minimizing the amount of fertilizer used. With
these results, we were able to show that adding all fertilizer at the beginning of the growing
horizon, which is a common practice, is nearly-equally optimal.

We then discuss the bacteria and the fish models and how to connect the three together
to form a model of a complete aquaponics system. Utilizing previous results, we set tem-
perature and solar radiation to nominal levels and sought to find–given a fixed fish tank
size and a fixed planting schedule cycling between three growing beds–the optimal number
of plants per growing bed and fish to stock in the tank. We found that 60 plants and 10
fish in the tank produced the best results.

1.1 Literature Review

For this project, we do not work with a physical system. Instead, we be combine existing
models in the literature in order to build a computer simulation of an aquaponics system.

In order to model an aquaponics paper, we need a model of the key subcomponents of
the overall system, namely a model of the growth of lettuce in a hydroponics system [1],
the growth of fish in an aquaculture system [2], and the growth of bacteria which converts
the nitrogen between these two systems [3]. We pulled the key papers (i.e. most cited)
on each of these models with the criteria that each must include nitrogen dynamics as a
part of the model, as the nitrogen dynamics are what connects the three together. To the
authors’ knowledge, no prior work has been done on combining these three models.

1



2 Chapter 1. Abstract

1.2 Project Overview
Chapter 2 contains a brief introduction into aquaponics. We begin our analysis in Chapter
3 by analyzing the lettuce model independently of the other two, as the lettuce model has
complexities which make optimization difficult. We validate our simulation and approxi-
mations with the data from the original paper, and then we run experiments to determine
optimal temperature, solar radiation, and nitrogen application levels to use in order to
maximize lettuce growth. Due to difficulties in simulating and optimizing a full aquaponics
system, our estimation and dynamic optimization results exist solely within this chapter
dealing with the simpler hydroponics model.

We then explore how to model the full aquaponics system with the objective to set two
fixed variables to maximize yield and minimize fish mortality. In Chapter 4, we discuss how
to extend the lettuce model to describe a farm growing many heads of lettuce spread across
multiple growing beds with staggered planting and harvest dates. In Chapter 5, we establish
the bacteria growth dynamics. In Chapter 6, we establish the fish growth dynamics. In
Chapter 7, we explain how to connect the lettuce farm, bacteria, and fish models together
into a comprehensive system. And finally, in Chapter 8, we provide recommendations on the
optimal number of fish to stock and plants per growing bed to plant in order to maximize
various economic objectives.
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Introduction

Aquaponics, simply defined, is a farming approach that combines aquaculture (raising fish
in a closed environment) and hydroponics (cultivating plants in water).

In aquaculture systems, waste product removal is the main obstacle. Fish are often
stocked in high densities, which leads to an inadequate oxygen supply and the buildup of
ammonia, a nitrogen compound that is highly toxic to fish, especially when oxygen levels
are low. The opposite problem is found in hydroponics, where nitrogen is the limiting
factor of plant growth and must be continuously added to the system. In aquaponics, the
excess nitrogen produced by the fish is absorbed by the plants’ roots. In this symbiotic
relationship, the plants receive necessary nutrients, and the fish are provided with clean
water.

2.1 Advantages of Aquaponics
The following are strong advantages of using an aquaponics system as an alternative source
of food:

• Efficient Use of Water: According to estimates by the United States Department of
Agriculture, over 80 percent of the nation’s consumed water is used by agriculture [4].
For a given amount of food, Aquaponics requires 90% less water to produce that food
than traditional agricultural methods [5]. This, at first, may seem counter-intuitive
as aquaponics is based entirely around water systems. However, in traditional agri-
culture, water is lost through runoff, evaporation, and drainage through the soil,
whereas in aquaponics, the water is contained in a closed system and is only lost
through evaporation.

• Low Pollution: Unlike traditional agriculture, aquaponics does not produce nutrient
runoff [6]. Also, aquaponics systems do not suffer from weed outbreaks or soil-borne
pests, so herbicides and pesticides are not used.

• Local Food Source: Unused urban areas can become productive spaces that provide
food to local communities [7]. In the agricultural model, food often travels thousands
of miles to its destination [8, 9], whereas aquaponics could put an abundant source of
meat (fish) and produce in every neighborhood [6].

3



4 Chapter 2. Introduction

• Low Energy Use: Traditional agriculture requires large amounts of fuel to produce,
store, and transport food [10]. In aquaponics systems where natural heat and sunlight
are available, power for water pumps is the only energy requirement. Furthermore,
since aquaponics are often sold in local and urban markets, less energy is required to
transport the food to its final market.

• Organic Production: Under some state laws, since aquaponics does not require
artificial fertilizer or pesticides, food grown in aquaponics systems can be sold under
an organic label, allowing farmers to sell their produce at a premium.

2.2 Disadvantages of Aquaponics
Aquaponics boasts many benefits, but there are also some disadvantages. The most sig-
nificant is that as a man-made system, aquaponics does not contain the buffers between
components that are present in natural ecosystems. Technical failures in the energy supply
can easily break the equilibrium of an aquaponics system.

2.3 Control in an Aquaponics System

Not only can aquaponics benefit from simulation and control (which can help resolve the
aforementioned robustness issues), it is an environment that is well suited for automatic
control. The reason is that it can be easily measured, at least compared to traditional
agricultural methods.

In traditional agriculture, in order to measure the water, oxygen, nitrogen, etc. available
to the plants, a soil sample must be taken, sent to a laboratory, and evaluated. This is both
a time- and resource-intensive process that makes it infeasible to use such measurements in
the control of a farm.

For hydroponics and aquaponics systems, however, these measurements can be taken
relatively cheaply and in real time by putting a probe in the water to measure the chemical
levels. Thus real-time control decisions can be implemented using real-time measurements
in order to stabilize, robustify, and optimize the benefits of an aquaponics system.
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The Lettuce Submodel

We begin with a hydroponics model, which contains only a model of growing a single head
of lettuce in a water medium with nitrogen added to the water as fertilizer. This model
will be connected in feedback to a simple nitrogen pool model that manages the amount of
nitrogen in the water, which will be replaced later with the bacteria submodel.

3.1 The Complete Lettuce Model

The model of single head of lettuce growing in a nutrient solution (i.e. in water with
nitrogen and other nutrients as used in aquaponics and hydroponics) is contained in [1]. It
should be noted that the original model was designed for a head of lettuce growing in a soil
medium. We do need to make the following assumptions:

• Dissolved oxygen and other macro-nutrients in the water are not a limiting factor for
growth

• The lettuce is supported by a growing medium that does not limit root growth, nor
allow more than soil would

The parameters of the model in [1] have been tuned to fit actual data. As we are not
using a physical system, we will not perform our own estimation; instead, we will validate
our model against the results contained in the original paper. State variables, manipulated
variables, intermediates, and parameters for this model are defined in Tables 3.1, 3.2, 3.3,
and 3.4 respectively.

The state variable in the lettuce sub-model that we care about is the dry weight w of
the lettuce. The model splits w into a structural pool wS and a non-structural pool wG,
with

w = wS + wG. (3.1)

The equations governing dry matter accumulation in the structural and non-structural

5



6 Chapter 3. The Lettuce Submodel

pools are given by:
dwG
dt

= µmax
wS

wS + wG
c

(T−20)/10
q10,µ wG, (3.2)

dwS
dt

= θPG −
1
YG

dWG

dt
. (3.3)

Nitrogen uptake is governed by the dynamics
dNup

dt
= Jmax

cN

cN +K
, (3.4)

where Jmax limits nitrogen uptake as a function of age (shoot size), governed by the equation

Jmax = Jmax,0e
−αw. (3.5)

The gross canopy photosynthesis rate is given by

PG = A
(
1− e−kLAI

)
f(Nup)

ξI(σCCO2 − β)
ξI + σCCO2

. (3.6)

The total leaf area, plant area, and leaf area index are given by

LA = −0.0025w2 + 0.072w, (3.7)

A =
{

0.02w w ≤ 2.4
0.0484 w > 2.4 , (3.8)

LAI = LA/A. (3.9)

Finally, f(Nup) is given by

f(Nup) =


0 (Nup/w) < 0.02

100
3

(
Nup

w − 0.02
)

0.02 ≤ (Nup/w) ≤ 0.05
1 (Nup/w) > 0.05

. (3.10)

In addition to the dynamics given in [1], we wish to also include a simple nitrogen pool
model. To do this, we introduce another manipulated variable, Nadd, which allows us to add
nitrogen into the nutrient pool. The nitrogen concentration is then given by the balance
equation

dcN

dt
= dNadd

dt
− dNup

dt
. (3.11)

Note, we can run the plant model with or without the nitrogen pool dynamics. If these
dynamics are turned off, cN is treated as a manipulated variable set by the user across all
time, usually at a constant value.

3.2 An Approximate Lettuce Model
The model, as given, contains many complexities that make simulation and control difficult
with APMonitor through Gekko. Furthermore, the LA equations are not sensible for all
regions of interest. As such, we relax some of the equations to approximate the behavior
in the paper.
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Variable Initial Units Description
w 1 g Total lettuce dry matter
wG 1/3 g Non-structural dry matter
wS 2/3 g Structural dry matter
cN 0 mmol Nitrogen concentration in the nutrient solution
Nup 0 mmol Cumulative nitrogen in the shoot (nitrogen uptake)

Table 3.1 State Variables for the Lettuce submodel with their default initial values, units,
and descriptions.

