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Abstract

In this paper, the input output relationships of petroleum reservoirs under
mature production are simulated using first order ordinary differential equa-
tions. Reservoir simulation seeks to understand the dynamics of petroleum
reservoirs to determine optimal production strategies. Often these systems
are simulated using finite element analysis using thousands of equations with
millions of state variables. These simulations are computationally expensive
and make optimization schemes impractical for large reservoirs with multi-
ple wells. To reduce computational expense we model reservoir dynamics
using the Capacitance Resistance Model (CRM) [1]. The CRM model is
coupled with the Fractional Flow Model (FFM) to predict the fraction of
production fluid that is oil. These simple first order approximations allow
for optimization algorithms to be performed on the time scale of minutes
and hours instead of days and weeks, giving engineers the ability to rapidly
evaluate many scenarios throughout the life of the reservoir.

Keywords: Reduced Order Modeling, Non-linear estimation, Optimization,
Enhanced Oil Recovery

1. Introduction1

The CRM is a reduced-order model that allows for the evaluation and2

optimization of waterflood injection schemes over the time scale of months [2].3

Only the injection and production data are required, although bottom hole4

data can be used to obtain a more accurate model [1] [2]. Mamghaderi et al.5

[3] developed a CRM model that accounts for the cross flow of reservoir fluids6

between reservoir layers. This increases the computation time and number of7

parameters of the model, but allows for more accurate production predictions8

to be made in layered reservoirs. The CRM model is best suited to legacy9
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assets, allowing engineers to quickly and easily estimate the connectivity10

and time constants between wells. However the CRM parameters are time11

invariant, therefore the model may not predict well over the whole life of the12

well without refitting the parameters.13

Other low order approximations of reservoir systems exist in the litera-14

ture. Lee et al. used a finite impulse response model (FIR) to determine15

flow units between injection and production wells [4]. The FIR model re-16

quires a large number of parameters to achieve comparable accuracy with17

other empirical models, making it computationally inefficient. Lee et al. use18

a multivariate autoregressive model to quantify the relationship between in-19

jection and production wells. The model was found to handle noise better20

than the FIR Model [5]. An autoregressive model with two parameters per21

injector employs an extended Kalman filter to continually update the model22

parameters [6]. The filter is used to quickly infer relationships between wells23

and even determine faults and other geological heterogeneities. In the paper24

by Daoyuan, the study was furthered to validate this model and more easily25

determine relationships between injection and production wells [7]. A con-26

strained Kalman filter is used to ensure that the injector-producer relation-27

ships are constrained to physically possible values. These data driven models28

allow engineers without prior knowledge of reservoir geology to understand29

the dynamics and infer geologic structures between different wells within the30

reservoir. The lack of fundamental insight provided by data driven models,31

and the inability to extrapolate beyond the training data, are weaknesses of32

data driven models when compared to physics based models. However, with33

constraints or other information to improve the models, considerable insight34

can be achieved.35

In this paper, CRM parameters are estimated using a constrained solver36

to improve model accuracy. Constrained estimated allows for better model37

fit with less data when compared to unconstrained estimation. After model38

indentification, injection rates are optimized according to Net Present Value.39

Results and future work are discussed, highlighting the need for comparative40

studies and improved solvers.41

2. Model Description42

The CRM model is similar to the First order plus dead time (FOPDT)43

model common in process control. The model looks at the relationship be-44

tween a single input (An injection well) and a single output (A production45

2



well). The model attempts to predict the flow rate of fluid out of the produc-46

tion well based on the variation in flow rate of water entering the reservoir47

from the injection well. Two parameters are used to fit the model, a connec-48

tivity and a time constant which are analogous to the gain and time constant49

of an FOPDT model. Figure 1 shows an example reservoir with four injec-50

tion wells and two production wells. The relationship between each well is51

modeled by the equation below:52

qij = fijI(t) − τij
dqij(t)

dt
− Jjτij

dP
(i)
wf

t
(1)

Where: qij(t) is the production of producer j attributed to injector i,53

fij is the connectivity or gain between injector i and producer j, I(t) is the54

injection flow rate, τij is the time constant between injector i and producer55

j, p
(j)
wf is the bottom hole pressure at producer j, and Jij is the productivity56

index, which can be defined as qij = Jij(pij − p
(j)
wf ) where pij is the average57

pressure for the control volume between producer j and injector i.58

Alternatively, if we assume the control volume around the production well59

is geologically homogeneous, we can construct our control volume around60

each producer instead of between each injector producer pair:61

qij = fijI(t) − τj
dqij(t)

dt
− Jjτj

dP
(i)
wf

t
(2)

