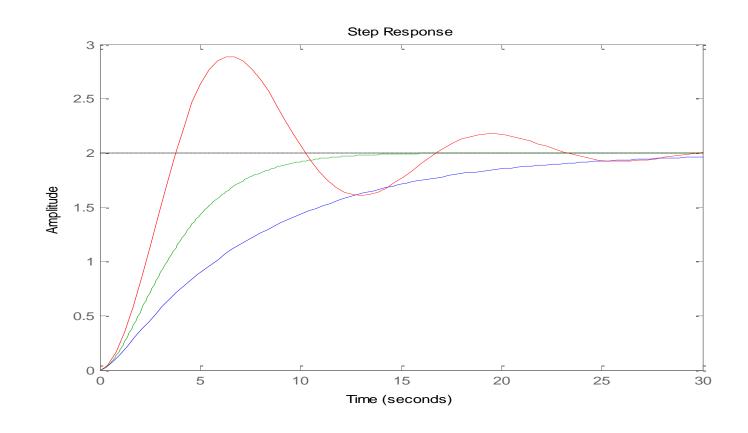
Second Order Systems



Second Order Equations

Standard Form

$$G(s) = \frac{K}{\tau^2 s^2 + 2\zeta \tau s + 1}$$

$$\zeta = \text{Natural Period of Oscillation}$$

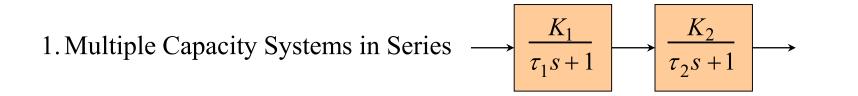
$$\zeta = \text{Damping Factor (zeta)}$$

Note: this has to be 1.0!!!

Corresponding Differential Equation

$$\tau^2 \frac{d^2 y}{dt^2} + 2\zeta \tau \frac{dy}{dt} + y = Ku(t)$$

Origins of Second Order Equations



become

$$\xrightarrow{K_1K_2} \text{ or } \xrightarrow{K} \frac{K}{\tau^2 s^2 + 2\zeta \tau s + 1}$$

- 2. Controlled Systems (to be discussed later)
- 3. Inherently Second Order Systems
 - Mechanical systems and some sensors
 - Not that common in chemical process control

Examination of the Characteristic Equation

$$\tau^2 s^2 + 2\zeta \tau s + 1 = 0$$

$\zeta > 1$	Overdamped	Two distinct real	
		roots	
$\zeta = 1$	Critically Damped	Two equal real roots	
$0 < \zeta < 1$	Underdamped	Two complex conjugate roots	

Response of 2nd Order System to Step Inputs

Overdamped Eq. 5-48 or 5-49	Sluggish, no oscillations
Critically damped Eq. 5-50	Faster than overdamped, no oscillation
Underdamped Eq. 5-51	Fast, oscillations occur

Ways to describe underdamped responses:

- Rise time
 Time to first peak
- Settling timeOvershoot
- Decay ratio
 Period of oscillation

Response of 2^{nd} Order Systems to Step Input ($0 < \zeta < 1$)

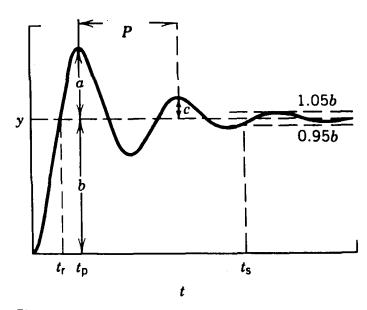


Figure 5.10. Performance characteristics for the step response of an underdamped process.

- 1. Rise Time: t_r is the time the process output takes to first reach the new steady-state value.
- 2. Time to First Peak: t_p is the time required for the output to reach its first maximum value.
- 3. Settling Time: t_s is defined as the time required for the process output to reach and remain inside a band whose width is equal to $\pm 5\%$ of the total change in y. The term 95% response time sometimes is used to refer to this case. Also, values of $\pm 1\%$ sometimes are used.
- **4.** Overshoot: OS = a/b (% overshoot is 100a/b).
- **5. Decay Ratio**: DR = c/a (where *c* is the height of the second peak).
- **6. Period of Oscillation**: *P* is the time between two successive peaks or two successive valleys of the response.