Variable Initial Units Description
T 25 deg C Temperature
I 5× 106 J/m2/day Solar radiation

Nadd 0 mmol / day Nitrogen added through fertilizer

Table 3.2 Manipulated Variables for the Lettuce submodel with their default initial values,
units, and descriptions.

Variable Units Description
Jmax mmol/day/g DM Limit to nitrogen uptake as a function of dry matter

weight
PG g(CO2)/day Gross canopy photosynthesis rate
A m2 Ground cover area per plant
LA m2 Leaf area
LAI - Leaf area index
f(Nup) - Coefficient in [0, 1] controlled by nitrogen concentration

in the shoot

Table 3.3 Intermediate equations for the Lettuce submodel with their units, and descrip-
tions.

Parameter Value Units Description
θ 0.68 - Factor to convert CO2 to dry matter

cq10,µ 1.6 - The Q10 factor for growth
k 0.9 -
ξ 14× 10−6 g(CO2)/J Leaf light use efficiency
β 0.36/24 g(CO2)/m2/day CO2 compensation point to account for

photorespiration
σ 7.2/24 m/day Leaf conductance to CO2 diffusion
YG 0.08 - Conversion efficiency
µmax 0.01/24 1/day Saturation growth rate at 20 deg C
CCO2 0.8 g(CO2)/m3 CO2 concentration in the air
Jmax,0 0.0374× 24 mmol/day/g DM The value of Jmax when w = 0
α 0.151 1/g DM Coefficient of Jmax

Table 3.4 Parameters for the Lettuce submodel with their values, units, and descriptions.



8 Chapter 3. The Lettuce Submodel

Figure 3.1 Modeled LAI in [1] as a function of w (blue) and a more realistic approximation
(orange).

3.2.1 Approximating LAI

In [1], solar radiation varied between 0 at night and full intensity during the day. However,
for simplicity in our early experiments, we assume that solar radiation maintains a constant
intensity throughout the day, which generates a roughly double growth rate than that
presented in the paper and a saturation reached at about 30 g, twice the value reached in
the 30-day growing period shown in the paper.

As can be seen in Figure 3.1, as w approaches 28-29 g, LAI becomes negative, which is
unreasonable. Therefore, one way to fix this equation would be to require LAI to remain
positive. However, it is also unreasonable to assume that LAI goes to 0 as the plant gets
too large, and so this may also be an unrealistic approximation. Another experiment, not
shown here, did not allow LAI to decrease as the plant grew larger; however, such a model
did not saturate and allowed the lettuce to grow infinitely, which is unreasonable.

However, LAI is only used once in the model, and that is in Equation (3.6), where a
section of the function is computed with (1− e−kLAI). From the structure of this equation,
it is reasonable to assume that e−kLAI is bounded between 0 and 1. As can be seen in Figure
3.2, e−kLAI grows towards infinity as w approaches 30, however, when LAI is bounded to
be non-negative, e−kLAI is bounded between 0 and 1 as desired.

That said, LAI is modeled as a discontinuous function, whether or not it is bounded to
be non-negative. As such, e−kLAI may result in severe sensitivities that make simulation,
estimation, and control very difficult. To resolve these difficulties and the discussion above,
we utilize a very rough approximation of e−kLAI using the following logistics curve:

e−kLAI ≈ 1
1 + e−2(w−27.5) . (3.12)

In Figure 3.3, a simulation was run where cN was set to 0.1 across all time (no nitrogen
pool dynamics), which ensures that nitrogen was not limited. The original dynamics given
in Section 3.1 and the approximate dynamics using e−kLAI given by Equation (3.12) are
compared side-by-side. The dynamics of both are nearly identical, uptaking roughly the
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Figure 3.2 e−kLAI using the modeled (blue) and approximate LAI (orange) given in Figure
3.1, and approximated using the logistics curve in Equation (3.12) (green).

(a) Dynamics with LAI and e−kLAI according
to Section 3.1.

(b) Dynamics with e−kLAI given by Equation
(3.12).

Figure 3.3 Comparison of modeled and approximate dynamics of LAI and e−kLAI when
the nitrogen pool cN is set to be 0.1 across all time.
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Figure 3.4 Modeled f(Nup) as given in Section 3.1 (blue) and as approximated by Equation
(3.13) (orange).

same amount of nitrogen and kinking at saturation at roughly the same time. The key
difference is that the convergence to saturation of the approximate dynamics after the kink
is slightly slower than with the original.

3.2.2 Approximating f(Nup)
In the original model, f(Nup) is given as a piece-wise-linear function. However, it is more
likely that this function in nature follows a logistics curve. Furthermore, such a curve is
continuous and continuously differentiable, and with a shallow slope, the second derivative
shouldn’t be hard to compute either, making it a more attractive function to use in the
optimizer. Thus, we modify f(Nup) to the following equation:

f(Nup) = 1
1 + e−150(Nup/w−0.035) . (3.13)

As shown in Figure 3.4, these approximate dynamics fit the original very well.

3.2.3 Approximating A

Like f(Nup), the leaf area A is modeled using a discontinuous function, which we approxi-
mate with a logistics curve given by

A = 0.2(2.4)
1 + e−2(w−1.2) . (3.14)

As shown in Figure 3.5, this too is approximated fairly well by a logistics curve.

3.3 Model Validation

In order to check our implementation of the model in [1], we ran empirical tests in conditions
similar to those found in the original work. The largest deviation in our model to the original
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Figure 3.5 Modeled A as given in Section 3.1 (blue) and as approximated by Equation
(3.14) (orange).

specifications was with respect to the source of light intensity for the growing environment.
The environment of [1] utilized natural light that varied over the experimental growing
period and entered into a greenhouse where the plants were grown. For the purposes of
our model, we assume that our environment will be contained in a structure outfitted with
lighting to replace natural light. This will enable continual growth which would enable the
plants to reach their maximum sizes in a shorter amount of time.

To check our implementation against the original data given in [1], we modified our
lighting source to simulate a daily cycle. This consisted of turning the lights off for a 12
hour period, followed by a period of light for another 12 hours, which repeated over the
entire 90 day window. As can be seen in Figure 3.6, the growth of the plant as well as the
change in nitrogen uptake are visible as the source of light follows a pattern of night and
day.

In comparison of Figures 4, 5, and 6 from [1], we felt that the model accurate follows
the growth patterns exhibited by the aforementioned figures. Given that the simulation
under similar conditions follows that of [1], we feel comfortable utilizing this model with
estimation and control.

3.4 Estimation of Lettuce Model Parameters

After validation of the model dynamics in comparison with [1], we continued development
of our implementation by attempting to perform estimation of three key parameters for
lettuce growth. These were Jmax,0, K, and α, which are the maximum nitrogen uptake
rate per shoot dry matter, the semi-saturation constant for nitrogen uptake, and a system
coefficient, respectively.

The original paper for the lettuce growth model conducted a series of experiments at
varying intensities of average light (quantities given in Table 3 of [1]) and then used equa-
tions within the model to solve for the parameters, which are also given in the previously
mentioned table. Figure 3.7 is from [1] as well, and is where the underlying data for this
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Figure 3.6 Plant model simulation using daily cycles of sunlight

estimation was sourced from. Unfortunately, since the actual data used from the original
paper was not given or could be found anywhere else, we performed a rudimentary graphical
analysis of this figure. This analysis consisted of calibrating a graphical tool with the axes
of the figure and then fitting a computer drawn curve to the first experiment’s correspond-
ing line. Given that the alternative was sourcing the data manually by hand, we felt that
this would give a much more accurate estimate of the original data set, though we would
of course need the original data set to actually verify that claim.

As seen in Figure 3.7, the growth of the plants, correlated to the dry matter weight,
follows the pattern of light visible to the plant beds and rises in proportion to the average
intensity of the light. For our estimation, we used the light intensity corresponding to the
first experiment, 7.1 megajoules per square meter per day.

Using the GEKKO library, we performed estimation by means of Moving Horizon Es-
timation for the three parameters of the lettuce model. Initial efforts for concurrently
estimating all three parameters failed to reasonably converge, so while holding two of the
parameters at a fixed value, the third parameter was estimated. The initial values used
were those given by the Table 3 of the source paper (3.7), and then subsequent estimated
values from the moving horizon estimator implemented via GEKKO. The values that we
then converged on can be seen in Table 3.5.

The results of the system estimation show that the model was insensitive to the param-
eters being estimated. As can be seen in Figure 3.8, the output of the model is compared to
the actual data sourced from [1]. The results seen here remained the same or very similar
with either no, some, or complete use of the estimated parameters derived from the process
above. We note that utilizing control of the nitrogen input of the model allows for tracking
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Figure 3.7 Original figure from [1] of Nitrogen uptake throughout lettuce growth under
various experimental conditions

Parameter Final value Units
Jmax,0 0.0505 · 24 mmol h−1 g−1 DM
K 0.04 mM
α 0.161 g−1 DM

Table 3.5 Estimated parameters for the lettuce growth model.
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Figure 3.8 Results of the parameter estimation for lettuce growth using 7.1 MJ for the
average light intensity

the original data completely.

3.5 Controlling the Lettuce Model

We now seek to choose nitrogen, temperature, and/or solar radiation in order to control
lettuce growth. As will be shown, the lettuce will grow until saturation unless limited, and
so the control usually takes the form of manipulating these variables as little as possible in
order to not limit growth.