This reduces the number of parameters in our model to one gain value for62

each injector producer pair and one time constant for each injector. Further63

simplification can be made if we assume the bottom hole pressure to be64

constant over the time horizon. This reduces our model to the following65

form:66

qij = fijI(t) − τj
dqij(t)

dt
(3)

where67
n∑

i=1

fij ≤ 1 (4)

and68

τj > 0 (5)

are constraints to 4.69
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Figure 1: Example reservoir with 4 injectors and 2 producers. Each line represents a single
equation with a single connectivity and time constant.

The CRM model relates injection flow rate to total production rate, how-70

ever another model must be used to determine the oil/water cut in each71

producer. The Fractional Flow Model by Gentil (2005) is used in this study72

[8]:73

qoj(t) =
1

1 + ajCWI
bj
j

qj (6)

Where aj and bj are model parameters for each producer j.74

3. Model Identification75

Moving horizon estimation (MHE) is applied to both the CRM and FFM.76

Analysis of the fitting procedures is performed and explained. Noise is added77

to the synthetic data to simulate real data. A sensitivity analysis is performed78

to determine important parameters. Estimation is also performed on larger79

fields to better understand the scalability of constrained estimation. All80

estimation is executed using the APMonitor modeling language [9].81

3.1. Estimation Methods82

Different estimation methods are performed in this study. The CRM and83

FFM are fit to past dynamic data using MHE. MHE seeks to minimize the84

error between past data and model prediction, by adjusting unknown model85

parameters. In the CRM model these parameters are the gain and time86

constants. MHE in an optimization method, and can be implemented with87
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various objective functions. Two of the most common objective functions are88

the squared error and l1-norm objective functions (eq. 7 and 8 respectively).89

minΦ = (yx − y)TWm(yx − y) + ∆pTC∆P + (y − ŷ) (7)

minΦ = W T
m(eu − el) + ∆pTC∆P +W T

p (cu − cl) (8)

where 7 and 8 are subject too:90

0 = f(
dx

dt
, x, y, p, d, u) (9)

0 = g(x, y, p, d, u) (10)

0 ≤ h(x, y, p, d, u) (11)

In the application described in this paper, cost of movement c∆p and Wp91

are set to zero because the estimation is offline and the optimal parameter92

values are desired regardless of parameter and solution movement. This93

reduces the two equations above to:94

minΦ = (yx − y)TWm(yx − y) (12)

minΦ = W T
m(eu − el) (13)

Equations 12 and 13 are the objective functions used in this paper for95

estimation of CRM and FFM parameters and are subject to equations 9, 10,96

and 11.97

3.2. Estimation Results and Sensitivity Analysis98

Figures 2 and 3 shows the estimation results from the moving horizon99

estimation using the summed squared error objective function. The reservoir100

in this analysis is based on the SPE 10 benchmark field and consists of 2101

injection and two production wells. The wells are placed close together, so102

system dynamics are fast. The fast dynamics and simplicity of the system103

allow us to fit our model with excellent precision. The l1-norm objective104

provides similar results for both wells. Table 3.2 displays the solve times for105

this 2x2 system.106
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Figure 2: CRM fit with summed squared error objective.

Figure 3: CRM fit with summed squared error objective.

6



Constrained Unconstrained
APOPT 8.3 0.7
IPOPT 2.5 1.3
BPOPT 2.7 1.9

Table 1: Solve times for the parameter estimation of the 2x2 reservoir system in seconds

Figure 4: CRM fit with noisy data: Production Well 1.

The data used in 2 and 3 is from the CMG simulator and is noise free.107

Real field data has significant noise due to measurement inaccuracy, sensor108

noise, broken sensors, and other factors. Figures 4 and 5 show the fit to noisy109

data using the l1-norm objective function.110

MHE is also used to predict FFM parameters to a high degree of accuracy.111

Figure 6 and 7 compare the model prediction with simulator data. There is112

good agreement between the model and data.113

A sensitivity analysis demonstrates how variations in parameters affect114

the quality of model fit with the data. Figure 8 and ?? show the system115

sensitivity to changes in the gain values. The reservoir model is heavily116

influenced by gain values therefore accurate estimation of these parameters117

is important for accuracy. Proper perturbation of the system that excites all118

of the dynamics of the system is important to properly fit the gain values.119

The model time constants are much less sensitive to change. In figure 10, a120
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Figure 5: CRM fit with noisy data: Production Well 2.

