Example 1. Linearization with one variable

Linearize the following equation around $\bar{x}=3$:

$$
f(x)=3 x^{3}+5 x^{2}+27
$$

(i) Write the Taylor's series expansion:

$$
f(x)=f(\bar{x})+\left.\frac{d f}{d x}\right|_{x=\bar{x}}(x-\bar{x})
$$

(ii) Evaluate $f(\bar{x})=3(3)^{3}+5(3)^{2}+27=3(27)+5(9)+27=153$
(iii) What is the derivative of the function? $\left(\frac{d f}{d x}\right)=9 x^{2}+10 x$
(iv) Evaluate $f^{\prime}(\bar{x})=9(3)^{2}+10(3)=111$
(v) Write the final linear expression $f(x)=153+111(x-3)$

Example 2. Linearization with two variables

Linearize the following equation around $\bar{x}=2$ and $\bar{y}=2$:

$$
f(x, y)=3 x y+y^{2}-3 x^{2}
$$

(i) Write the Taylor's series expansion:

$$
f(x, y)=f(\bar{x}, \bar{y})+\left.\frac{d f}{d x}\right|_{\substack{x=\bar{x} \\ y=\bar{y}}}(x-\bar{x})+\left.\frac{d f}{d y}\right|_{\substack{x=\bar{F} \\ y=\bar{y}}}(y-\bar{y})
$$

(ii) Evaluate $f(\bar{x}, \bar{y})=3(2)(2)+(2)^{2}-3(2)^{y=y}=4$
(iii) What are the partial derivatives of the function?

$$
\begin{aligned}
& \frac{\partial f}{\partial x}=3 y-6 x \\
& \frac{\partial f}{\partial y}=3 x+2 y
\end{aligned}
$$

(iv) Evaluate $\left.\frac{\partial f}{\partial x}\right|_{\bar{x}, \bar{y}}=6-12=-6$

$$
\left.\frac{\partial f}{\partial y}\right|_{\bar{x}, \bar{y}}=6+4=10
$$

(v) Write the final linear expression:

$$
f(x)=4-6(x-2)+10(y-2)
$$

$$
-r_{A}=k_{1} C_{A}^{2}-k_{2} C_{A} C_{B}
$$

(i) Write the transient mole balance for species A:
$V \frac{d C_{A}}{d t}=C_{A_{1} i n} q_{i n}-C_{A} q+\left(-k_{1} C_{A}^{2}+k_{2} C_{A} C_{B}\right) V$
(ii) Assume $\mathrm{k}_{1}, \mathrm{k}_{2}, \mathrm{q}_{\mathrm{i}}, \mathrm{q}$, and V are constant. The function to linearize is just the RHS of the above equation! The variables are $C_{A, i}, C_{A}$, and C_{B}.
(iii) At steady state, what is the value of $V \frac{d C_{A}}{d t}$? \longrightarrow. Time derivatives are zero Therefore, $f\left(\bar{C}_{A, i}, \bar{C}_{A}, \bar{C}_{B}\right)=\underline{0}$.
(iv) Write the Taylor's series expansion:

$$
\begin{aligned}
& \text { Write the Taylor’s series expansion: } \\
& f\left(C_{A, i}, C_{A}, C_{B}\right)=f\left(\bar{C}_{A, i}, \bar{C}_{A}, \bar{C}_{B}\right)+\left.\frac{d f}{d C_{A, i}}\right|_{\substack{C_{A, i}=\\
C_{A}=\bar{C}_{A, i} \\
C_{D}=\frac{C_{A}}{C_{B}}}}\left(C_{A_{i \sim}}-\overline{C_{A, i}}\right)+\left.\frac{d f}{d C_{A}}\right|_{C_{S}}\left(C_{C_{A}}-\bar{C}_{A}\right)+\frac{d f}{d C_{B}}\left(C_{B}-\bar{C}_{B}\right)
\end{aligned}
$$

(v) What are the partial derivatives of the function?

$$
\begin{aligned}
& \frac{\partial f}{\partial C_{A, i}}=q_{\text {in }} \\
& \frac{\partial f}{\partial C_{A}}=-q-2 k_{1} C_{A} V+k_{2} C_{B} V \\
& \frac{\partial f}{\partial C_{B}}=k_{2} C_{A} V
\end{aligned}
$$

(vi) Evaluate $\left.\frac{\partial f}{\partial C_{A, i}}\right|_{s s}=\quad q_{\text {in }}=\alpha_{\text {, }}$

$$
\begin{aligned}
\left.\frac{\partial f}{\partial C_{A}}\right|_{s s} & =-q-2 k_{1} \bar{C}_{A} V+k_{2} \bar{C}_{B} V \\
\left.\frac{\partial f}{\partial C_{B}}\right|_{s s} & =\alpha_{2} \\
=k_{2} \bar{C}_{A} V & =\alpha_{3}
\end{aligned}
$$

(vii) Write the final linear expression:

$$
f\left(C_{A, i}, C_{A}, C_{B}\right)=\underline{O}+\underset{\text { constants }}{\left.\alpha_{1}\left(C_{A, i}-\bar{C}_{A, i}\right)+\frac{\alpha_{2}}{7}\left(C_{A}-\bar{C}_{A}\right)+\underset{c_{3}}{\alpha_{B}}\left(C_{B}-\bar{C}_{B}\right)\right)}
$$

(viii) Now introduce deviation variables (the prime here is not a derivative):
$C_{A, i}^{\prime}=C_{A, i}-\bar{C}_{A, i}$
$C_{A}^{\prime}=C_{A}-\bar{C}_{A}$
$C_{B}^{\prime}=C_{B}-\bar{C}_{B}$
(ix) The transient linearized equation now becomes:
$V \frac{d C_{A}}{d t}=V \frac{d C_{A}^{\prime}}{d t}=\underline{\alpha_{1}} C_{A, i}^{\prime}+\ldots \alpha_{2} C_{A}^{\prime}+\alpha_{3} C_{B}^{\prime}$
(x) All of the underlined terms above are constants, since they were evaluated at the steady-state condition. For convenience in this equation, call the second constant c_{l}. The standard form for solving this equation using Laplace transforms is:

$$
\tau \frac{d y^{\prime}}{d t}+y^{\prime}=f\left(x_{1}, x_{2}, x_{3}, \text { etc. }\right) \quad V \frac{d C_{A}}{d t}=\alpha_{1} C_{A, i}^{\prime}+\alpha_{2} C_{A}^{\prime}+\alpha_{3} C_{B}^{\prime}
$$

Put the equation in (ix) into standard form:
$\left.-\frac{V}{\alpha_{2}} \frac{d C_{A}^{\prime}}{d t}\right)+C_{A}^{\prime}=\underline{\left(\frac{\alpha_{1}}{-\alpha_{2}}\right)} C_{A, i}^{\prime}+\left(-\frac{\alpha_{3}}{\alpha_{2}}\right) C_{B}^{\prime}$