Note that these controls are optimal in the sense that, assuming that the models are
perfect, they maximize economic potential as much as possible. However, they are not
robust in the sense that if the model is wrong (and it likely will be), then considerable
performance loss may be seen. A common practice employed by farmers growing many
different crops in many different mediums in order to increase robustness is to apply much
more nitrogen than is needed to ensure saturation is reached.

3.5.1 Controlling Temperature and Solar Radiation

One question we may ask is, assuming the lettuce is not nitrogen limited, what is the
optimal temperature and solar radiation profile over time in order to maximize yield. To
do this, we set the model so that the plant is able to uptake as much nitrogen as it wants
whenever it wants (which is done by setting the nitrogen concentration in the water to a
constant that is larger than the maximum uptake the plant sees at any time).
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(a) Gridded Plant Weight. (b) Gridded Nitrogen Uptake.

Figure 3.9 Plant weight (left) and total nitrogen uptake (right) as a function of constant
temperatures and solar radiations over time.

Unfortunately, adding a degree of freedom to either temperature or solar radiation, even
when upper and lower limits are provided along with costs to changing either parameter,
causes the optimizer to wander into infeasible regions from which it can never return,
preventing a complete answer of this question.

Therefore, as a proxy, we first choose to hold temperature and solar radiation constant
across the entire horizon (again, this may be unrealistic as natural and artificial lighting
tends to follow a night/day cycle, which is needed by the lettuce but not modeled here).
We then grid these temperature and solar radiation choices across reasonable values, run a
simulation over 45 days, and measure the final weight of lettuce to see where the optimum
lies.

As shown in Figure 3.9, the lettuce will increase in weight as both temperature and
solar radiation increase, with the maximum found at the maximum allowed temperature
and solar radiation. However, the difference between the maximum lettuce weight and the
minimum lettuce weight in this range is 1.1 grams, or 3.8%, small enough to be considered
negligible.

However, if we look at the total nitrogen uptake over the same grid points (see the right
side of Figure 3.9), we see that nitrogen uptake is more sensitive to temperature and solar
radiation than lettuce weight, and increases as solar radiation decreases but temperature
increases, though is far less sensitive to temperature than solar radiation.

In summary, yield (plant weight) remains fairly constant across temperature and solar
radiation; thus if the objective is to maximize yield, the cheapest option would be to keep
temperature uncontrolled (assuming we are not in extreme winter conditions) and to use
the minimum solar radiation profile possible given our grow lights (supposing an indoor
environment with no natural sunlight). However, as we reduce solar radiation, the amount
of nitrogen needed to support plant growth increases, potentially increasing costs. Thus we
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encounter a trade-off between energy costs and fertilizer costs.

3.5.2 Controlling Nitrogen

We now fix temperature to 25 degrees C (which is roughly the average temperature in Utah
from May to June), and solar radiation to 5 MJ/m2/day (as a tradeoff between minimizing
solar radiation and nitrogen requirements) and attempt to optimize the nitrogen addition
profile over time. Fortunately, the optimizer is able to run this experiment.

With Nadd as our manipulated variable, we choose the objective function:

min
Nadd

∑
t

‖100Nadd(t)− w(t)‖1. (3.15)

The variable Nadd is weighted heavily as we want to add as little fertilizer as possible across
time. The variable w is included because we want to not only reach the maximal weight
possible, but we want to do it as soon as possible so that we can harvest the lettuce and
replant, thus maximizing profits.

The results of this simulation are shown in Figure 3.10. The strategy is to add nitrogen
into the pool at the same rate that the plant is taking it up. This way, the plant is not
nitrogen starved, but we are not adding more than necessary, leaving the final nitrogen
pool at 0. Furthermore, the plant has consumed all of its nitrogen by day 5, so all of the
nitrogen can be added at the very beginning of the growing horizon. In fact, given that the
nitrogen uptake required by the plant is slightly larger than 1 mmol, an optimal strategy
might be to add this full amount at the very beginning of the growing period. This strategy
is shown in Figure 3.11, where 1.1 mmol of nitrogen is added to the nutrient pool at the
initialization of the simulation. The growth profile is nearly identical to the growth profile
of the lettuce, even though the uptake profile is very different. Contrast this to Figure 3.12,
where only 0.8 mmol of nitrogen is added at the beginning of the simulation and the final
mass of the lettuce has been reduced.

3.6 Conclusions
In conclusion, we have found that the ability to simulate and optimize the dynamic plant
model is extremely sensitive to temperature, solar radiation, and the objective function
used. However, as long as enough nitrogen is added given a constant temperature and solar
radiation over time, the plant is capable of growing to saturation, and this saturation point
is, for the most part, insensitive to temperature and solar radiation.

When connecting the plant model to the fish and bacteria models (described in subse-
quent sections), we are no longer able to control for nitrogen. This, instead, is computed as
a function of fish excrement and bacteria dynamics. We can still control for temperature
and solar radiation; however, as shown above, final yield is fairly invariant to both. Uptake
is more sensitive; however, it is not clear whether more or less uptake is desirable. Too
much uptake will cause our plants to starve. Too little uptake will leave nitrogen in the
water that poisons the fish. As such, for simplicity, we will hold temperature and solar
radiation constant and tune the other variables around the constant point chosen.
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Figure 3.10 Experiment where the optimal nitrogen profile is chosen by the optimizer.

Figure 3.11 Experiment where cN is initialized to 1.1 mmol.
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Figure 3.12 Experiment where cN is initialized to 0.8 mmol.



4

The Hydroponics System
Submodel

We now extend the plant model discussed in the previous chapter in order to simulate the
growth of multiple heads of lettuce in the hydroponics system. We do this by modeling two
things: (1) a single growing bed, and (2) multiple growing beds with staggered planting
and harvest dates.

Note that since the dynamics here do not change from the previous chapter, other than
scaling and delay effects, we will not perform identification or control experiments on this
submodel.

4.1 Single Growing Bed

To model a single growing bed, we introduce a new fixed variable, ppb (plants per bed),
which represents the number of plants that grow in the bed. Then, the total plant dry
matter weight w and the total uptake Nup by the entire bed is simply ppb multiplied by
these variables for a single plant.

Note that, for an aquapoics model, ppb is one of the most important decision variables
available to the farmer. If ppb is too large, then the fish do not produce enough nitrogen
to support plant growth. If ppb is too small, then the plants can’t clean the nitrogen out
of the water fast enough, and the fish are poisoned.

4.2 Staggered Growing Beds
Recall from the previous chapter that the plant typically consumes most of its nitrogen in
the early days of the lettuce growing season. However, the fish are constantly producing
nitrogen that needs to be cleaned out of the system. In order to maintain a semi-constant
nitrogen uptake to keep the fish healthy, we connect multiple growing beds to a single tank
and stagger the planting and harvest dates so that we have multiple sequential peaks of
nitrogen uptake.

To do this, for a single growing bed, let plantingdate be the time index of when the
bed is planted and harvestdate be the time index of when the bed is harvested. With t as

19
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a variable representing the time index (in days), we create a new intermediate called on,
defined as follows:

on =
{

1 if plantingdate ≤ t ≤ harvestdate
0 otherwise (4.1)

We approximate on with the Gekko switch extension (see Appendix B) as

onharvest = switch(1, 0, t, harvestdate), (4.2)
on = switch(0, onharvest, t, plantingdate). (4.3)

We then use on to turn on and off plant growth and nitrogen uptake. With wG, wS ,
and Nup defined with the following dynamics from the previous chapter:

dwG
dt

, DWG, (4.4)

dwS
dt

, DWS, (4.5)

dNup

dt
, DNUP, (4.6)

we redefine the new plant dynamics to be

dwG
dt

= DWG · on, (4.7)

dwS
dt

= DWS · on, (4.8)

dNup

dt
= DNUP · on, (4.9)

Then, to compute the total plant weight and nitrogen uptake in the entire hydroponics
system, we simply add the respective variables from each of the beds.

4.3 Validation

We now validate the functionality of the hydroponics system by comparing it to the func-
tionality of the plant model in a sequence of experiments, each growing in complexity. For
each experiment, we simulate over 90 days with an unconstrained nitrogen pool available
to each plant. These are also simulated at 25 degrees C with 5 MJ/m2/day solar radiation.

4.3.1 Experiment 1

For this first experiment, we run the hydroponics system with only one growing bed and
one plant per bed, with Day 0 as the planting date and day 30 as the harvest date. We
would expect that the results would be identical to that found in the previous chapter,
but with nitrogen uptake cutting of at day 30 since that is when we harvest. As shown in
Figure 4.1, this is indeed the case.
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Figure 4.1 The results of Experiment 1 on the Hydroponics System (1 bed, 1 plant, plant
on day 0, harvest on day 30).

4.3.2 Experiment 2

This experiment is a repeat of Experiment 1, but with 30 plants on the single bed instead
of 1. We would expect the same results as Experiment 1, but scaled by 30. As shown in
4.2, this is indeed the case.

4.3.3 Experiment 3

This experiment is a repeat of Experiment 2, but where the planting day is on day 30 and
the harvest day on day 60. As shown in Figure 4.3, uptake and growth do not begin until
day 30, and terminate on day 60, as expected. Furthermore, the final cumulative plant
weight is still the same as in Experiment 2, also as expected.

4.3.4 Experiment 4

In this experiment, we introduce multiple growing beds, each growing 30 plants. One starts
on day 0 and is harvested on day 30, the second starts on day 30 and ends on day 60. The
third starts on day 60 and ends on day 90. The results shown in Figure 4.4 are exactly
what would be expected (note that the plant weight shown is cumulative weight of all beds
from the beginning of the simulation).

