~ Homework 14: Nonlinear Equations

v Problem 1

Use fsolve to find the roots of the polynomial f(z) = 2z2 + 3z — 10.

import numpy as np
from scipy.optimize import fsolve

v Problem 2

Use fsolve to find the solution of the following two equations:

flz,y) = 22%3 4 y*/3 — 913
$2 _
9(z,y) = +y— 1.

Use an initial guess of zg = 1, yp = 1.

v Problem 3

import or install wget
try:
import wget
except:
try:
from pip import main as pipmain
except:
from pip._internal import main as pipmain
pipmain(['install’, 'wget'])
import wget

retrieve thermoData.yaml

url = "https://apmonitor.com/che263/uploads/Main/thermoData.yaml’
filename = wget.download(url)

print('")

print('Retrieved thermoData.yaml')

0L] 1.
Retrieved thermoData.yaml

Compute the adiabatic flame temperature for a stoichiometric methane-air flame. The code is given
below. There is a thermo class that is modified from your last homework. Also, you'll need
thermoData.yaml again. Then there is a function to define. Fill in the blanks as indicated. You
should also read all of the code given below and make sure you understand it.

Equation Summary:

 Your function (started for you below) is: £ flame(Ta) = o.
o Thatis, ffame(Th) =0= H,(T,) — H,(T,) = 0.

[e]

T, is the unknown.

T, = 300, K

H,.(T,) = ycrashcus(T,) + yorho2 () + ynohne (7).
H,(T,) = ycozhcoz (Ta) + ymeohm20(Ta) + ynahne (Ta)-
o Y = my;/my.

[e]

[¢]

o

" m; = nzMz

= n; and M; are given.

= my =) . m;.

= Do these separately for reactants and products That is:
m; = moz + myo + Moy for the reactants. (Also m; is the same for
products since mass is conserved.)

o h; is computed using the thermo class. So, if t_co2 is my thermo class object for CO»,
then h_Co2=t_C02.h_mass(T) .

Description:
¢ We have a chemical reaction:

o CHy +209 + 7.52Ny — CO9 + 2H50 +7.52N5.

e You can think of the burning as potential energy stored in the reactant bonds being released
as kinetic energy in the products so the product temperature is higher.

e Adiabatic means there is no enthalpy loss. You can think of enthalpy as energy. This means
the products have the same enthalpy as the reactants. And this is just a statement that energy
is conserved, like mass is.

* Theidea is to take a known reactant temperature, find the reactant enthalpy (which is an easy
explicit equation you can calculate directly), then set the product enthalpy equal to the
reactant enthalpy and find the corresponding product temperature (which is a harder
nonlinear solve).

e The reactants start at room temperature, I' = 300 K, so we can compute their enthalpy.

o We know the moles of reactants: n.py = 1, np2 = 2, npy9 = 7.52.

o So, we can compute the corresponding masses using the molecular weights.

o Then we sum the masses of each species to get the total mass, and compute the mass
fractions.

o Then we can compute the enthalpy as h = ZZ y; h;. That is, the total enthalpy is the
sum of the enthalpy per unit mass of each species times the mass fraction of each
species.

» For reactants we have h, = yogshcms + yo2hos + ynohne, where h; are
evaluated using the class function h_mass(T), and T=300 for reactants.

* Now, h, = h,. For products, we have h, = yco2hcoz2 + ymeo0hm20 + Yn2hna, where we
evaluate the class function h_mass(Tp), where Tp is the product temperature we are trying to
compute.

o Solving for T}, amounts to solving f(7},) = 0, where
f(Tp) = hp — ycoshco2 (1) + ymeohmo(Tp) + ynahwe (Tp)

import numpy as np
from scipy.optimize import fsolve
import yaml

class thermo:
def __init__ (self, species, MW) :
species: input string name of species in thermoData.yaml
M: input (species molecular weight, kg/kmol)
self.Rgas = 8314.46 # J/kmol*K
self.M = MW
with open("thermoData.yaml") as yfile :
yfile = yaml.load(yfile)
self.a_lo = yfile[species]["a_lo"]
self.a_hi = yfile[species]["a_hi"]
self.T_lo = 300.
self.T_mid = 1000.
self.T_hi = 3000.

def h_mole(self,T) :
return enthalpy in units of J/kmol
T: inobut (K)

if T<=self.T_mid and T>=self.T_lo :
a = self.a_lo
elif T>self.T_mid and T<=self.T_hi :
a = self.a_hi
else :
print ("ERROR: temperature is out of range")
hrt = a[@] + a[1]/2.0*T + a[2]/3.0*T*T + a[3]/4.0*T**3.0 + a[4]/5.0*T**4.0 + a[5]/T
return hrt * self.Rgas * T

def h_mass(self,T) :
return enthalpy in units of J/kg
T: input (K)

return self.h_mole(T)/self.M

def f_flame(Ta) :

We are solving for hp = sum_i y_i*h_i. In f=0 form this is f = hp - sum_i y_i*h_i
We know the reactant temperature, so we can compute enthalpy (h). Then we know hp = hr (a
Vary T until sum_i y_i*h_i = hp.
Steps:

1. Given moles --> mass --> mass fractions.

2. Make thermo classes for each species.

3. Compute hr = sum_i y _i*h_i.

. Do this for the reactants, then products.

no2 = 2. # kmol
nch4 = 1.

nn2 = 7.52

nco2 = 1.

nh2o = 2.

