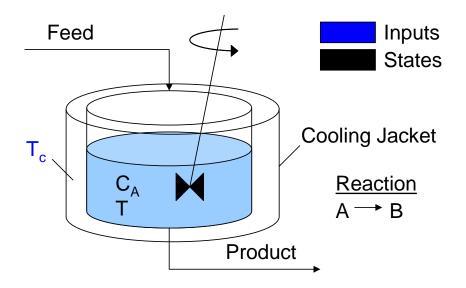

Mathematical Modeling CSTR Example

Develop a Dynamic Model

- Draw a schematic diagram, labeling process variables
- List all assumptions
- Classify Problem
 - Time Dependence Only
 - ODE: Ordinary differential equations
 - DAE: Differential algebraic equations
 - Time and Spatial Dependence
 - PDE: Partial differential equations
 - PDAE: Partial differential algebraic equations
- Write dynamic balances (mass, species, energy)
- Other relations (thermo, reactions, geometry, etc.)
- Degrees of freedom
 - Does # of eqns = # of unknowns?
- Simplify

Balances

• Total Mass Balance:


• Species Mole Balance:

$$\frac{dn_A}{dt} = \frac{d(c_A V)}{dt} = \sum_{i=inlet} c_{Ai} q_i - \sum_{j=outlet} c_{Aj} q_j + r_A V$$

• Total Energy Balance:

$$\frac{d[\rho C_p V(T - T_{ref})]}{dt} = \sum_{i:inlet} \dot{m}_i C_p (T_i - T_{ref}) - \sum_{j:outlet} \dot{m}_j C_p (T_j - T_{ref}) + Q + W_s$$

Process Diagram

Assumptions

- 1. Liquid-only system
- 2. Constant volume (tight level control)
- 3. First Order Reaction
- 4. No Jacket Temperature Dynamics
- 5. Negligible Heat Input from Stirring
- 6. Constant Density

Process Information

Manipulated Variables	
Tc = 270	Temperature of cooling jacket (K)
Disturbances	
q = 100	Volumetric Flowrate (m^3/sec)
V = 100	Volume of CSTR (m^3)
rho = 1000	Density of A-B Mixture (kg/m^3)
Cp = .239	Heat capacity of A-B Mixture (J/kg-K)
mdelH = 5e4	Heat of reaction for A->B (J/mol)
EoverR = 8750	EoverR = E/R = Activation energy (J/mol) / Universal Gas Constant (8.31451 J/mol-K)
k0 = 7.2e10	Pre-exponential factor (1/min)
UA = 5e4	UA = U * A = Overall Heat Transfer (W/m^2-K) / Area (m^2)
Caf = 1	Feed Concentration (mol/m^3)
Tf = 350	Feed Temperature (K)
Differential States	
Ca = 0.9	Concentration of A in CSTR (mol/m^3)
T = 305	Temperature in CSTR (K)

Model Equations

Species Mole Balance for Component A

$$\frac{dn_A}{dt} = \frac{d(c_A V)}{dt} = \sum_{i=inlet} c_{Ai} q_i - \sum_{j=outlet} c_{Aj} q_j + r_A V$$

$$V\frac{dc_A}{dt} = c_{A.in}q - c_Aq + r_AV$$

Energy Balance

$$\frac{d[\rho C_p V(T - T_{ref})]}{dt} = \sum_{i:inlet} \dot{m}_i C_p (T_i - T_{ref}) - \sum_{j:outlet} \dot{m}_j C_p (T_j - T_{ref}) + Q + W_s$$

$$\rho C_p V \frac{dT}{dt} = \rho C_p q (T_{in} - T) + r_A \Delta H_r - UA(T - T_C)$$