Figure 6: FFM fit for production well 1 with l1-norm objective.
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Figure 7: FFM fit for production well 2 with l1-norm objective.

Figure 8: Model gains increased by 150%.

1000% increase in values has a small impact on the model.121

MHE accurately predicts model parameters in the CRM and FFM. The l1-122

norm objective function outperforms the SSE objective function when noise123

is introduced to the data. The CRM model is very sensitive to changes in124

gain but is quite insensitive to changes in time constant on this synthetic125

reservoir. MHE accurately predicts the parameters for the FFM.126

3.3. Larger Systems127

The methods described in section 3.1 are scaled to larger systems to128

see the effects of constrained estimation on solve time and model accuracy.129
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Figure 9: Model gains decreased by 25%.

Figure 10: Model time constants increased by 1000%.
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Estimation was performed on a four injector, four producer field and a eight130

injector, eight producer field. Field data for both simulations was gathered131

using the SPE 10 benchmark with the CMG black oil simulator. Table 3.3132

shows the solve times for both constrained and unconstrained estimation of133

the four injector four producer field. The four injector four producer field134

contains 3672 variables and 3640 equations, with 48 estimated parameters.135

Table 3.3 shows the the solve times for the eight injector, eight producer136

field. The eight injector eight producer field has 11744 variables and 11616137

equations, with 128 estimated parameters. The 8x8 system was solved using138

the squared error objective function to improve simulation time. Simulation139

for most scenarios on this field were improved by an order of magnitude140

when compared to the l1-norm objective function. Figure 11 shows the solve141

time for the 2,4,8 and producer system using the l1-norm and SSE objective142

functions. Significant improvements in solve time are achieved using the SSE143

objective function.144

Constrained Unconstrained
APOPT 34.9 19.3
IPOPT 4.5 4.2
BPOPT 7.0 6.8

Table 2: Solve times for the 4x4 reservoir system in seconds (l1-norm objective)

Constrained Unconstrained
APOPT 32 56
IPOPT 34 4.8
BPOPT Did not converge Did not converge

Table 3: Solve times for the 8x8 reservoir system in seconds (Squared Error Objective)

4. Optimization145

4.1.146

Optimization Equations and Theory147

Reservoir optimization seeks to maximize the value of a particular reser-148

voir by producing as much oil as quickly as possible at the lowest cost. Net149

Present Value (NPV) is the most common method in finance to quantify150
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Figure 11: Comparison of solve times for various solvers using both the l1-norm and SSE
objective functions. Note that BPOPT did not converge for the 8x8 system.

value. NPV is the present value of all future cash flows from the reservoir,151

and is defined as:152

NPV =
m∑

n=1

(Revenuen − Expensesn)
(1 + r)n − 1

r
(14)

Where r is the required rate of return and n is the number of years in153

the future the cash flow will occur. In this study we use the continuous time154

version of this equation as shown below.155

NPV =

∫ Tf inal

0

(Revenue(t) − Expenses(t))e−rtdt (15)

Revenue and Expenses are defined as:156

Revenue = Poil(t)qoi(t) (16)

Expenses = Pwater(t)Ii(t) (17)

where j is the number of production wells, k is the number of injection157

wells, Poil is the price of oil, Pwater is the price of water, qoi is the amount of158

oil produced from production well i, and Ii is the amount of water injected159

at injection well k. qoi is calculated from the Fractional Flow Model and Ii160

is the manipulated variable for the optimization problem. We also restrict161

the values of Ii to be greater than 0 and less than 1000 STB/Day.162
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4.2. Results and Discussion163

The CRM and FFM are fitted to a small synthetic oil field and NPV is164

optimized by adjusting injection flow rate. The APOPT solver successfully165

finds a solution to the objective function by varying the injection flow rates.166