4.3.5 Experiment 5

This experiment is a variation of Experiment 4, this time with 6 growing beds, each with
a 30 day harvest window, and each planted 15 days after the previous. Again, as shown in
Figure 4.5, the simulation proceeds as expected.
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Figure 4.2 The results of Experiment 2 on the Hydroponics System (1 bed, 30 plants,
plant on day 0, harvest on day 30).

Figure 4.3 The results of Experiment 3 on the Hydroponics System (1 bed, 30 plants,
plant on day 30, harvest on day 60).
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Figure 4.4 The results of Experiment 4 on the Hydroponics System (3 beds, 30 plants,
staggered planting days).

Figure 4.5 The results of Experiment 5 on the Hydroponics System (6 beds, 30 plants,
staggered planting days).
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5

Bacteria Submodel

Bacteria are an important component in an aquaponics system, oxidizing ammonia (NH3)
in fish excrement and fertilizer into nitrites (NO2) and nitrates (NO3) that the lettuce
uptakes. This section specifically focuses on Nitrosomonas and Nitrobacter and the rela-
tionship between colony growth and oxidation of NH3 supplied to the system.

5.1 The Complete Bacteria Model

From an article [3] on determining the kinetic constants for nitrifying bacteria using Michaelis-
Menten kinetics, we can obtain differential equations describing the growth of bacteria
cultures. Both Nitrosomonas and Nitrobacter cultures conform closely to these equations
and we assume that only these two bacteria species are present. The parameters found in
[3] fit experimental data, as such we will not perform our own parameter estimation, but
will validate our model against the original results in the paper. State variables, manipu-
lated variables, intermediates, and parameters for this model are defined in Tables 5.1, 5.2,
5.3, and 5.4 respectively. Using Michaelis-Menten [3] kinetics we obtain the following two
equations:

dCm
dt

= kmCmx

x+X
, (5.1)

dCb
dt

= kbCby

y + Y
, (5.2)

Where Cm represents the concentration of Nitrosomonas and Cb represents the concentra-
tion of Nitrobacter. Here km, X, kb and Y are given by the following equations:

km = 100.0413T−0.944, (5.3)

X = 100.051T−1.158 (5.4)

kb = 100.0255T−0.492, (5.5)

Y = 100.063T−1.149 (5.6)
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Variable Initial Units Description
Cm 0.0025 mg / L Concentration of nitrosomonas
Cb 0.0005 mg / L Concentration of nitrobacter
x 0.0 mg / L Concentration of NH3
y 0.0 mg / L Concentration of NO2
z 0.0 mg / L Concentration of NO3

Table 5.1 State Variables for the bacteria submodel with their default initial values, units,
and descriptions.

Variable Initial Units Description
T 25 deg C Temperature
xa 0 mg / L NH3 added to the model
ya 0 mg / L NO2 uptake by lettuce
zup 0 mg / L NO3 uptake by lettuce

Table 5.2 Manipulated Variables for the bacteria submodel with their default initial values,
units, and descriptions.

If the oxidation of unit mass of ammonia produces a dry mass Em of Nitrosomonas then,
at any time,

Cm − Cm0 = Em(x0 + xa − x), (5.7)

where x is the concentration of ammonia (mg/L), Cm0 and x0 are the initial values of Cm
and x, respectively, and xa is the total ammonia added through outside sources (mg/L).
Likewise, the concentration of Nitrobacter is given by the equation

Cb − Cb0 = Eb(y0 − ya + fm(x0 + xa − x)− y), (5.8)

where y is the concentration of nitrite (mg/L), Cb0 and y0 are the initial values of Cb and
y, fm is the ratio of the mass of nitrite formed to that of ammonia oxidized, ya is the total
nitrate removed by outside sources (mg/L), and where the oxidation of unit mass of nitrite
produces a dry mass Eb of Nitrobacter [3]. From these equations, the nitrate concentration
z (mg/L) can then be computed as the total amount of nitrite that has been oxidized, given
by

z = z0 − zup + fn(y0 − ya + fm(x0 + xa − x)− y), (5.9)

where z0 is the initial nitrate concentration (mg/L).

5.2 Model Validation

In order to check our implementation of the model in [3], we ran empirical tests in conditions
similar to those found in the original work. The largest deviation in our model to the
original specifications was with respect to the initial concentration of bacteria. Our initial
concentrations are about three orders of magnitude greater than the concentration given in
the original work. Though our initial concentration is different the behavior of the model
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Variable Units Description
km 1 / day nitrosomonas growth constant given by Eq. 5.3
kb 1 / day nitrobacter growth constant given by Eq. 5.5
X mg / L nitrosomonas saturation constant given by Eq. 5.4
Y mg / L nitrobacter saturation constant given by Eq. 5.6

Table 5.3 Intermediate equations for the bacteria submodel with their units, and descrip-
tions.

Parameter Value Units Description
Em 0.05 - Production rate of dry mass of nitrosomonas from NH3
Eb 0.02 - Production rate of dry mass of emphnitrobacter from

NO2
fm 0.99 - Ratio of mass of NO2 formed to NH3 oxidized
fn 0.99 - Ratio of mass of NO3 formed to NO2 oxidized

Table 5.4 Parameters for the bacteria submodel with their values, units, and descriptions.

is the same (see 5.1) and this figure in comparison with [3] is very similar. Therefore we
use this bacteria model in the simulation and control of the aquaponics system.

The ability of the bacteria model to simulate step impulses was also tested by adding
NH3 on day 10 to reach an ammonia concentration of 3 mg/ml. This is shown in Figure
5.2.

As mentioned previously NH3 and NO3 are linking variables such that fish will be
adding NH3 to the system and the plants will be removing NO3 from the aquaponics
system while the bacteria is oxidizing NH3 to NO3. Thus another important test to
simulate was the removal of NO3 from the system. Figure 5.3 shows the simulated NO3
removal starting at day 12.

These tests illustrate the functionality of the bacteria submodel and its capacity to
respond to disturbances from the other submodels or to changes in set points of ammonia
and nitrate levels. The simulation also reveals that the bacteria will quickly use up whatever
levels of ammonia are available.

5.3 Conclusion
The bacteria component of the aquaponics system will not be directly controlled. Its func-
tion is to manage the nitrogen pools and incorporate a realistic delay between NH3 from
fish waste to a form of nitrogen that the lettuce heads will uptake. In our experience the
bacteria concentration grows to the saturation point quickly for whatever level of NH3 is
supplied. Therefore we are confident that the bacteria component can respond to control
needed for the plant and fish components of the aquaponics system, and have incorporated
terms xa, ya and zup to allow for such control. The concentration of NH3 and the tem-
perature will be determined by the control needed by the plant model through feedback
control.
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Figure 5.1 Concentration of nitrogen compounds with initial values of 6 mg/ml of ammo-
nia and 0.01 mg/ml of nitrite.

Figure 5.2 Impulse test at t = 10 days.



5.3 Conclusion 29

Figure 5.3 Testing NO3 removal at t = 12 days.
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Fish Submodel

We simulate a population of Nile Tilapia (Oreochromis niloticus) residing in a 1,800 liter
tank. The fish model tracks fish population and biomass, and the fish waste contributes to
the nitrogen pool. This model is used to provide nitrogen to the aquaponics model.

6.1 The Complete Fish Model

The model for Nile Tilapia population is taken from [2], which describes the feedback
interaction between two subsystems in the tank–the fish and the alternate food sources in
the tank. The model along with parameter and intermediate values are used with slight
modification in the aquaponics system. The primary difference includes approximating
switch functions with sigmoids and using fractions of a fish to make a continuous objective,
and allow the solver to optimize manipulated variables. Allowing the fish population to
be any real number instead of integers only can be interpreted as having the characteristic
value of fish with the mantissa being the probability of an additional fish. The original
model in [2] is experimentally verified and we will validate our model with their results.
Note that this model does not take ammonia concentration as an input. Rather, it takes
total nitrogen (ammonia + nitrite + nitrate) and assumes that a fixed percentage (36.5%
to be precise) of that concentration is toxic. This fixed percent may be greater than or
less than the ammonia produced as an output by the bacteria model causing fish to die
more or less frequently than in reality. However, the use of this constant may be desirable
since nitrites and nitrates can also be toxic to tilapia, though only in higher concentrations
[11, 12]. State variables, manipulated variables, intermediates, and parameters for this
model are defined in Tables at the end of the chapter.

6.1.1 Model’s structure and Mathematical Representation

Due to the large fish model size the model was split into separate submodels as follows: fish
anabolism, fish autotrophic, fish catabolism, fish growth, fish heterotrophic and fish nutrient
submodels. Because of the large size of the model, the naming convention for parameters
was kept as simple as possible. Fish anabolism components are typically represented by
the capital letter A and catabolism with the captial letter C etc. Naming conventions
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followed the original work done by [2]. The representation outlined here goes through each
of the submodels, starting with the equation that is most directly related fecal waste, or to
fish population and fish biomass. After introducing the key equation each subsection than
defines each term that appears in the equation, and in subsequent equations.