Other Equation(s): Reaction Rate

$$r_A = k_0 c_A \exp(-\frac{E}{RT})$$

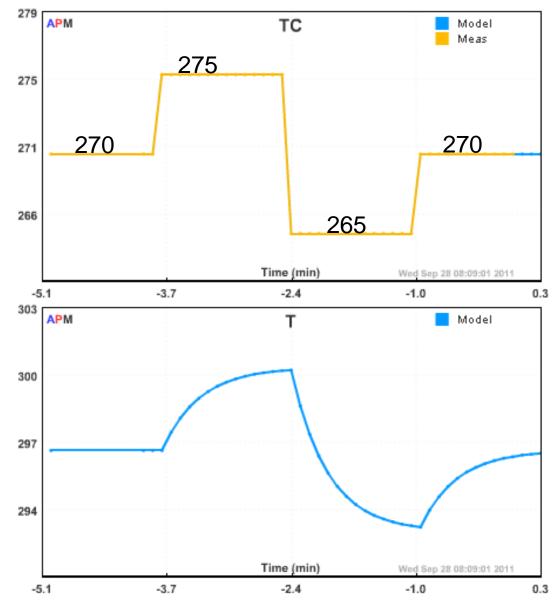
Degrees of Freedom

Number of Variables

 $c_A T r_A$

Number of Equations

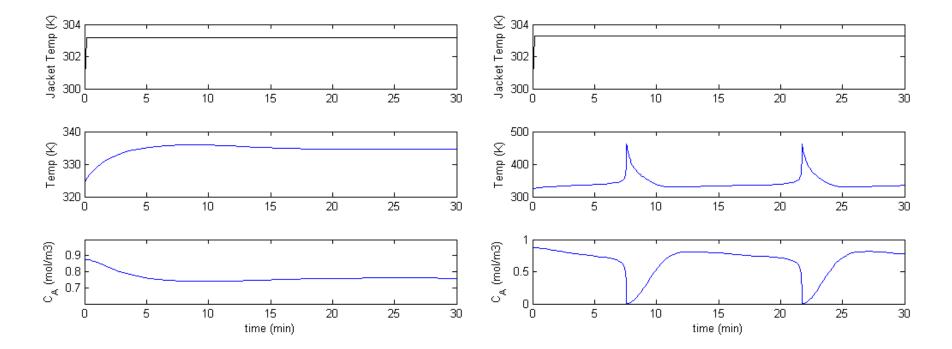
$$V\frac{dc_A}{dt} = c_{A.in}q - c_Aq + r_AV$$


$$\rho C_p V \frac{dT}{dt} = \rho C_p q (T_{in} - T) + r_A \Delta H_r - UA(T - T_C)$$

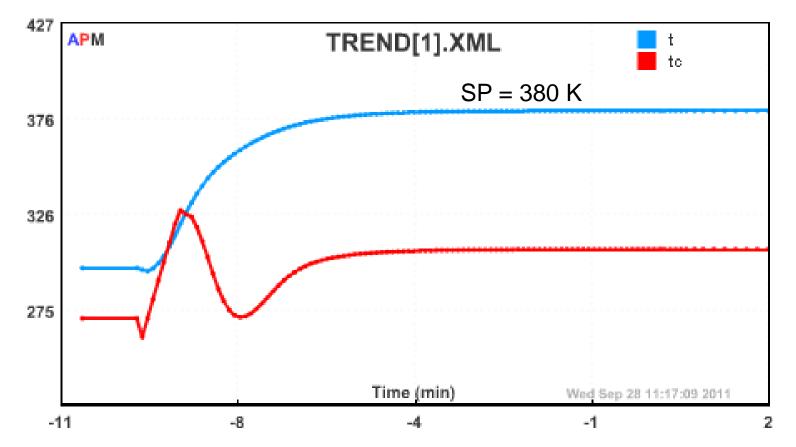
$$r_A = k_0 c_A \exp(-\frac{E}{RT})$$

$$N_{DOF} = N_{Variables} - N_{Equations}$$

Simplify Variables Substitute C_A $r_A = k_0 c_A \exp(-\frac{E}{RT})$ **Equations** $V\frac{dc_A}{dt} = c_{A.in}q - c_Aq + r_AV$ $\rho C_p V \frac{dT}{dt} = \rho C_p q (T_{in} - T) + r_A \Delta H_r - UA(T - T_C)$


Simulate: Doublet Test

Stability Analysis


Tc = 303.2 K

Tc = 303.3 K

Model-Based Control

How does the controller achieve 380 K when manual control to 335 K appeared to cause run-away reaction?