Figure 12 depicts the optimized NPV for the two injector two producer reser-167

voir. Figures 13 and 14 show the production and injection profiles for the168

same reservoir. Both injection wells have a total gain close to one, meaning169

that all of the water injected into the well is not lost to the reservoir but170

instead returns to the surface at the production wells (See Table 4.2). How-171

ever Figure 14 shows that it is optimal to inject more water into well two172

than well one.173

Gain11 Gain21 Tau11 Tau21
Production Well 1 -9.22 -1.9 0.109 -0.022

Gain12 Gain22 Tau12 Tau22
Production Well 2 -7.37 0.279 0.023 -0.063

Table 4: Sensitivities for the 2x2 reservoir system

Producer 1 Producer 2 Total
Injector 1 0.732 0.268 1.00
Injector 2 0.520 0.480 1.00

Table 5: Model gains for injector producer pairs

A sensitivity analysis performed on the reservoir reveals how NPV is174

affected by changes in injection rate. Table 4.2 shows the sensitivity of NPV175

to injection rates in each well. Well two has a much larger effect on the NPV176

of the reservoir when compared to well one. For this reason the optimizer177

chooses to inject more from well two than from well one.178

Sensitivities NPV
Well 1 -0.020735
Well 2 -48.391

Table 6: Objective function sensitivity to changes in injection rate at both injection wells.

Assumptions in the objective function can lead to non-optimal perfor-179

mance. One of the difficulties of finding the optimal solution is predicting180
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Figure 12: Optimal NPV for a synthetic two injector two producer field

Figure 13: Optimal Oil Production for a synthetic two injector two producer field

the future price of oil and water. For example, an oil over supply may make181

it more economical for the reservoir to produce at lower levels until the price182

of oil rebounds, even though the NPV function discounts future cash flows.183

Conversely, in a high oil price environment, it may be favorable to produce184

more oil quickly at the expense of water breakthrough in the reservoir, and185

leaving oil trapped in the reservoir. These types of price events are difficult to186
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Figure 14: Optimal injection schedule for a synthetic two injector two producer field

Figure 15: Oil - Water ratio for a synthetic two injector two producer field

model and introduce a significant amount of error into the optimal solution.187
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5. Conclusion and Future Work188

Optimization coupled with estimation and modeling provides a method-189

ology for engineers and managers to reduce water usage, shut in ineffective190

wells and increase oil production. In this study, constrained estimation and191

optimization were implemented to optimize the economic value of a small192

synthetic reservoir. The optimization was performed at one time step, how-193

ever in real reservoirs, optimization can occur many times. As new data194

is received from oil fields, estimation and optimization procedures may be195

repeated to achieve better model fits, and new injection profiles scheduled196

into the future. Closed loop control using model predictive control may be197

implemented, however given the timescale of these systems, may not be nec-198

essary in most cases. Nevertheless closed loop control may provide benefits199

by calculating the optimal responses to disturbances such as well shut ins,200

and unplanned well maintenance.201

The linearity of the models used in this optimization scheme limit their202

validity to certain production and injection rates. In real reservoirs, wells203

are periodically shut in for maintenance, providing step data for dynamic204

estimation. However if injection rates are small, extrapolating the model to205

higher flow rates creates inaccuracies due to the non-linearity of the reservoir206

system. It is also important to fit these models to data during the ’mature’207

reservoir phase as the reservoir behaves more linearly during this phase [1].208

Low order non-linear models may provide improved fit, such as the auto-209

regressive exogenous inputs (ARX) model. However ARX models are strictly210

empirical and do not factor in information such as bottom-hole pressure,211

unlike the CRM. A direct comparison of low order models should be made212

in future work to determine accuracy in various reservoir types.213

The systems modeled in this study were small and highlight the need214

for improved solvers. The largest reservoir in this paper is an eight injector215

eight producer field. In this case only 128 parameters were estimated. In216

a 100 injector 100 producer system, 20,000 parameters would need to be217

estimated. Current nonlinear solvers may struggle to solve problems of this218

scale quickly. Improvements in solver design are a potential solution to solve219

large non-linear systems.220

6. Nomenclature221

Φ - objective function222
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yx - system measurements223

y - model measurements224

ŷ - prior model values225

Wm - measurement deviation226

Wp - penalty for movement from prior solution227

C∆P - parameter movement penalty228

∆P - change in parameters229

eu, el - slack variables above and below measurement deadband230

cu, cl - slack variables above and below a previous model value231

x, u, p, d - states, inputs, parameters, and disturbances232

f, g, h - equation residuals, output function, and inequality constraints233
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