Fish Anabolism Submodel

Fish biomass accumulation depends on fish growth rate, which is the difference between
anabolism and total catabolism [2]. Anabolism is dependent on food consumption, food
and water quality, fish size and temperature. The fish anabolism submodel provides the
bacteria pool with ammonia which is contained in the fish fecal waste. The two components
that we need are fecal waste, and total anabolism. The fish anabolism is given by:

FA = kmax,aTFCf(FQ), (6.1)

where kmax,a is a maximum assimilation coefficient given in Table 6.5-6.7, and the total
food consumption TFC is calculated by summing the autotrophic, heterotrophic and sup-
plementary consumption rate (AFC, HFC, SFC, respectively):

TFC = AFC +HFC + SFC. (6.2)

The autotrophic and heterotrophic consumption rates can be found using Eqs. 6.12 and
6.34, respectively. The effect of fish food quality (f(FQ)) is calculated as:

f(FQ) =


1.0 PE ≥ PEopt

e−kP E [(PEopt−PE)/(PEopt−PEmin)]0.85
PEmin < PE ≤ PEopt.

e−kP E PE < PEmin

. (6.3)

The food quality is expressed in a protein to energy level represented by PE, kPE is a
coefficient on food assimilation and PEmin and PEopt are the minimum and optimal PE
ratio for tilapia growth. PE can be calculated by:

PE = (AFCkpl +HFCkp2 + SFCkp3)/TFC. (6.4)

Values of kpl, kp2 and kp3 can be found in Tables 6.5=6.7. The other state variable of
interest, fecal matter (FW), is given by:

FW = SFA− SFC + TFC − FA. (6.5)

SFC is the minimum between SFA and required supplementary feed (RSF). SFA is the
supplementary feed availability and is assumed to be equal to the required supplementary
feed:

RSF =
{
FAPP − (AFC +HFC) FAPP > AFC +HFC

0 FAPP ≤ AFC +HFC.
. (6.6)

FAPP, the fish appetite can be calculated with the following equation:

FAPP = FAPPmaxFBfsmf(WQ) (6.7)
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where FB is the fish biomass calculated with Eq. 6.31, fsm can be calculated as a function
of mean fish size, FBm, and FBs, which is the average fish size at which fsm is normalized
at 1. The factor f(WQ) accounts for loss of appetite due to fish poisoning, and is related
to the toxicity index (TI).

fsm = (FBm/FBs)m, (6.8)

f(WQ) = e−kT ITI
2 (6.9)

Here KTI is a parameter with its value given in Tables 6.5-6.7 and TI is calculated from
dissolved oxygen content and inorganic nitrogen:

TI = kDOT (1− f1(DO)) + kNHT INCkNH . (6.10)

The parameters kDOT , kNHT and kNH can be found in Tables 6.5-6.7. f1(DO) is calculated
as follows:

f1(DO) =
{
e−kDO(4−DOC)2

DO < 4
1 DO ≥ 4. . (6.11)

The values of kDO and DOC can also be found in Tables 6.5-6.7.

6.1.2 Fish Autotrophic Submodel

In a pond ecosystem, autotrophic producers convert elementary nutrients (e.g. C, N, P)
into food nutrients (energy, protein etc.) [2]. The autotrophic submodel provides the
anabolism submodel with the autotrophic food consumption rate, which allows the fish
model to predict fish biomass growth and fecal waste. Autotrophic production capacity
is influenced by incident radiation, turbidity, water temperature and elementary nutrients.
The Autotrophic food consumption rate (AFC ) is calculated as:

AFC = FBhafafsmf2(T )f(WQ). (6.12)

In Eq. 6.12, ha is the atuotrophic food consumption coefficient, fa is the autotrophic food
availability, fsm accounts for fish size and is calculated using Eq. 6.8. The two remaining
functions account for effects of temperature of the water and the water quality. Water
quality (f(WQ) is calculated from Eq. 6.9. The autotrophic food availability is modelled
with:

fa = 1− e−s(AFe/FB)2.2
. (6.13)

In Eq. 6.13, s is a proportionality coefficient of food nutrient quantity to fish biomass and
AFe is the autotrophic food amount in terms of energy. The dynamics of autotrophic food
nutrients (in terms of both energy and protein) are described by the following equations:

dAFe
dt

= AFG−AFC −AFR−AFM (6.14)

AFG = µmaxAFef(N,P )f(I)f1(T ) (6.15)
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AFR = AFekr (6.16)

AFM = AFekml (6.17)
dAFp
dt

= dAFe
dtkpl

(6.18)

AFe and AFp are autotrophic food quantity in terms of energy and protein. AFC and AFR
are autotrophic food loss rate due to tilapia grazing and phytoplankton respiration, AFM
is a rate of autotrophic food entering heterotrophic food pool (a result of phytoplankton
mortality and harvest by secondary producers. All values of the parameters can be found
in Tables 6.5-6.7. The three functions in order of appearance in Eq. 6.15 represent limiting
functions on elementary nutrients, solar radiation and water temperature to phytoplankton
growth.

f(N,P ) = min[(INC/(INC + hn), IPC/(IPC + hp)] (6.19)

f(I) = I0e
−(aAFe+bHFe) (6.20)

f1(T ) =
{
e−kT 1(T−Topta)2

T ≤ Topta
e−kT 2(Topta−T )2

T > Topta
. (6.21)

Coefficients and parameters are explained and listed with their default values in Tables
6.5-6.7. The remaining term in Eq. 6.12 is the effect of temperature on autotrophic food
consumption f2(T ):

f2(T ) = V xex(1−V ), (6.22)

where the following relationships are used to calculate V and x:

V = (Tmaxf − T )/(Tmaxf − Toptf ) (6.23)

x = [S2
1(1 + (1 + 40/S2)0.5)2]/400 (6.24)

S1 = ln(Q10(Tmaxf − Toptf )) (6.25)

S2 = ln(Q10(Tmaxf − Toptf + 2)). (6.26)

Here Tmaxf and Toptf are the maximum and optimum temperature for tilapia and Q10 is a
term to express the relative increase in the rate of a biological activity with an increase in
temperature of 10 K.

6.1.3 Fish Catabolism Submodel

Catabolism can be identified into two categories: fasting catabolism and feeding catabolism.
Fasting catabolism is affected by body weight, size temperature and dissolved oxygen
whereas feeding catabolism is assumed as a fraction of consumed feed [2]. The catabolism
submodel returns the catabolism rate, and the difference between the anabolism and
catabolism rate is the fish growth. Fish catabolism can be calculated by:

FC = TFCkfeed + FBkfastfsnf2(DO)f3(T ). (6.27)
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TFC is found in Eq. 6.2 and fish biomass is found in Eq. 6.31. The effect of fish size is
represented by fsn:

fsn = (FBm/FBs)n, (6.28)

the effect of dissolved oxygen is represented by f2(DO):

f2(DO) =
{
e−kDOf (DOcrit−DOC)2

DO < DOcrit
1 DO ≥ DOcrit

. (6.29)

and the effect of temperature is represented by f3(T ):

f3(T ) = c+ dT. (6.30)

Values of the coefficients and their meaning can be found in Tables 6.5-6.7.

6.1.4 Fish Growth Submodel

Fish growth submodel provides the mathematical model for two state variables of interest,
namely the fish population and the fish biomass. Fish growth is affected by the fish popu-
lation and the fish growth rate, or the difference between anabolism (FA) and catabolism
(FC). According to [2] fish biomass and fish population in a cultural pond can be expressed
as:

dFB

dt
= FPsFBi + FA− FC − FPkm2FBm, (6.31)

dFP

dt
= FPs − INT (FPkm2), (6.32)

where FB is the fish biomass and FP is the fish population. The coefficient km2 is the
fish mortality coefficient, FBm is mean fish biomass, and FPs and FBi are stocking fish
number and individual fish biomass during fish stocking. INT is a mathematical function
which gives the largest integer less than or equal to its argument. The values of FA and
FC can be calculated from Eqs. 6.1 and 6.27, respectively. The fish mortality coefficient
is calculated from:

km2 = 1/(1 + e−6(knhINC−1.25)), (6.33)

where knh can be found in Table 6.5-6.7 and INC can be calculated using Eq. 6.40.

6.1.5 Fish Heterotrophic Submodel

Heterotrophic food refers to all living and non-living heterotrophic components of particu-
late organic matters in a pond that can be grazed by tilapia [2]. Heterotrophic food avail-
ability is influenced by decomposition, sedimentation, grazing by fish and the respiration of
living heterotrophic components. This submodel assumes that heterotrophic food loss per
unit of heterotrophic respiration is equal to that of per unit non-living heterotrophic mat-
ter decomposition. The heterotrophic submodel gives the heterotrophic food consumption
rate, HFC, to the fish anabolism model which is used to calculate fish biomass change and
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fecal waste production. HFC can be calculated as a function of fish size, water temperature
and water quality:

HFC = FBhhfhfsmf2(T )f(WQ). (6.34)

Fish biomass (FB) can be calculated with Eq. 6.31, hh is described in Tables 6.5-6.7,
fsm, f2(T ) and f(WQ) can be calculated with Eqs. 6.8, 6.22 and 6.9 respectively. The
remaining term, fh in the equation above is subject to heterotrophic food availability and
fish size.

fh = 1− e−s(HFe/FB)2.2 (6.35)

Similar to Eq. 6.13, s represents a proportionality coefficient of food nutrient quantity
to fish biomass, and HFe represents the availability of heterotrophic food source in terms
of energy. The dynamics of heterotrophic food availability can be described with these
equations:

dHFe
dt

= AFM + FW −HFC −HFS −HFD (6.36)

HFS = HFeks (6.37)

HFD = HFekdf1(DO) (6.38)
dHFp
dt

= dHFe
dtkp2

(6.39)

Where dHFp is the heterotrophic food amount in terms of protein, FW is fish fecal wastes
(Eq. 6.5), HFC, HFD and HFS are heterotrophic food loss rate due to tilapia grazing,
decomposition and sedimentation respectively. The term f1(DO) is the effect of DO on an
aerobic process and is given by Eq. 6.11. AFM is calculated as shown in Eq. 6.17.