Eq. 5-51
$$y(t) = KM \left\{ 1 - e^{-\zeta t/\tau} \left[\cos \left(\frac{\sqrt{1 - \zeta^2}}{\tau} t \right) + \frac{\zeta}{\sqrt{1 - \zeta^2}} \sin \left(\frac{\sqrt{1 - \zeta^2}}{\tau} t \right) \right] \right\}$$

Response of 2nd Order Systems to Step Input

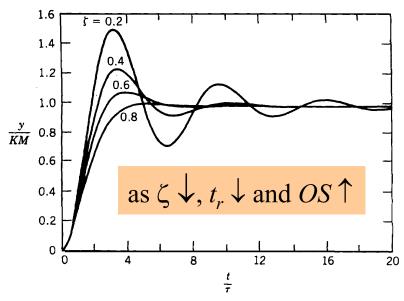


Figure 5.8. Step response of underdamped second-order processes.

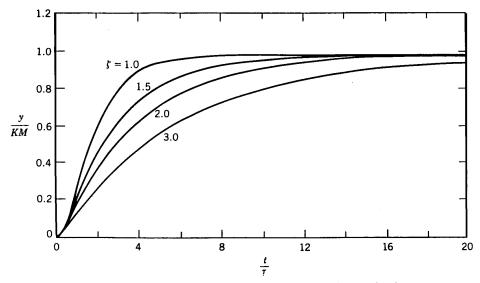


Figure 5.9. Step response of critically-damped and overdamped second-order processes.

$$0 < \zeta < 1$$

$$\zeta \geq 1$$

Note that $\zeta < 0$ gives an unstable solution

Relationships between OS, DR, P and τ , ζ

for step input to 2^{nd} order system, underdamped solution v(s) = -

$$Y(s) = \frac{KM}{s(\tau^2 s^2 + 2\zeta \tau s + 1)}, \qquad \zeta <$$

(5-52)	$t_p = \frac{\pi \tau}{\sqrt{1 - \zeta^2}}$		
(5-53	$OS = \exp\left(-\frac{\pi\zeta}{\sqrt{1-\zeta^2}}\right)$	$\zeta = \sqrt{\frac{\left[\ln(OS)^2\right]}{\pi^2 + \left[\ln(OS)^2\right]}}$	Above (5-56)
(5-54)	$DR = (OS)^{2}$ $= \exp\left(-\frac{2\pi\zeta}{\sqrt{1-\zeta^{2}}}\right)$		
(5-55)	$P = \frac{2\pi\tau}{\sqrt{1-\zeta^2}}$	$\tau = \frac{\sqrt{1 - \zeta^2}}{2\pi} P$	Above (5-57)
(5-60)	$t_r = \frac{\tau}{\sqrt{1 - \zeta^2}} \left(\pi - \cos^{-1} \zeta \right)$		

Response of 2nd Order System to Sinusoidal Input

Output is also oscillatory *Output has a different amplitude than the input *Amplitude ratio is a function of ζ , τ (see Eq. 5-63) *Output is phase shifted from the input *Frequency ω must be in radians/time!!! $(2\pi \text{ radians} = 1 \text{ cycle})$ *P = time/cycle = 1/(v), $2\pi v = \omega$, so P = $2\pi/\omega$ (where v = frequency in cycles/time)

Sinusoidal Input, 2nd Order System

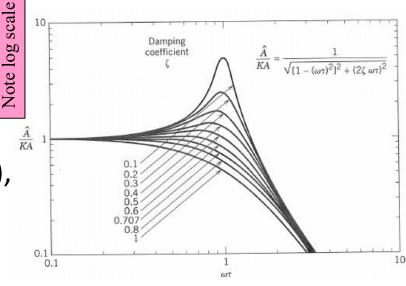
(Section 5.4.2)