Mo2 = 32. # kg/kmol
Mch4 = 16.

Mn2 = 28.

Mco2 = 44.

Mh2o = 18.

mo2 = no2*Mo2 # mass
mch4 = nch4*Mch4 # mass
mn2 = nn2*Mn2 # mass

mh2o = nh20*Mh2o

mco2 = nco2*Mco2

t_02 = thermo("02",Mo02) # thermo object; use as: t_o02.h_mass(T) to get h_02, etc.
t_ch4 = thermo("CH4",Mch4)

t_n2 = thermo("N2",Mn2)

t_co2 = thermo("C02",Mco02)

t_h2o = thermo("H20",Mh20)

 + Reartantc

U CunI o

TO DO: compute total mass, then mass fractions
: Set reactant temperature, then compute reactant enthalpy

+H
—
o
o
o

+*+

---------- Products

TO DO: Set the product enthalpy = reactant enthalpy

TO DO: Set the product mass fractions

: Compute the enthalpy of the products corresponding to the current Tp
Then return the function: f(Tp) = hp - hp_based_on_current_Tp

H OH ¥ H
-
o
o
o

TO DO: Set a guess temperature, then solve for the product temperature

v Problem 4

Example: Solve a system of 6 equations in 6 unknowns

This is solving a parallel pipe network where we have three pipes that are connected at the
beginning and the end. The pipes can be of different lengths and diameter and pipe roughness.
Given the total flow rate, and the pipe properties, find the flow rate through each of three parallel

pipes.
« Unknowns: three flow rates: (1, ()2, (3.

e We need three equations.

o Welll label the pipes 1, 2, and 3.

° Eq. 1: Qiot = Q1 + Q2 + Q3.
= That is, the total flow rate is just the sum through each pipe.

o Because the pipes are connected, the pressure drop across each pipe is the same:
» Eq.2: AP, = AP,
» Eq.3: AP, = AP;

* Now we need to relate the pressure drop equations to the unknowns. The pressure is related
to the flow rate by:

o fLpv? .) o 4Q . .
o AP = >p—» and we use Q=Av= TDv—v= F,where Q is volumetric
s

flow rate. Then, substitute for v to get:

ar_fiz(10Y;
D2

2D

 Here, f is the friction factor in the pipe. We treat it as an unknown so we have three more
unknowns: f1, f2, f3. The Colbrook equation relates f to () for given pipe properties. So, we
have three more equations.

* Here are the six equations in terms of the six unknowns: 1, @2, Q3, f1, fo, f3.

1.Q1+ Q2+ Q3 — Qior =0.
9 f1L1P(4Q1)2 _ falep <4Q2>2 —0

2D, w[ﬁ 2D, ﬁlg
g filp <4Q1)2 _ fsLsp (4Q3)2 =0
" 2Dy \nD? 2D; \ nD?
4. Colbrook equation relating f7 to Q1 :
1 € 2.51umD
+ 2logy 1 Skt

— + —
Vi 3.7D1 pdQ:1 /i

5. Colbrook equation relating fo to Q5.
6. Colbrook equation relating f3 to Q3.

e All units are SI.

def F_pipes(x) :

Q1 = x[0] # rename the vars so we can read our equations below.
Q2 = x[1]

Q3 = x[2]

f1l = x[3]

2 = x[4]

3 = x[5]

Qt = 0.01333 # Given total volumetric flow rate

el = 0.00024 # pipe roughness (m) (epsilon in the equation)
e2 = 0.00012

e3 = 0.0002

L1 = 100 # pipe length (m)

L2 = 150

L3 = 80

D1 = 0.05 # pipe diameter (m)

D2 = 0.045

D3 = 0.04

mu = 1.002E-3 # viscosity (kg/m*s)

rho = 998. # density (kg/m3)

F = np.zeros(6) # initialize the function array

TO DO: Define the functions here

return F
£
TO DO: make a guess array for the unknowns: Q1, Q2, Q3, f1, f2, f3
(use Q3 = Qtot-Q1-Q2 in your guess, for consistency)

TO DO: Solve the problem and print the results.