6.1.6 Fish Nutrient Submodel

Inorganic nitrogen and phosphorus are considered as necessary ingredients of nearly all
fishpond fertilization [2]. The fish nutrient submodel describes the elementary nutrient pool
available for the fish, and the amount of inorganic nitrogen is another state variable that
we are interested in. Elementary nitrogen, phosphorus and dissolved oxygen are limiting
factors for fish appetite, they show up in equations that describe the water quality’s effect on
fish appetite (e.g. Eqs. 6.34, 6.12). Furthermore they are also an influence on the amount
of heterotrophic and autotrophic food supplies. Mass balance equations for nitrogen (TIN)
and phosphorus (TIP) are expressed as:

dTIN

dt
= FCkfn+AFRkan+HFDkhn+TNSksn+FTN − (AFGkan−FIXN)−TINknl,

(6.40)
dTNS

dt
= HFSkhn − TNSksn, (6.41)

dTIP

dt
= FCkfp+AFRkap+HFDkhp+TPSkpr/dw+FTp−AFGkap−TIPkps/dw, (6.42)
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dTPS

dt
= TIPkps/dw +HFSkhp − TPSkpr/dw. (6.43)

Here TNS, TPS represent total nitrogen and phosphorus in sediment, FTN and FTP are
inorganic nitrogen and phosphorus from ferilization, FIXN is N-fixation rate by phyto-
plankton, and dw is water depth. Values of the parameters and their descriptions can be
found in Tables 6.5-6.7, except for kan and khn which are calculated by kp1 and kp2 divided
by a N to protein coefficient (6.25 g protein/gN). The value of FIXN is given by Eq. 6.44.

FIXN = knAFee
−knf INC

2
, (6.44)

where AFe is given by Eq. 6.14 and INC is the inorganic nitrogen content. The parameters
kn and knf are described in Tables 6.5-6.7. The content of dissolved oxygen is also calculated
in the Fish nutrient submodel. The oxygen system can be modelled as:

dQDO
dt

= AFGkao + /−DOdf −FCkfo−AFRkao−HFDkho− TNSksn/khnksno, (6.45)

DOdf = [DICO(DOC −DOS)/(AWFTdw)Vpond]/1000 (6.46)

where QDO is DO quantity in pond water column, AFG is calculated by Eq. 6.15, FC is
calculated by Eq. 6.27, AFR is calculated by Eq. 6.16, HFD is calculated by Eq. 6.38. The
value of DOdf represents oxgen exchange rate between air and water body, and DOS is the
saturation content of oxygen in water, Vpond is pond water volume and AWFT is airwater
interface film thickness. The value of 1000 is to convert from mg to g. All values of the
parameters can be found in Table 6.5-6.7.

6.2 Model Validation
Each of the fish submodels were built and tested individually for the correct response to
dissolved oxygen concentration, pH, feeding rate, water temperature and solar radiation.
The submodels were tested separately, and compared against the results from [2]. Shown
below are the results of the heterotrophic and autotrophic food models. The heterotrophic
and autotrophic food pools increase rapidly in the first days and then level off. Figure 6.2
shows the result when the 5 submodels are simulated with an initial population of 10 fish,
with no control over the feed rate or other MV’s. The result correctly displays a decline
in fish population and the nitrogen concentration reaching saturation within the 14-day
period.

The ability of the fish component model to interact with other models was also tested.
The connecting variables of NH3, NO2, and NO3 were communicated between the bacteria
and the fish component models and demonstrated a correct response, as shown in Figure
6.3.

6.3 Conclusion
The fish component can be interfaced with a simple model such as the bacteria component
of aquaponics system. It displays correct behavior and matches the experimental behavior



38 Chapter 6. Fish Submodel

Variable Initial Units Description
FA 0.0 kcal / day / pond Fish anabolism
AFC 0.0 kcal / day / pond Autotrophic food consumption
HFC 0.0 kcal / day / pond Heterotrophic food consumption
FW 0.0 kcal / day / pond Fish fecal waste
TFC 0.0 kcal / day / pond Total food consumption
AFe 0.0 kcal / pond The autotrophic food quantity in terms of en-

ergy
AFp 0.0 g protein / pond The autotrophic food quantity in terms of pro-

tein
AFM 0.0 kcal / day / pond Autotrophic food entering heterotrophic food

pool
AFR 0.0 kcal / day / pond Autotrophic food loss due to phytoplankton

respiration
AFG 0.0 kcal / day / pond Autotrophic food loss due to phytoplankton

growth
FB 2250 kcal / pond Total fish biomass
FP 10 fish / pond Total fish population
HFe 0.0 kcal / pond Quantity of heterotrophic food nutrients in

terms of energy
HFp 0.0 kcal / pond Quantity of heterotrophic food nutrients in

terms of protein
f1DO 0.0 - Decomposition of heterotrophic particles
HFS 0.0 - Heterotrophic food loss rate due to sedimenta-

tion
HFD 0.0 - Heterotrophic food loss rate due to decompo-

sition

Table 6.1 State Variables for the fish submodel with their default initial values, units, and
descriptions.
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Variable Initial Units Description
T 20 deg C Temperature
FB 2250 kcal / pond Fish biomass, obtained from fish growth sub-

model
FP 10 fish / pond Fish population, obtained from fish growth

submodel
AFe 0.0 kcal / pond Autotrophic food quantity in terms of energy,

obtained from fish autotrophic submodel
HFe 0.0 kcal / pond Heterotrophic food quantity in terms of en-

ergy, obtained from fish heterotrophic sub-
model

f1DO 0.0 - Decomposition of heterotrophic particles, ob-
tained from fish heterotrophic submodel

INC 1.63 mg N / l Incorporated nitrogen, obtained from con-
necting nitrogen

I0 0.0 106 cal / m2 / day The light reaching the surface of the water
IPC 16.86 mg P / l Total inorganic phosphorus concentration
AFC 0.0 kcal / day / pond Autotrophic food loss rate due to tilapia graz-

ing, obtained from fish anabolism submodel

Table 6.2 Manipulated Variables for the fish submodel with their default initial values,
units, and descriptions.

Variable Initial Units Description
DO 5 - Dissolved oxygen
DOC 5 mg O / l Dissolved oxygen concentration
TFC 0 kcal / day / pond Total food consumption, obtained from fish

anabolism submodel
FPs 0.0 fish / day / pond Fish stocking number
FA 0.0 kcal / day / pond Fish anabolism, recieved from fish anabolism

submodel
FC 0.0 kcal / day / pond Fish catabolism, received from fish catabolism

submodel
AFM 0.0 kcal / day / pond Autotrophic food entering heterotrophic food

pool
FW 0.0 kcal / day / pond Fish fecal waste, recieves from fish anabolism

submodel
HFC 0.0 kcal / day / pond Heterotrophic food loss from fish grazing, ob-

tained from fish anabolism submodel
FTN 0.0 g N / day / pond Inorganic nitrogen added from fertilization
FTP 0.0 g P / day / pond Inorganic phosphorus added from fertilization

Table 6.3 Manipulated Variables for the fish submodel with their default initial values,
units, and descriptions.
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Variable Units Description
FBm kcal / fish Biomass per fish
fa - Autotrophic food availability, Eq. 6.13
fh - Heterotrophic food availability, Eq. 6.35
fsm - Effect of fish size on food consumption, Eq. 6.8
S1 - Effect of temperature on fish food consumption, Eq.

6.25
S2 - Effect of temperature on fish food consumption, Eq.

6.26
x - Effect of temperature on fish food consumption, Eq.

6.24
V - Effect of temperature on fish food consumption, Eq.

6.23
f2(T ) - Effect of temperature on fish food consumption, Eq.

6.22
TI - Toxicity index, Eq. 6.10

f(WQ) - Effect of water quality on food consumption, Eq. 6.9
FAPP kcal / day / pond Fish appetite satiation, Eq. 6.7
f(WQ) - Elementary nutrient limitation, Eq. 6.19
f(I) - day Light limitation, Eq. 6.20
f1(T ) - Temperature effect on phytoplankton growth, Eq. 6.21
fsn - Effect of fish size on fasting catabolism, Eq. 6.28

f2(DO) - Effect of dissolved oxygen on fasting catabolism, Eq.
6.29

f3(T ) - Effect of temperature on fasting catabolism, Eq. 6.30
km2 1 / day Fish mortality coefficient, Eq. 6.33

f1(DO) - Decomposition of heterotrophic particles, Eq. 6.11
kan gN / kcal Nitrogen content of phytoplankton components, see sec-

tion 6.1.6
khn gN / kcal Nitrogen content of heterotrophic components, see sec-

tion 6.1.6
FIXN gN / day / pond N-fixation rate, Eq. 6.44

Table 6.4 Intermediate equations for the fish submodel with their units, and descriptions.
They are listed here in rough order of their introduction.
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Parameter Value Units Description
s 21.08 - Proportionality coefficient of food nutrient

quantity to fish biomass
m -0.3 - The exponent on effect of fish biomass on food

consumption
Q10 2.37 - Expresses the relative increase in the rate of

biological activity with a 10 deg C increase in
temperature

ha 0.51 1 / day Autotrophic food consumption coefficient
hh 0.05 1 / day Heterotrophic food consumption coefficient
FBs 20 kcal / fish Average fish size at which fsm is normalized

