Example 1. Linearization with one variable

Linearize the following equation around $\bar{x}=3$:

$$
f(x)=3 x^{3}+5 x^{2}+27
$$

(i) Write the Taylor's series expansion:
$f(x)=$
(ii) Evaluate $f(\bar{x})=$
(iii) What is the derivative of the function? $\left(\frac{d f}{d x}\right)=$
(iv) Evaluate $f^{\prime}(\bar{x})=$
(v) Write the final linear expression $f(x)=$

Example 2. Linearization with two variables

Linearize the following equation around $\bar{x}=2$ and $\bar{y}=2$:

$$
f(x, y)=3 x y+y^{2}-3 x^{2}
$$

(i) Write the Taylor's series expansion:

$$
f(x, y)=
$$

(ii) Evaluate $f(\bar{x}, \bar{y})=$
(iii) What are the partial derivatives of the function?

$$
\begin{aligned}
& \frac{\partial f}{\partial x}= \\
& \frac{\partial f}{\partial y}=
\end{aligned}
$$

(iv) Evaluate $\left.\frac{\partial f}{\partial x}\right|_{\bar{x}, \bar{y}}=$

$$
\left.\frac{\partial f}{\partial y}\right|_{\bar{x}, \bar{y}}=
$$

(v) Write the final linear expression:
$f(x)=$

Example 3. CSTR with three variables

$$
-r_{A}=k_{1} C_{A}^{2}-k_{2} C_{A} C_{B}
$$

(i) Write the transient mole balance for species A :
$V \frac{d C_{A}}{d t}=$
(ii) Assume $\mathrm{k}_{1}, \mathrm{k}_{2}, \mathrm{q}_{\mathrm{i}}, \mathrm{q}$, and V are constant. The function to linearize is just the RHS of the above equation! The variables are \qquad , and \qquad —.
(iii) At steady state, what is the value of $V \frac{d C_{A}}{d t}$? \qquad .
Therefore, $f\left(\bar{C}_{A, i}, \bar{C}_{A}, \bar{C}_{B}\right)=$ \qquad .
(iv) Write the Taylor's series expansion:
$f\left(C_{A, i}, C_{A}, C_{B}\right)=$
(v) What are the partial derivatives of the function?

$$
\begin{aligned}
\frac{\partial f}{\partial C_{A, i}} & = \\
\frac{\partial f}{\partial C_{A}} & = \\
\frac{\partial f}{\partial C_{B}} & =
\end{aligned}
$$

(vi) Evaluate $\left.\frac{\partial f}{\partial C_{A, i}}\right|_{s s}=$

$$
\begin{gathered}
\left.\frac{\partial f}{\partial C_{A}}\right|_{s s}= \\
\left.\frac{\partial f}{\partial C_{B}}\right|_{s s}=
\end{gathered}
$$

(vii) Write the final linear expression:

$$
f\left(C_{A, i}, C_{A}, C_{B}\right)=\ldots+\ldots\left(C_{A, i}-\bar{C}_{A, i}\right)+\ldots\left(C_{A}-\bar{C}_{A}\right)+\ldots \quad\left(C_{B}-\bar{C}_{B}\right)
$$

(viii) Now introduce deviation variables (the prime here is not a derivative):
$C_{A, i}^{\prime}=C_{A, i}-\bar{C}_{A, i}$
$C_{A}^{\prime}=C_{A}-\bar{C}_{A}$
$C_{B}^{\prime}=C_{B}-\bar{C}_{B}$
(ix) The transient linearized equation now becomes:

$$
V \frac{d C_{A}}{d t}=V \frac{d C_{A}^{\prime}}{d t}=_C_{A, i}^{\prime}+\ldots C_{A}^{\prime}+\ldots C_{B}^{\prime}
$$

(x) All of the underlined terms above are constants, since they were evaluated at the steady-state condition. For convenience in this equation, call the second constant c_{1}. The standard form for solving this equation using Laplace transforms is:
$\tau \frac{d y^{\prime}}{d t}+y^{\prime}=f\left(x_{1}, x_{2}, x_{3}\right.$, etc. $)$
Put the equation in (ix) into standard form:

$$
\frac{V}{c_{1}} \frac{d C_{A}^{\prime}}{d t}+C_{A}^{\prime}=_C_{A, i}^{\prime}+\ldots C_{B}^{\prime}
$$

