Proportional Integral (PI) Control

The PI Controller

"Ideal" form of the PI Controller

$$CO = CO_{bias} + Kc \cdot e(t) + \frac{Kc}{\tau_1} \int e(t)dt$$

where:

CO = controller output signal

CO_{bias} = controller bias or null value

PV = measured process variable

SP = set point

e(t) = controller error = SP - PV

Kc = controller gain (a tuning parameter)

= controller reset time (a tuning parameter)

- τ I is in denominator so smaller values provide a larger weighting to the integral term
- \mathcal{T} I has units of time, and therefore is always positive

Function of the Proportional Term

- The proportional term, Kc·e(t), immediately impacts CO based on the size of e(t) at a particular time t
- The past history and current trajectory of the controller error have no influence on the proportional term computation

Class Exercise – Calculate Error and Integral

Control Calculation is Based on Error, e(t)

- Here is identical data plotted two ways
- To the right is a plot of error, where: e(t) = SP PV
- Error e(t) continually changes size and sign with time

Function of the Integral Term

- The integral term continually sums up error, e(t)
- Through constant summing, integral action accumulates influence based on how long and how far the measured PV has been from SP over time.
- Even a small error, if it persists, will have a sum total that grows over time and the amount added to CO_{bias} will similarly grow.
- The continual summing of integration starts from the moment the controller is put in automatic

Integral Term Continually Sums the Value: SP – PV

- The integral is the sum of the area between SP and PV
- At t=32 min, when the PV first reaches the SP, the integral is:

$$\int_{0 \text{ min}} e(t)dt = 135$$

Integral of Error is the Same as Integral of: SP – PV

- At t = 60 min, the total integral is: 135 34 = 101
- When the dynamics have ended, e(t) is constant at zero and the total integral has a final residual value: 135 34 + 7 = 108

Advantage of PI Control – No Offset

 The PI controller stops computing changes in CO when e(t) equals zero for a sustained period

$$CO = CO_{bias} + Kc \cdot e(t) + \frac{Kc}{\tau_1} \int e(t)dt$$

 At that point, the proportional term equals zero, and the integral term may have a residual value

$$CO = CO_{bias} + 0 + \frac{Kc}{\tau_{I}}(108)$$
Integral acts as "moving bias" term

- This residual value, when added to CO_{bias}, essentially creates an overall "moving bias" that tracks changes in operating level
- This moving bias eliminates offset, making PI control the most widely used industry algorithm

Disadvantages of PI Control - Interaction

- Integral action tends to increase the oscillatory or rolling behavior of the PV
- There are *two* tuning parameters (Kc and $\mathcal{T}_{\mathbf{I}}$) and they interact with each other

$$CO = CO_{bias} + Kc \cdot e(t) + \frac{Kc}{\tau_1} \int e(t)dt$$

 This interaction can make it challenging to arrive at "best" tuning values

PI Controller Tuning Guide (Figure 8.9)

Integral Action and Reset Windup

• The math makes it possible for the error sum (the integral) to grow very large.

$$CO = CO_{bias} + Kc \cdot e(t) + \frac{Kc}{\tau_{l}} \int e(t)dt$$
integral

- The integral term can grow so large that the total CO signal stops making sense (it can be signaling for a valve to be open 120% or negative 15%)
- "Windup" is when the CO grows to exceed the valve limits because the integral has reached a huge positive/negative value
- It is associated with the integral term, so it is called *reset windup*
- The controller can't regulate the process until the error changes sign and the integral term shrinks sufficiently so that the CO value again makes sense (moves between 0 100%).

Reset Windup and Jacketing Logic

- Industrial controllers employ jacketing logic to halt integration when the CO reaches a maximum or minimum value
- Beware if you program your own controller because reset windup is a trap that novices fall into time and again
- If two controllers trade off regulation of a single PV (e.g. select control; override control), jacketing logic must instruct the inactive controller to stop integrating. Otherwise, that controller's integral term can wind up.

Evaluating Controller Performance

- Bioreactors can't tolerate sudden operating changes because the fragile living cell cultures could die.
 - "good" control means PV moves slowly
- Packaging/filling stations can be unreliable. Upstream process must ramp back quickly if a container filling station goes down.
 - "good" control means PV moves quickly
- The operator or engineer defines what is good or best control performance based on their knowledge of:
 - goals of production
 - capabilities of the process
 - impact on down stream units
 - desires of management

Performance Analysis

- Rise Time = When PV first reaches SP
- Peak Time = Time of first peak
- Overshoot Ratio = B/A
- Decay Ratio = C/B
- Settling Time = Time when PV remains < 5% of SP

Class Exercise

- Calculate:
 - Rise Time
 - Peak Time
 - Overshoot Ratio
 - Decay Ratio
 - Settling Time

Performance Analysis - Time Related Criteria

The clock for time related events begins when the SP is stepped

Performance Analysis - Time Related Criteria

- $t_{rise} = 43 30 = 13 min$
- $t_{peak} = 51 30 = 13 \text{ min}$
- $t_{settle} = 100 30 = 70 \text{ min}$

Performance Analysis - Peak Related Criteria

Here:

- Overshoot = 4.5/10 = 0.45 or 45%
- Decay ratio = 1/4.5 = 0.22 or 22%

Performance Analysis Note

- The classical criteria are not independent:
 - if decay ratio is large, then likely will have a long settling time
 - if rise time is long, then likely will have a long peak time

Performance Analysis – What If No Peaks?

- Old rule-of-thumb is to design for a 10% Overshoot Ratio and/or a 25% decay ratio (called a quarter decay)
- Yet many modern operations want no PV overshoot at all, making B = C = 0
- With no peaks, the performance criteria are of limited value