at 1
kmaxa 0.75 - Maximum assimilation coefficient
kDOT 4.0 - Weighting factor for DO depletion toxicity to

food consumption
kNHT 4.0 1 / mgN

l Weighting factor for un-incorporated ammo-
nia toxiticy to food consumption

kT1 0.004 1 / (degC)2 Effect of temperatures below Topta on growth
kT2 0.008 1 / (degC)2 Effect of temperatures above Topta on growth
Ir 6.547 106cal / m2 day reference sunlight intensity for phytoplankton

growth
Topta 30 deg C Optimal temperature
kfeed 0.31 1 / day Feeding catabolism coefficient
kfast 0.005 1 / day Fasting catabolism coefficient
n -0.12 - Exponent for calculating fish size effect on fish

fasting
c 0.59 - Regressed parameters describing effect of wa-

ter temperature on fasting catabolism
d 0.027 1 / deg C Regressed parameters describing effect of wa-

ter temperature on fasting catabolism

Table 6.5 Parameters for the fish submodel with their values, units, and descriptions.
They are listed here in rough order of their introduction.
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Parameter Value Units Description
kNH 0.365 - Fraction of un-incorporated ammonia to

inorganic nitrogen content
kTI 0.012 - Coefficient of toxicity index on food con-

sumption
FAPPmax 0.17 1 / day Maximum fish appetite (FAPP)
PEmin 0.025 g protein / kcal Minimum P:E ratio for tilapia growth
PEopt 0.09 g protein / kcal Optimum P:E ratio for tilapia growth
kPE 0.45 kcal2 / (gprotein)2 Coefficient of PE on food assimilation
kp1 0.14 g protein / kcal Protein content of phytoplankton
kp2 0.12 g protein / kcal Protein content of heterotrophic food
Toptf 30 deg C Optimum temperature for tilapia
Tmaxf 41 deg C Maximum temperature for tilapia
µmax 1.6 1 / day Maximum growth coefficient for phyto-

plankton growth
km1 0.6 1 / day Autotrophic food entering heterotrophic

food pool
kr 0.1 1 / day Coefficient of phytoplankton respiration
hN 0.2 mg N / l Half-saturation inorganic nitrogen con-

centration
hP 0.02 mg P / l Half-saturation inorganic phosphorus

concentration
a 0.000017 pond / kcal Autotrophic light extinction coefficient
b 0.000015 pond / kcal Heterotrophic light extinction coefficient

Table 6.6 Parameters for the fish submodel with their values, units, and descriptions.
They are listed here in rough order of their introduction.

Figure 6.1 Autotrophic and heterotrophic food content per pool
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Parameter Value Units Description
DOcrit 1.0 mg DO / l Critical DO limit above which fasting

catabolism is not affected by DO
kDOf 2.5 l2 / (mgDO)2 Coefficient of DO on fasting catabolism
FBi 225 kcal / fish Individual fish biomass during stocking
ks 0.14 1 / day Coefficient of heterotrophic food sedimentation
kd 0.12 1 / day Coefficient of heterotrophic food decomposition
kDO 0.14 l2 / (mgDO)2 Coefficient of DO on aerobic biological activity
kn 0.01 g N / kcal day N-fixation coefficient of phytoplankton
knf 0.47 l2 / mg2 Coefficient of INC on N-fixation
kfn 0.017 g N / kcal Nitrogen content of fish tissue
kfp 0.002 g P / kcal Phosphorous content of fish tissue
ksn 0.003 1 / day Release coefficient of nitrogen in sediment
knl 0.17 1 / day Coefficient of inorganic nitrogen loss to air
khp 0.001 g P / kcal Phosphorus content of heterotrophic compo-

nents
kpr 0.06 cm / day Release coefficient of phospohrus to sediment
kps 28 cm / day Coefficient of inorganic phosphorus sedimenta-

tion to sediment
kap 0.001 g P / kcal Phosphorus content of phytoplankton

Table 6.7 Parameters for the fish submodel with their values, units, and descriptions.
They are listed here in rough order of their introduction.

Figure 6.2 Fish component test with correct population, biomass and nitrogen concentra-
tion dynamics
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Figure 6.3 Simulation test to verify the fish model’s ability to receive inputs from other
models.
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and model behavior found in [2]. The initial decision of how much fish to stock at a time is
an important control element in the aquaponics system, and along with how many plants
and plant beds to grow at once is one of the key control outcomes of this project.
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7

Connecting the Full Aquaponics
System

As shown in Figure 7.1, all three submodels (fish, plant, and bacteria) can be connected
in feedback to simulate a complete aquaponics system. The nitrogen pools managed by
the bacteria component are the key connections between the three models, though an
intermediate nitrogen conversion module is required to convert the units used by each
respective model. We discuss the nitrogen conversion component and implementation issues
here.

7.1 Nitrogen Conversion
In order to convert the organic nitrogen from the fish model into a nitrogen concentration
used by the bacteria model, we need to know the size of the fish tank. As shown in Table
7.1, we use two parameters describing the radius and the depth of the fish tank (120cm
and 40cm respectively). We make the simplifying assumption that all water in the system
is contained in the tank (which is reasonable since we can fill the tank up to a 40cm depth,
and this depth will drop somewhat as the pumps are turned on and the water is cycled
to the plants). We also assume that the nitrogen concentration in the water is uniform
throughout the system.

We then compute the volume of the tank (in meters cubed) as

vw = πr2
wdw

1000 , (7.1)

and the conversion from the change in TIN from the fish model (specifically the fish
elementary nutrient component) and the change in xa (ammonia added by fish) from the
bacteria model is given by

dxa
dt

=
(1000
vw

)(
dTIN

dt

)
. (7.2)

The conversion between x (ammonia), y (nitrite), and z (nitrate) from the bacteria model
to INC used by the fish model is given by

INC = x+ y + z. (7.3)

47
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Figure 7.1 The aquaponics model, consisting of the plant, bacteria, and fish submodels
connected in feedback.

Parameter Value Units Type Description
mm 62.0049 Param Molar mass of nitrate
dw 40 cm Param Water depth in the tank
rw 120 cm Param Radius of the tank
vw - m3 Volume of the tank

Table 7.1 Parameters and intermediates for the nitrogen connection component.

With mm as the molar mass of nitrate, the conversion between N used by the plant
model and z used by the bacteria model is given by

N = z

mm
. (7.4)

And the conversion between zup (nitrate uptake) used by the plant model and Nup (nitrogen
uptake) used by the plant model is given by

dzup
dt

=
(
mm

vw

)(
dNup

dt

)
. (7.5)

7.2 Implementation Issues
Unfortunately, we were unable to simulate the complete system in Gekko. The plant com-
ponent connected in feedback with the bacteria and nitrogen conversion components would
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simulate. Likewise, the fish component connected in feedback with the bacteria and nitro-
gen conversion components would also simulate. However, when all were stitched together,
the simulation would wander into an infeasible region from which it was never able to re-
cover. This was true under every one of the many simulation modes, time discretizations,
and initial conditions that we tried.

As a work around, we implemented these models in MATLAB’s Simulink, which was
capable of running these models. Furthermore, we did not have to approximate the discon-
tinuous equations in Simulink as we did with Gekko. Unfortunately, full MPC experiments
in Simulink are unwieldy at best; therefore, we simply chose some fixed variables of interest
and gridded different choices of those fixed variables in order to find an optimal solution
(described in Chapter 8).
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8

Optimization and Control of the
Full Aquaponics System

We now attempt to optimize the full aquaponics system. Two of the most important
decisions available to any aquaponics farmer are (1) how many fish to stock in a single tank
and (2) how many plants to grow on each bed.

8.1 Experimental Setup
We set up the aquaponics system using the default values described in the previous section,
using the Simulink model of the system instead of the Gekko model. We choose a tank
with a radius of 1.2 meters and a water depth of 0.4 meters, which has a capacity of
approximately 181 liters. To this tank we attach six growing beds with the planting and
harvest dates given in Table 8.1. Note that, at any given point of time, only three beds
are active, meaning that instead of attaching six growing beds, we can actually attach just
three and replant each once they are harvested.

We also select our two main decision variables, plants per bed and fish stocking number,
and set those as fixed variables.

We then simulate over an 80-day horizon and collect plant weight, fish biomass, and
fish population at the end of the simulation. We have four main metrics of interest:

• Total plant weight: This is the sum of the weight of all heads of lettuce across all

Bed No. Planting Day Harvest Day
1 0 30
2 10 40
3 20 50
4 30 60
5 40 70
6 50 80

Table 8.1 Growing bed planting and harvest dates.
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beds. A simple economic model would choose to maximize this measure as lettuce is
often sold by weight.

• Average plant weight per head: This is a surrogate for the quality of the head of
lettuce. We also seek to maximize this variable.

• Total fish biomass: This is the sum of the biomass of all fish in the tank alive at
the end of the simulation. A simple economic model would choose to maximize this
measure as fish is often sold by weight.

• Average fish biomass: This is a surrogate for the health of the fish. We also seek
to maximize this variable.

• Fish mortality: The total number of fish that have died throughout the simulation.
For a moral model, we consider variable choices where mortality is non-zero to be
infeasible. For an economic model, we simply wish to minimize this number.

Since we have five different objectives, which at times may conflict with one another, the
true optimal solution will depend on an economic model that specifies a linear (or some
other) combination of these objectives. We do not specify such a model here, as ranges
of feasible solutions where the optimal will lie will be apparent even without specifying an
economic model.