• Input = A sin ωt , so

• A is the amplitude of the <u>input</u> function

• ω is the frequency in radians/time

At long times (so exponential dies out),



 \hat{A} is the <u>output</u> amplitude

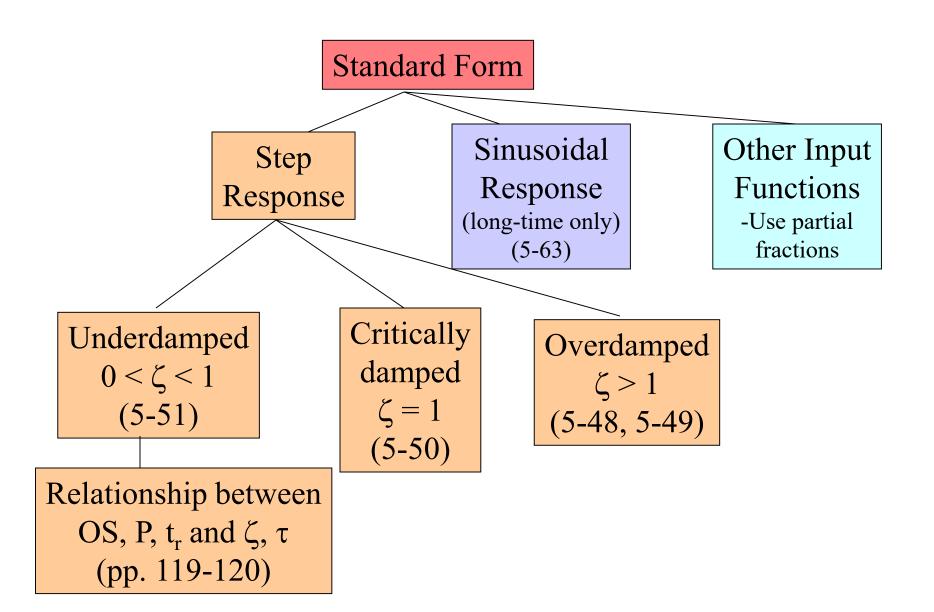
$$\hat{A} = \frac{KA}{\sqrt{\left[1 - (\omega \tau)^2\right]^2 + (2\zeta \omega \tau)^2}}$$

Note: There is also an equation for the maximum amplitude ratio (5-66)

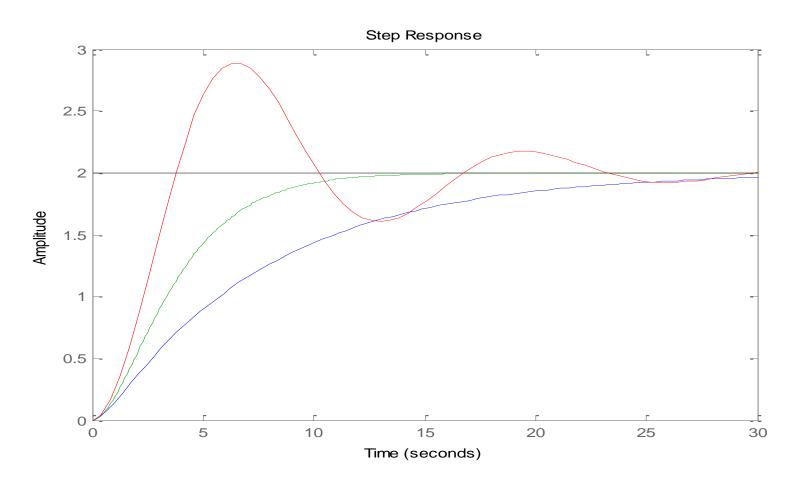
Bottom line: We can calculate how the output amplitude changes due to a sinusoidal input

(5-63)

Road Map for 2nd Order Equations



Determine 2nd Order System



- Heated tank + controller = 2nd order system
- (a) When feed rate changes from 0.4 to 0.5 kg/s (step function), T_{tank} changes from 100 to 102°C. Find gain (K) of transfer function:

- Heated tank + controller = 2nd order system
- (b) Response is slightly oscillatory, with first two maxima of 102.5 and 102.0°C at 1000 and 3600 S. What is the complete process transfer function?

Heated tank + controller = 2nd order system
 (c) Predict t_r:

• Thermowell + CSTR = 2nd order system

• Inermowell + CSTR = 2nd order system

(a)
$$\frac{T'_{meas}(s)}{T'_{reactor}(s)} = \frac{1}{(3s+1)(10s+1)}$$

Find τ , ζ :