8.2 Experiment 1 - Fixed Stocking Number at Beginning of
Simulation

For the first experiment, we fix the fish stocking number to 10 and simulate. The results of
this experiment are contained in Figure 8.1. As can be seen, no matter the plants per bed
selected, six of the fish will always die. As such, all planting densities could be considered
infeasible from a morality perspective.

From an economics perspective, however, if we were to maximize total plant weight,
fish biomass, and average fish biomass, our optimal solution would be to plant 200 or more
heads of lettuce per bed. However, the quality of lettuce sharply declines after about 10
heads; as such, in order to maintain quality as well, we would recommend planting 10 to
40 heads of lettuce under these circumstances.

8.3 Experiment 2 - Staggered But Fixed Stocking Number
Upon closer investigation into Experiment 1, we find that the fish that die die early in the
simulation. This happens because of the following problems:

• Bacteria populations are small at the beginning of the horizon, and must be given
time to grow in order to efficiently convert ammonia into nitrates.

• Plant sizes are small in the first 15 days, where only one bed is growing and the plants
are small. For the remainder of the simulation, two beds are growing plants and/or
the plants on one bed are nearing the end of their growth.
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Figure 8.1 The results of Experiment 1. The optimal decision would be to plant roughly
10 to 40 heads of lettuce per bed.
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These problems are seen in actual aquaponics systems, and strategies used to mitigate
these problems are known as seasoning. There are several seasoning strategies available,
including

• Taking water from an already seasoned system and using it in the new system. This
essentially sets the initial bacteria populations to a higher value.

• Stocking large populations of fish at the beginning of a growing horizon, allow them
to die, and then restocking the fish at a later date.

• Stocking smaller populations of fish at the beginning of a growing horizon (which
allows the bacteria to grow without overwhelming the system with nitrogen) and
then adding more fish at a future date

The first of these strategies does not solve the problem where plant sizes are small at the
beginning of the horizon and the second is amoral. And so we choose to adopt the third.

In particular, we once again choose to stock 10 fish in total. We start the simulation
stocking only 4 fish, and then 15 days into the simulation, we add the remaining 6. The
results of this simulation are given in Figure 8.2.

Notice how this time if more than 5 plants per bed are planted, no fish die. Again,
biomass and total plant weight are optimized by maximizing plants per bed. Quality of
lettuce is also maximized for any planting density of 60 heads of lettuce per bed or less.
Thus, we would recommend planting at exactly 60 heads of lettuce per bed in this situation.

8.4 Experiment 3 - Optimal Fish Stocking and Planting
Density

We now continue Experiment 2, this time allowing the fish stocking number to change. Let
n be the number of fish we choose to stock. As before, we add 4 fish at the beginning of
the simulation and n− 4 fish on day 15.

The results of this experiment are contained in Figure 8.3. If more than 10 fish are
added to the tank, then the mortality is at least 1 fish, no matter the number of plants per
bed. Thus, if we consider fish mortality to be in-feasible, we would choose 10 fish maximum.
Furthermore, as fish stocking increases, plant total weight, plant average weight, and fish
biomass all increase, and so we would choose exactly 10 fish.

From Experiment 2 above, we already know that the optimal decision with 10 fish in
the tank is to plant 60 heads of lettuce per bed.



8.4 Experiment 3 - Optimal Fish Stocking and Planting Density 55

Figure 8.2 The results of Experiment 2. The optimal decision would be to plant 60 heads
of lettuce per bed.
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Figure 8.3 The results of Experiment 3. The optimal decision would be to plant 60 heads
of lettuce per bed with 10 fish in the tank, same as experiemnt 2.
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Conclusions

In conclusion, we have demonstrated the use of an aquaponics model to determine best-
practices for growing lettuce in an aquaponics system. In particular, we found that the
growth of lettuce is insensitive to temperature and solar radiation, as long as these values are
within reasonable ranges; therefore, strong effort to control these is unnecessary. However,
by increasing both to higher levels, nitrogen uptake requirements is reduced, which would
allow for higher planting densities to be utilized.

We also showed that so long as the lettuce is not nitrogen starved, it will reach a
saturation at full growth, thus strict nitrogen control is not terribly necessary either.

We then integrated this model with a model of fish and bacteria growth to form a model
of an aquaponics system. Using this model, we demonstrated the ability to determine
optimal decisions for number of heads of lettuce to grow and number of fish to stock given
a fixed planting strategy and fish tank size. In particular, if we have three beds, each
planted 10 days before the previous, each harvested after 30 days, and each replanted once
immediately after harvest, and if we have a fish tank that contains roughly 180 liters of
water, then the optimal strategy would be to add 10 fish to the tank and plant 60 heads of
lettuce per growing bed.
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Appendix A

Source Code

The source code to generate all figures and results in this project is publicly found at
https://gitlab.com/nwoodbury/aquaponics.

The /aquaponics/Aquaponics.py module is a wrapper around Gekko which registers
user-specified aquaponics subcomponents, including their variables and equations, with
Gekko. The aquaponics subcomponents are also found in the /aquaponics/ directory. The
Gekko extensions, described in Appendix B, are found in /aquaponics/gekko_extensions.py
and are automatically registered with the Aquaponics wrapper. All experiments, including
figures and plots, are contained in Jupyter notebooks found at /notebooks/.

Additional documentation is found within the source code itself.
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Appendix B

Gekko Extensions

The dynamics of various components in the Aquaponics model contained piece-wise con-
tinuous functions which Gekko is unable to natively simulate. We have therefore created
several extensions to Gekko using continuous approximations of these functions using lo-
gistics curves. We describe each of these functions as well as how to use them in Gekko
here.

B.1 Implemented Gekko Extensions

The primary Gekko extension used is the switch function, all others are derivatives of this
function. We define them here.

B.1.1 The Switch Function

The switch function essentially models a conditional. Formally, it is defined as

switch(left, right, on, loc) =
{
left on ≤ loc
right on > loc

. (B.1)

We approximate the switch function using a logistics curve. Specifically, let

σ(on, loc) = 1
1 + e−k(on−loc) . (B.2)

We have that, as k →∞,

σ(on, loc) =
{

0 on ≤ loc
1 on > loc

. (B.3)

For smaller k, this holds true far from loc, and will have some value between 0 and 1 near
loc. Thus smaller k is only an approximation of this switch. We choose k = 100 by default
in the code, though the user can specify other values.

With σ(on, loc) defined, we can implement switch as

switch(left, right, on, loc) = (1− σ(on, loc)) · left+ σ(on, loc) · right. (B.4)

63



64 Chapter B. Gekko Extensions

Figure B.1 The switch implementation in Equation (B.5). For further illustration,
σ(x, 0.5) is shown in the bottom figure.

We test switch with two sample systems. The first is

ẋ = 1,

y = switch(x, 1− x, x, 0.5) =
{
x x ≤ 0.5
1− x x > 0.5 .

(B.5)

In other words, x(t) is a line of slope 1 starting at 0 on t ∈ [0, 1], and y(t) is a line of slope
1 starting at 0 on t ∈ [0, 0.5] and y(t) is a line of slope −1 on t ∈ [0.5, 1] with y(0.5) = 0.5.
Figure B.1 shows that GEKKO simulates this behavior perfectly.

The second example is a clamp function which involves the embedding of two switches.
Mathematically, it is given by

ẋ = x,

y =


0.3 x ≤ 0.3
x 0.3 < x ≤ 0.7
0.7 x > 0.7

.
(B.6)

In essence, x(t) grows exponentially, and y(t) is x(t) but clamped to be no less than 0.3 and
no greater than 0.7. Figure (B.2) shows that, once again, GEKKO is capable of capturing
this behavior perfectly.

Note that this second example can also be implemented using y = clamp(x, 0.3, 0.7),
where clamp is an alias for the nested switch described above.

B.1.2 The Max Function

The max(left, right) function returns the maximum of its two arguments. Mathematically,
it is written as

max(left, right) =
{
right left ≤ right
left left < right

= switch(right, left, left, right). (B.7)
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Figure B.2 The switch implementation in Equation (B.6).

Figure B.3 The max implementation in Equation (B.8).

Thus, the max function can be implemented as a wrapper around the switch function.
To test this function, we implement the following system:

ẋ = −x,
ẏ = x,
z = max(x, y).

(B.8)

As shown in Figure B.3, GEKKO also approximates this function nearly perfectly.

B.1.3 The Min Function

The max(left, right) function returns the minimum of its two arguments, and is very
similar to the max function. Mathematically, it is written as

max(left, right) =
{
left left ≤ right
right left < right

= switch(left, right, left, right). (B.9)

Thus, the min function can be implemented as a wrapper around the switch function.
To test this function, we implement the following system:

ẋ = −x,
ẏ = x,
z = min(x, y).

(B.10)
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Figure B.4 The min implementation in Equation (B.10).

As shown in Figure B.4, GEKKO also approximates this function nearly perfectly.

B.2 Registering the Extensions with Gekko

The Gekko extensions (along with further documentation) are found in the Aquaponics
source code (see Appendix A) at /aquaponics/gekko_extensions.py. With the Gekko
model loaded as m = Gekko(), the extensions can then be loaded with m = register_extensions(m).
Then, the above functions can be accessed just like a normal function. For example, if x
and y are defined as Gekko parameters, variables, or intermediaries, the max of these can
be created with z = m.max(x, y, k=100).
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